{"ref-id":"A15836","pubmed-id":14985103,"citation":"Nagy H, Goda K, Fenyvesi F, Bacso Z, Szilasi M, Kappelmayer J, Lustyik G, Cianfriglia M, Szabo G Jr: Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004 Mar 19;315(4):942-9.","parent_key":"BE0001032"} {"ref-id":"A15854","pubmed-id":8621716,"citation":"Borgnia MJ, Eytan GD, Assaraf YG: Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996 Feb 9;271(6):3163-71.","parent_key":"BE0001032"} {"ref-id":"A191203","pubmed-id":11707575,"citation":"Kondratov RV, Komarov PG, Becker Y, Ewenson A, Gudkov AV: Small molecules that dramatically alter multidrug resistance phenotype by modulating the substrate specificity of P-glycoprotein. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14078-83. doi: 10.1073/pnas.241314798. Epub 2001 Nov 13.","parent_key":"BE0001032"} {"ref-id":"A15802","pubmed-id":10692506,"citation":"Madon J, Hagenbuch B, Landmann L, Meier PJ, Stieger B: Transport function and hepatocellular localization of mrp6 in rat liver. Mol Pharmacol. 2000 Mar;57(3):634-41.","parent_key":"BE0001069"} {"ref-id":"A15910","pubmed-id":8842452,"citation":"Fricker G, Drewe J, Huwyler J, Gutmann H, Beglinger C: Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. Br J Pharmacol. 1996 Aug;118(7):1841-7.","parent_key":"BE0001032"} {"ref-id":"A15911","pubmed-id":9333100,"citation":"Lown KS, Mayo RR, Leichtman AB, Hsiao HL, Turgeon DK, Schmiedlin-Ren P, Brown MB, Guo W, Rossi SJ, Benet LZ, Watkins PB: Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther. 1997 Sep;62(3):248-60.","parent_key":"BE0001032"} {"ref-id":"A15891","pubmed-id":10227700,"citation":"Soldner A, Christians U, Susanto M, Wacher VJ, Silverman JA, Benet LZ: Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res. 1999 Apr;16(4):478-85.","parent_key":"BE0001032"} {"ref-id":"A189402","pubmed-id":23922006,"citation":"Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB: PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics. 2013 Oct;23(10):563-85. doi: 10.1097/FPC.0b013e328364db84.","parent_key":"BE0001032"} {"ref-id":"A12261","pubmed-id":12404239,"citation":"Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ: The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology. 2002 Nov;123(5):1649-58.","parent_key":"BE0000703"} {"ref-id":"A16122","pubmed-id":10648470,"citation":"Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ: Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000 Feb;118(2):422-30.","parent_key":"BE0000703"} {"ref-id":"A174103","pubmed-id":27000539,"citation":"Zhang J, He K, Cai L, Chen YC, Yang Y, Shi Q, Woolf TF, Ge W, Guo L, Borlak J, Tong W: Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse. Chem Biol Interact. 2016 Aug 5;255:45-54. doi: 10.1016/j.cbi.2016.03.019. Epub 2016 Mar 19.","parent_key":"BE0000703"} {"ref-id":"A7381","pubmed-id":9486191,"citation":"Schroeder A, Eckhardt U, Stieger B, Tynes R, Schteingart CD, Hofmann AF, Meier PJ, Hagenbuch B: Substrate specificity of the rat liver Na(+)-bile salt cotransporter in Xenopus laevis oocytes and in CHO cells. Am J Physiol. 1998 Feb;274(2 Pt 1):G370-5.","parent_key":"BE0003644"} {"ref-id":"A189420","pubmed-id":18668439,"citation":"Kosters A, Karpen SJ: Bile acid transporters in health and disease. Xenobiotica. 2008 Jul;38(7-8):1043-71. doi: 10.1080/00498250802040584.","parent_key":"BE0003644"} {"ref-id":"A16295","pubmed-id":9374486,"citation":"Sweet DH, Wolff NA, Pritchard JB: Expression cloning and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J Biol Chem. 1997 Nov 28;272(48):30088-95.","parent_key":"BE0001066"} {"ref-id":"A189423","pubmed-id":27290622,"citation":"Taguchi T, Masuo Y, Kogi T, Nakamichi N, Kato Y: Characterization of Long-Lasting Oatp Inhibition by Typical Inhibitor Cyclosporine A and In Vitro-In Vivo Discrepancy in Its Drug Interaction Potential in Rats. J Pharm Sci. 2016 Jul;105(7):2231-9. doi: 10.1016/j.xphs.2016.04.025. Epub 2016 Jun 9.","parent_key":"BE0001066"} {"ref-id":"A189426","pubmed-id":29051147,"citation":"Uchida M, Tajima Y, Kakuni M, Kageyama Y, Okada T, Sakurada E, Tateno C, Hayashi R: Organic Anion-Transporting Polypeptide (OATP)-Mediated Drug-Drug Interaction Study between Rosuvastatin and Cyclosporine A in Chimeric Mice with Humanized Liver. Drug Metab Dispos. 2018 Jan;46(1):11-19. doi: 10.1124/dmd.117.075994. Epub 2017 Oct 19.","parent_key":"BE0001066"} {"ref-id":"A174082","pubmed-id":25860376,"citation":"Sidharta PN, Treiber A, Dingemanse J: Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet. 2015 May;54(5):457-71. doi: 10.1007/s40262-015-0255-5.","parent_key":"BE0001066"} {"ref-id":"A33517","pubmed-id":15816878,"citation":"Hesselink DA, van Hest RM, Mathot RA, Bonthuis F, Weimar W, de Bruin RW, van Gelder T: Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant. 2005 May;5(5):987-94. doi: 10.1046/j.1600-6143.2005.00779.x.","parent_key":"BE0001069"} {"ref-id":"A189432","pubmed-id":12967592,"citation":"Elamiri A, Perwaiz S, Tuchweber B, Yousef IM: Effect of mdr2 mutation with combined tandem disruption of canalicular glycoprotein transporters by cyclosporine A on bile formation in mice. Pharmacol Res. 2003 Nov;48(5):467-72. doi: 10.1016/s1043-6618(03)00187-7.","parent_key":"BE0001069"} {"ref-id":"A16384","pubmed-id":11437380,"citation":"Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B: Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun. 2001 Jul 6;285(1):111-7.","parent_key":"BE0001067"} {"ref-id":"A174082","pubmed-id":25860376,"citation":"Sidharta PN, Treiber A, Dingemanse J: Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet. 2015 May;54(5):457-71. doi: 10.1007/s40262-015-0255-5.","parent_key":"BE0001067"} {"ref-id":"A16411","pubmed-id":12538813,"citation":"Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y: Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther. 2003 Feb;304(2):610-6.","parent_key":"BE0001004"} {"ref-id":"A16412","pubmed-id":14530907,"citation":"Fehrenbach T, Cui Y, Faulstich H, Keppler D: Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins. Naunyn Schmiedebergs Arch Pharmacol. 2003 Nov;368(5):415-20. Epub 2003 Oct 3.","parent_key":"BE0001004"} {"ref-id":"A189441","pubmed-id":23179780,"citation":"Gertz M, Cartwright CM, Hobbs MJ, Kenworthy KE, Rowland M, Houston JB, Galetin A: Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm Res. 2013 Mar;30(3):761-80. doi: 10.1007/s11095-012-0918-y. Epub 2012 Nov 22.","parent_key":"BE0001004"} {"ref-id":"A174082","pubmed-id":25860376,"citation":"Sidharta PN, Treiber A, Dingemanse J: Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet. 2015 May;54(5):457-71. doi: 10.1007/s40262-015-0255-5.","parent_key":"BE0003659"} {"ref-id":"A189438","pubmed-id":22240838,"citation":"Shitara Y, Takeuchi K, Nagamatsu Y, Wada S, Sugiyama Y, Horie T: Long-lasting inhibitory effects of cyclosporin A, but not tacrolimus, on OATP1B1- and OATP1B3-mediated uptake. Drug Metab Pharmacokinet. 2012;27(4):368-78. doi: 10.2133/dmpk.dmpk-11-rg-096. Epub 2012 Jan 13.","parent_key":"BE0003659"} {"ref-id":"A189441","pubmed-id":23179780,"citation":"Gertz M, Cartwright CM, Hobbs MJ, Kenworthy KE, Rowland M, Houston JB, Galetin A: Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm Res. 2013 Mar;30(3):761-80. doi: 10.1007/s11095-012-0918-y. Epub 2012 Nov 22.","parent_key":"BE0003659"} {"ref-id":"A175273","pubmed-id":23539619,"citation":"Gherasim C, Lofgren M, Banerjee R: Navigating the B(12) road: assimilation, delivery, and disorders of cobalamin. J Biol Chem. 2013 May 10;288(19):13186-93. doi: 10.1074/jbc.R113.458810. Epub 2013 Mar 28.","parent_key":"BE0000785"} {"ref-id":"A175303","pubmed-id":23415653,"citation":"Quadros EV, Sequeira JM: Cellular uptake of cobalamin: transcobalamin and the TCblR/CD320 receptor. Biochimie. 2013 May;95(5):1008-18. doi: 10.1016/j.biochi.2013.02.004. Epub 2013 Feb 14.","parent_key":"BE0000785"} {"ref-id":"A16335","pubmed-id":9756510,"citation":"Kusuhara H, Han YH, Shimoda M, Kokue E, Suzuki H, Sugiyama Y: Reduced folate derivatives are endogenous substrates for cMOAT in rats. Am J Physiol. 1998 Oct;275(4 Pt 1):G789-96.","parent_key":"BE0001069"} {"ref-id":"A16312","pubmed-id":11306713,"citation":"Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, Endou H: Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001 May;59(5):1277-86.","parent_key":"BE0003645"} {"ref-id":"A16283","pubmed-id":9880528,"citation":"Kuze K, Graves P, Leahy A, Wilson P, Stuhlmann H, You G: Heterologous expression and functional characterization of a mouse renal organic anion transporter in mammalian cells. J Biol Chem. 1999 Jan 15;274(3):1519-24.","parent_key":"BE0001066"} {"ref-id":"A15965","pubmed-id":9188796,"citation":"Heijn M, Hooijberg JH, Scheffer GL, Szabo G, Westerhoff HV, Lankelma J: Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport. Biochim Biophys Acta. 1997 May 22;1326(1):12-22.","parent_key":"BE0000785"} {"ref-id":"A6370","pubmed-id":10917554,"citation":"Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, Borst P: Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer. 2000 Aug;83(3):375-83.","parent_key":"BE0000785"} {"ref-id":"A16229","pubmed-id":8640791,"citation":"Jedlitschky G, Leier I, Buchholz U, Barnouin K, Kurz G, Keppler D: Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res. 1996 Mar 1;56(5):988-94.","parent_key":"BE0000785"} {"ref-id":"A16230","pubmed-id":16539673,"citation":"Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R: The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem. 2006 Apr;97(2):373-84. Epub 2006 Mar 15.","parent_key":"BE0000785"} {"ref-id":"A16327","pubmed-id":10024515,"citation":"Paulusma CC, van Geer MA, Evers R, Heijn M, Ottenhoff R, Borst P, Oude Elferink RP: Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione. Biochem J. 1999 Mar 1;338 ( Pt 2):393-401.","parent_key":"BE0001069"} {"ref-id":"A16328","pubmed-id":10491184,"citation":"Hagmann W, Nies AT, Konig J, Frey M, Zentgraf H, Keppler D: Purification of the human apical conjugate export pump MRP2 reconstitution and functional characterization as substrate-stimulated ATPase. Eur J Biochem. 1999 Oct 1;265(1):281-9.","parent_key":"BE0001069"} {"ref-id":"A16329","pubmed-id":1430236,"citation":"Nishida T, Gatmaitan Z, Roy-Chowdhry J, Arias IM: Two distinct mechanisms for bilirubin glucuronide transport by rat bile canalicular membrane vesicles. Demonstration of defective ATP-dependent transport in rats (TR-) with inherited conjugated hyperbilirubinemia. J Clin Invest. 1992 Nov;90(5):2130-5.","parent_key":"BE0001069"} {"ref-id":"A16122","pubmed-id":10648470,"citation":"Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ: Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000 Feb;118(2):422-30.","parent_key":"BE0001069"} {"ref-id":"A16088","pubmed-id":11802779,"citation":"Lai L, Tan TM: Role of glutathione in the multidrug resistance protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine analogues. Biochem J. 2002 Feb 1;361(Pt 3):497-503.","parent_key":"BE0001188"} {"ref-id":"A33352","pubmed-id":19953504,"citation":"VanWert AL, Gionfriddo MR, Sweet DH: Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos. 2010 Jan;31(1):1-71. doi: 10.1002/bdd.693.","parent_key":"BE0001066"} {"ref-id":"A16296","pubmed-id":9827570,"citation":"Uwai Y, Okuda M, Takami K, Hashimoto Y, Inui K: Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett. 1998 Nov 6;438(3):321-4.","parent_key":"BE0001066"} {"ref-id":"A16087","pubmed-id":12036927,"citation":"Chen ZS, Lee K, Walther S, Raftogianis RB, Kuwano M, Zeng H, Kruh GD: Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002 Jun 1;62(11):3144-50.","parent_key":"BE0001188"} {"ref-id":"A16084","pubmed-id":12883481,"citation":"Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G, Keppler D: Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology. 2003 Aug;38(2):374-84.","parent_key":"BE0001188"} {"ref-id":"A16337","pubmed-id":12874005,"citation":"Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, Ross DD, Bates SE, Kruh GD: Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res. 2003 Jul 15;63(14):4048-54.","parent_key":"BE0001067"} {"ref-id":"A6154","pubmed-id":11669456,"citation":"Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001 Sep 21;69(18):2123-35.","parent_key":"BE0001066"} {"ref-id":"A16284","pubmed-id":10336520,"citation":"Tsuda M, Sekine T, Takeda M, Cha SH, Kanai Y, Kimura M, Endou H: Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther. 1999 Jun;289(3):1301-5.","parent_key":"BE0001066"} {"ref-id":"A6154","pubmed-id":11669456,"citation":"Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001 Sep 21;69(18):2123-35.","parent_key":"BE0003645"} {"ref-id":"A12333","pubmed-id":12063169,"citation":"Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, Cha SH, Sekine T, Sakthisekaran D, Endou H: Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002 Jun 12;1590(1-3):64-75.","parent_key":"BE0000879"} {"ref-id":"A15931","pubmed-id":15616150,"citation":"Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, Smolarek TA: Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005 Apr;33(4):537-46. Epub 2004 Dec 22.","parent_key":"BE0001004"} {"ref-id":"A15976","pubmed-id":10601278,"citation":"Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG: A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem. 1999 Dec 24;274(52):37161-8.","parent_key":"BE0001004"} {"ref-id":"A16191","pubmed-id":15901800,"citation":"Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18.","parent_key":"BE0001004"} {"ref-id":"A16413","pubmed-id":15970799,"citation":"Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K: Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005 Jul;15(7):513-22.","parent_key":"BE0001004"} {"ref-id":"A16408","pubmed-id":19919292,"citation":"Sharma P, Holmes VE, Elsby R, Lambert C, Surry D: Validation of cell-based OATP1B1 assays to assess drug transport and the potential for drug-drug interaction to support regulatory submissions. Xenobiotica. 2010 Jan;40(1):24-37. doi: 10.3109/00498250903351013.","parent_key":"BE0001004"} {"ref-id":"A16116","pubmed-id":19151602,"citation":"Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ: Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics. 2009 Feb;19(2):129-38. doi: 10.1097/FPC.0b013e32831bd98c.","parent_key":"BE0001042"} {"ref-id":"A16113","pubmed-id":12724351,"citation":"Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I: Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther. 2003 Aug;306(2):703-8. Epub 2003 Apr 30.","parent_key":"BE0001042"} {"ref-id":"A15989","pubmed-id":14610227,"citation":"Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I: Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J Pharmacol Exp Ther. 2004 Feb;308(2):438-45. Epub 2003 Nov 10.","parent_key":"BE0001042"} {"ref-id":"A15931","pubmed-id":15616150,"citation":"Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, Smolarek TA: Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005 Apr;33(4):537-46. Epub 2004 Dec 22.","parent_key":"BE0001032"} {"ref-id":"A16191","pubmed-id":15901800,"citation":"Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18.","parent_key":"BE0001032"} {"ref-id":"A177682","pubmed-id":28831316,"citation":"Salna MP, Singer HM, Dana AN: Pravastatin-Induced Eczematous Eruption Mimicking Psoriasis. Case Rep Dermatol Med. 2017;2017:3418204. doi: 10.1155/2017/3418204. Epub 2017 Jul 31.","parent_key":"BE0001032"} {"ref-id":"A15976","pubmed-id":10601278,"citation":"Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG: A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem. 1999 Dec 24;274(52):37161-8.","parent_key":"BE0003642"} {"ref-id":"A16282","pubmed-id":14978359,"citation":"Khamdang S, Takeda M, Shimoda M, Noshiro R, Narikawa S, Huang XL, Enomoto A, Piyachaturawat P, Endou H: Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J Pharmacol Sci. 2004 Feb;94(2):197-202.","parent_key":"BE0001066"} {"ref-id":"A16282","pubmed-id":14978359,"citation":"Khamdang S, Takeda M, Shimoda M, Noshiro R, Narikawa S, Huang XL, Enomoto A, Piyachaturawat P, Endou H: Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J Pharmacol Sci. 2004 Feb;94(2):197-202.","parent_key":"BE0003645"} {"ref-id":"A16313","pubmed-id":14762099,"citation":"Ohtsuki S, Kikkawa T, Mori S, Hori S, Takanaga H, Otagiri M, Terasaki T: Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood-brain barrier. J Pharmacol Exp Ther. 2004 Jun;309(3):1273-81. Epub 2004 Feb 4.","parent_key":"BE0003645"} {"ref-id":"A16297","pubmed-id":11861777,"citation":"Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, Sugiyama Y: Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J Pharmacol Exp Ther. 2002 Mar;300(3):746-53.","parent_key":"BE0003645"} {"ref-id":"A16330","pubmed-id":9321514,"citation":"Yamazaki M, Akiyama S, Ni'inuma K, Nishigaki R, Sugiyama Y: Biliary excretion of pravastatin in rats: contribution of the excretion pathway mediated by canalicular multispecific organic anion transporter. Drug Metab Dispos. 1997 Oct;25(10):1123-9.","parent_key":"BE0001069"} {"ref-id":"A16331","pubmed-id":11748225,"citation":"Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y: Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem. 2002 Feb 22;277(8):6497-503. Epub 2001 Dec 17.","parent_key":"BE0001069"} {"ref-id":"A16191","pubmed-id":15901800,"citation":"Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18.","parent_key":"BE0001069"} {"ref-id":"A16282","pubmed-id":14978359,"citation":"Khamdang S, Takeda M, Shimoda M, Noshiro R, Narikawa S, Huang XL, Enomoto A, Piyachaturawat P, Endou H: Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J Pharmacol Sci. 2004 Feb;94(2):197-202.","parent_key":"BE0000879"} {"ref-id":"A16374","pubmed-id":12682043,"citation":"Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y: ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem. 2003 Jun 20;278(25):22644-9. Epub 2003 Apr 7.","parent_key":"BE0001067"} {"ref-id":"A16191","pubmed-id":15901800,"citation":"Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18.","parent_key":"BE0001067"} {"ref-id":"A18084","pubmed-id":19260999,"citation":"Morisawa Y, Takikawa H: Effect of bile acids on the biliary excretion of pravastatin in rats. Hepatol Res. 2009 Jun;39(6):595-600. doi: 10.1111/j.1872-034X.2009.00493.x. Epub 2009 Feb 24.","parent_key":"BE0000703"} {"ref-id":"A15976","pubmed-id":10601278,"citation":"Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG: A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem. 1999 Dec 24;274(52):37161-8.","parent_key":"BE0003659"} {"ref-id":"A15880","pubmed-id":12438524,"citation":"Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Adkison KK, Polli JW: Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002 Dec;303(3):1029-37.","parent_key":"BE0001032"} {"ref-id":"A15822","pubmed-id":12649369,"citation":"Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE: Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003 Apr;305(1):197-204.","parent_key":"BE0001032"} {"ref-id":"A33345","pubmed-id":24014644,"citation":"Pedersen JM, Matsson P, Bergstrom CA, Hoogstraate J, Noren A, LeCluyse EL, Artursson P: Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci. 2013 Dec;136(2):328-43. doi: 10.1093/toxsci/kft197. Epub 2013 Sep 6.","parent_key":"BE0000703"} {"ref-id":"A16475","pubmed-id":19936896,"citation":"Poirier A, Cascais AC, Funk C, Lave T: Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):585-611. doi: 10.1007/s10928-009-9139-3. Epub 2009 Nov 20.","parent_key":"BE0003659"} {"ref-id":"A16476","pubmed-id":19937834,"citation":"Poirier A, Cascais AC, Funk C, Lave T: Prediction of pharmacokinetic profile of valsartan in humans based on in vitro uptake-transport data. Chem Biodivers. 2009 Nov;6(11):1975-87. doi: 10.1002/cbdv.200900116.","parent_key":"BE0003659"} {"ref-id":"A174145","pubmed-id":28281384,"citation":"Hanna I, Alexander N, Crouthamel MH, Davis J, Natrillo A, Tran P, Vapurcuyan A, Zhu B: Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition. Xenobiotica. 2018 Mar;48(3):300-313. doi: 10.1080/00498254.2017.1295171. Epub 2017 Mar 10.","parent_key":"BE0003659"} {"ref-id":"A174148","pubmed-id":29538325,"citation":"Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W: Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci. 2018 Mar 14;19(3). pii: ijms19030855. doi: 10.3390/ijms19030855.","parent_key":"BE0003659"} {"ref-id":"A16475","pubmed-id":19936896,"citation":"Poirier A, Cascais AC, Funk C, Lave T: Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):585-611. doi: 10.1007/s10928-009-9139-3. Epub 2009 Nov 20.","parent_key":"BE0001004"} {"ref-id":"A16476","pubmed-id":19937834,"citation":"Poirier A, Cascais AC, Funk C, Lave T: Prediction of pharmacokinetic profile of valsartan in humans based on in vitro uptake-transport data. Chem Biodivers. 2009 Nov;6(11):1975-87. doi: 10.1002/cbdv.200900116.","parent_key":"BE0001004"} {"ref-id":"A34540","pubmed-id":21861202,"citation":"Karlgren M, Ahlin G, Bergstrom CA, Svensson R, Palm J, Artursson P: In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions. Pharm Res. 2012 Feb;29(2):411-26. doi: 10.1007/s11095-011-0564-9. Epub 2011 Aug 23.","parent_key":"BE0001004"} {"ref-id":"A174148","pubmed-id":29538325,"citation":"Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W: Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci. 2018 Mar 14;19(3). pii: ijms19030855. doi: 10.3390/ijms19030855.","parent_key":"BE0001004"} {"ref-id":"A174145","pubmed-id":28281384,"citation":"Hanna I, Alexander N, Crouthamel MH, Davis J, Natrillo A, Tran P, Vapurcuyan A, Zhu B: Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition. Xenobiotica. 2018 Mar;48(3):300-313. doi: 10.1080/00498254.2017.1295171. Epub 2017 Mar 10.","parent_key":"BE0001004"} {"ref-id":"A174166","pubmed-id":16624871,"citation":"Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y: Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos. 2006 Jul;34(7):1247-54. doi: 10.1124/dmd.105.008938. Epub 2006 Apr 19.","parent_key":"BE0001069"} {"ref-id":"A174145","pubmed-id":28281384,"citation":"Hanna I, Alexander N, Crouthamel MH, Davis J, Natrillo A, Tran P, Vapurcuyan A, Zhu B: Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition. Xenobiotica. 2018 Mar;48(3):300-313. doi: 10.1080/00498254.2017.1295171. Epub 2017 Mar 10.","parent_key":"BE0001069"} {"ref-id":"A204137","pubmed-id":23589314,"citation":"O'Connor R, Ooi MG, Meiller J, Jakubikova J, Klippel S, Delmore J, Richardson P, Anderson K, Clynes M, Mitsiades CS, O'Gorman P: The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol. 2013 May;71(5):1357-68. doi: 10.1007/s00280-013-2136-7. Epub 2013 Apr 16.","parent_key":"BE0001032"} {"ref-id":"A204143","pubmed-id":28927064,"citation":"Clemens J, Welti L, Schafer J, Seckinger A, Burhenne J, Theile D, Weiss J: Bortezomib, carfilzomib and ixazomib do not mediate relevant transporter-based drug-drug interactions. Oncol Lett. 2017 Sep;14(3):3185-3192. doi: 10.3892/ol.2017.6560. Epub 2017 Jul 8.","parent_key":"BE0001032"} {"ref-id":"A204140","pubmed-id":29107984,"citation":"Alam K, Farasyn T, Crowe A, Ding K, Yue W: Treatment with proteasome inhibitor bortezomib decreases organic anion transporting polypeptide (OATP) 1B3-mediated transport in a substrate-dependent manner. PLoS One. 2017 Nov 6;12(11):e0186924. doi: 10.1371/journal.pone.0186924. eCollection 2017.","parent_key":"BE0003659"} {"ref-id":"A174352","pubmed-id":28355970,"citation":"Nwaroh E, Jupp J, Jadusingh E, Guilcher G: Clinical impact and management of fluconazole discontinuation on sirolimus levels in bone marrow transplant patients. J Oncol Pharm Pract. 2018 Apr;24(3):235-238. doi: 10.1177/1078155217701293. Epub 2017 Mar 29.","parent_key":"BE0001032"} {"ref-id":"A16121","pubmed-id":12739759,"citation":"Wang EJ, Casciano CN, Clement RP, Johnson WW: Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm Res. 2003 Apr;20(4):537-44.","parent_key":"BE0000703"} {"ref-id":"A15800","pubmed-id":11557132,"citation":"Funk C, Pantze M, Jehle L, Ponelle C, Scheuermann G, Lazendic M, Gasser R: Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology. 2001 Oct 5;167(1):83-98.","parent_key":"BE0000703"} {"ref-id":"A16123","pubmed-id":19688600,"citation":"Saito H, Osumi M, Hirano H, Shin W, Nakamura R, Ishikawa T: Technical pitfalls and improvements for high-speed screening and QSAR analysis to predict inhibitors of the human bile salt export pump (ABCB11/BSEP). AAPS J. 2009 Sep;11(3):581-9. doi: 10.1208/s12248-009-9137-9. Epub 2009 Aug 18.","parent_key":"BE0000703"} {"ref-id":"A16349","pubmed-id":14977862,"citation":"Nozawa T, Sugiura S, Nakajima M, Goto A, Yokoi T, Nezu J, Tsuji A, Tamai I: Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate: implications for understanding troglitazone hepatotoxicity. Drug Metab Dispos. 2004 Mar;32(3):291-4.","parent_key":"BE0001004"} {"ref-id":"A16092","pubmed-id":19029202,"citation":"Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Hosokawa M, Schuetz JD, Sugiyama Y: Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos. 2009 Feb;37(2):315-21. doi: 10.1124/dmd.108.024018. Epub 2008 Nov 24.","parent_key":"BE0001188"} {"ref-id":"A16092","pubmed-id":19029202,"citation":"Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Hosokawa M, Schuetz JD, Sugiyama Y: Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos. 2009 Feb;37(2):315-21. doi: 10.1124/dmd.108.024018. Epub 2008 Nov 24.","parent_key":"BE0003645"} {"ref-id":"A33516","pubmed-id":19785645,"citation":"Kalliokoski A, Niemi M: Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009 Oct;158(3):693-705. doi: 10.1111/j.1476-5381.2009.00430.x. Epub 2009 Sep 25.","parent_key":"BE0003659"} {"ref-id":"A34545","pubmed-id":21103967,"citation":"Konig J: Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol. 2011;(201):1-28. doi: 10.1007/978-3-642-14541-4_1.","parent_key":"BE0003659"} {"ref-id":"A174493","pubmed-id":18509328,"citation":"Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A: Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther. 2008 Dec;84(6):704-9. doi: 10.1038/clpt.2008.94. Epub 2008 May 28.","parent_key":"BE0003659"} {"ref-id":"A174502","pubmed-id":24154606,"citation":"Kock K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, Stewart PW, Brouwer KL: Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos. 2014 Apr;42(4):665-74. doi: 10.1124/dmd.113.054304. Epub 2013 Oct 23.","parent_key":"BE0000703"} {"ref-id":"A174505","pubmed-id":21480339,"citation":"Padda MS, Sanchez M, Akhtar AJ, Boyer JL: Drug-induced cholestasis. Hepatology. 2011 Apr;53(4):1377-87. doi: 10.1002/hep.24229.","parent_key":"BE0000703"} {"ref-id":"A15919","pubmed-id":9822896,"citation":"Takano M, Hasegawa R, Fukuda T, Yumoto R, Nagai J, Murakami T: Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol. 1998 Oct 9;358(3):289-94.","parent_key":"BE0001032"} {"ref-id":"A18692","pubmed-id":10783825,"citation":"Schwarz UI, Gramatte T, Krappweis J, Oertel R, Kirch W: P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int J Clin Pharmacol Ther. 2000 Apr;38(4):161-7.","parent_key":"BE0001032"} {"ref-id":"A16203","pubmed-id":10817732,"citation":"Terashi K, Oka M, Soda H, Fukuda M, Kawabata S, Nakatomi K, Shiozawa K, Nakamura T, Tsukamoto K, Noguchi Y, Suenaga M, Tei C, Kohno S: Interactions of ofloxacin and erythromycin with the multidrug resistance protein (MRP) in MRP-overexpressing human leukemia cells. Antimicrob Agents Chemother. 2000 Jun;44(6):1697-700.","parent_key":"BE0001032"} {"ref-id":"A174490","pubmed-id":21864659,"citation":"Vadlapatla RK, Vadlapudi AD, Kwatra D, Pal D, Mitra AK: Differential effect of P-gp and MRP2 on cellular translocation of gemifloxacin. Int J Pharm. 2011 Nov 25;420(1):26-33. doi: 10.1016/j.ijpharm.2011.08.009. Epub 2011 Aug 16.","parent_key":"BE0001032"} {"ref-id":"A15920","pubmed-id":15286055,"citation":"Sun H, Huang Y, Frassetto L, Benet LZ: Effects of uremic toxins on hepatic uptake and metabolism of erythromycin. Drug Metab Dispos. 2004 Nov;32(11):1239-46. Epub 2004 Jul 30.","parent_key":"BE0001004"} {"ref-id":"A33516","pubmed-id":19785645,"citation":"Kalliokoski A, Niemi M: Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009 Oct;158(3):693-705. doi: 10.1111/j.1476-5381.2009.00430.x. Epub 2009 Sep 25.","parent_key":"BE0001004"} {"ref-id":"A34545","pubmed-id":21103967,"citation":"Konig J: Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol. 2011;(201):1-28. doi: 10.1007/978-3-642-14541-4_1.","parent_key":"BE0001004"} {"ref-id":"A174493","pubmed-id":18509328,"citation":"Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A: Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther. 2008 Dec;84(6):704-9. doi: 10.1038/clpt.2008.94. Epub 2008 May 28.","parent_key":"BE0001004"} {"ref-id":"A174499","pubmed-id":22990751,"citation":"Lancaster CS, Bruun GH, Peer CJ, Mikkelsen TS, Corydon TJ, Gibson AA, Hu S, Orwick SJ, Mathijssen RH, Figg WD, Baker SD, Sparreboom A: OATP1B1 polymorphism as a determinant of erythromycin disposition. Clin Pharmacol Ther. 2012 Nov;92(5):642-50. doi: 10.1038/clpt.2012.106. Epub 2012 Sep 19.","parent_key":"BE0001004"} {"ref-id":"A174460","pubmed-id":21451505,"citation":"Franke RM, Lancaster CS, Peer CJ, Gibson AA, Kosloske AM, Orwick SJ, Mathijssen RH, Figg WD, Baker SD, Sparreboom A: Effect of ABCC2 (MRP2) transport function on erythromycin metabolism. Clin Pharmacol Ther. 2011 May;89(5):693-701. doi: 10.1038/clpt.2011.25. Epub 2011 Mar 30.","parent_key":"BE0001069"} {"ref-id":"A174487","pubmed-id":23633119,"citation":"Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F: Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013 Sep;52(9):751-62. doi: 10.1007/s40262-013-0069-2.","parent_key":"BE0001069"} {"ref-id":"A174490","pubmed-id":21864659,"citation":"Vadlapatla RK, Vadlapudi AD, Kwatra D, Pal D, Mitra AK: Differential effect of P-gp and MRP2 on cellular translocation of gemifloxacin. Int J Pharm. 2011 Nov 25;420(1):26-33. doi: 10.1016/j.ijpharm.2011.08.009. Epub 2011 Aug 16.","parent_key":"BE0001069"} {"ref-id":"A174493","pubmed-id":18509328,"citation":"Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A: Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther. 2008 Dec;84(6):704-9. doi: 10.1038/clpt.2008.94. Epub 2008 May 28.","parent_key":"BE0003642"} {"ref-id":"A174496","pubmed-id":19741038,"citation":"Lan T, Rao A, Haywood J, Davis CB, Han C, Garver E, Dawson PA: Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides. Drug Metab Dispos. 2009 Dec;37(12):2375-82. doi: 10.1124/dmd.109.028522. Epub 2009 Sep 9.","parent_key":"BE0003642"} {"ref-id":"A187232","pubmed-id":22113078,"citation":"Ding R, Shi J, Pabon K, Scotto KW: Xanthines down-regulate the drug transporter ABCG2 and reverse multidrug resistance. Mol Pharmacol. 2012 Mar;81(3):328-37. doi: 10.1124/mol.111.075556. Epub 2011 Nov 23.","parent_key":"BE0001067"} {"ref-id":"A16089","pubmed-id":12695538,"citation":"Reid G, Wielinga P, Zelcer N, De Haas M, Van Deemter L, Wijnholds J, Balzarini J, Borst P: Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003 May;63(5):1094-103.","parent_key":"BE0001188"} {"ref-id":"A40137","pubmed-id":21402712,"citation":"Shi Z, Tiwari AK, Shukla S, Robey RW, Singh S, Kim IW, Bates SE, Peng X, Abraham I, Ambudkar SV, Talele TT, Fu LW, Chen ZS: Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res. 2011 Apr 15;71(8):3029-41. doi: 10.1158/0008-5472.CAN-10-3820. Epub 2011 Mar 14.","parent_key":"BE0001032"} {"ref-id":"A40138","pubmed-id":28769012,"citation":"Higashi H, Watanabe N, Tamura R, Taguchi M: In Vitro P-Glycoprotein-Mediated Transport of Tadalafil: A Comparison with Sildenafil. Biol Pharm Bull. 2017;40(8):1314-1319. doi: 10.1248/bpb.b17-00278.","parent_key":"BE0001032"} {"ref-id":"A191305","pubmed-id":23422148,"citation":"Lin F, Hoogendijk L, Buil L, Beijnen JH, van Tellingen O: Sildenafil is not a useful modulator of ABCB1 and ABCG2 mediated drug resistance in vivo. Eur J Cancer. 2013 May;49(8):2059-64. doi: 10.1016/j.ejca.2012.12.028. Epub 2013 Feb 17.","parent_key":"BE0001032"} {"ref-id":"A40140","pubmed-id":22775210,"citation":"Choi MK, Song IS: Characterization of efflux transport of the PDE5 inhibitors, vardenafil and sildenafil. J Pharm Pharmacol. 2012 Aug;64(8):1074-83. doi: 10.1111/j.2042-7158.2012.01498.x. Epub 2012 Mar 16.","parent_key":"BE0001032"} {"ref-id":"A15860","pubmed-id":11297522,"citation":"Geick A, Eichelbaum M, Burk O: Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001 May 4;276(18):14581-7. Epub 2001 Jan 31.","parent_key":"BE0001032"} {"ref-id":"A15861","pubmed-id":8632764,"citation":"Schuetz EG, Beck WT, Schuetz JD: Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996 Feb;49(2):311-8.","parent_key":"BE0001032"} {"ref-id":"A15813","pubmed-id":11716514,"citation":"Wang EJ, Casciano CN, Clement RP, Johnson WW: Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001 Nov 30;289(2):580-5.","parent_key":"BE0001032"} {"ref-id":"A15868","pubmed-id":11961113,"citation":"Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, Yasuda K, Shepard RL, Winter MA, Schuetz JD, Wikel JH, Wrighton SA: Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol. 2002 May;61(5):964-73.","parent_key":"BE0001032"} {"ref-id":"A15815","pubmed-id":12134945,"citation":"Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):765-72.","parent_key":"BE0001032"} {"ref-id":"A15817","pubmed-id":12636153,"citation":"Horie K, Tang F, Borchardt RT: Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003 Feb;20(2):161-8.","parent_key":"BE0001032"} {"ref-id":"A15869","pubmed-id":12235267,"citation":"Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD, Schuetz EG: Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther. 2002 Oct;303(1):323-32.","parent_key":"BE0001032"} {"ref-id":"A15849","pubmed-id":11602674,"citation":"Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS: Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001 Nov;299(2):620-8.","parent_key":"BE0001032"} {"ref-id":"A15798","pubmed-id":10617675,"citation":"Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35.","parent_key":"BE0000703"} {"ref-id":"A15938","pubmed-id":12134946,"citation":"Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9.","parent_key":"BE0001069"} {"ref-id":"A18357","pubmed-id":22541068,"citation":"Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P: Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem. 2012 May 24;55(10):4740-63. doi: 10.1021/jm300212s. Epub 2012 May 15.","parent_key":"BE0001004"} {"ref-id":"A18357","pubmed-id":22541068,"citation":"Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P: Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem. 2012 May 24;55(10):4740-63. doi: 10.1021/jm300212s. Epub 2012 May 15.","parent_key":"BE0001042"} {"ref-id":"A15871","pubmed-id":11743742,"citation":"Wang E, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW: Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol. 2001 Dec;14(12):1596-603.","parent_key":"BE0001032"} {"ref-id":"A15906","pubmed-id":14744620,"citation":"Asakura E, Nakayama H, Sugie M, Zhao YL, Nadai M, Kitaichi K, Shimizu A, Miyoshi M, Takagi K, Takagi K, Hasegawa T: Azithromycin reverses anticancer drug resistance and modifies hepatobiliary excretion of doxorubicin in rats. Eur J Pharmacol. 2004 Jan 26;484(2-3):333-9.","parent_key":"BE0001032"} {"ref-id":"A37402","pubmed-id":14982769,"citation":"Sugie M, Asakura E, Zhao YL, Torita S, Nadai M, Baba K, Kitaichi K, Takagi K, Takagi K, Hasegawa T: Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother. 2004 Mar;48(3):809-14.","parent_key":"BE0001032"} {"ref-id":"A174172","pubmed-id":26648627,"citation":"McMullan BJ, Mostaghim M: Prescribing azithromycin. Aust Prescr. 2015 Jun;38(3):87-9. Epub 2015 Jun 1.","parent_key":"BE0001032"} {"ref-id":"A37402","pubmed-id":14982769,"citation":"Sugie M, Asakura E, Zhao YL, Torita S, Nadai M, Baba K, Kitaichi K, Takagi K, Takagi K, Hasegawa T: Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother. 2004 Mar;48(3):809-14.","parent_key":"BE0001069"} {"ref-id":"A15906","pubmed-id":14744620,"citation":"Asakura E, Nakayama H, Sugie M, Zhao YL, Nadai M, Kitaichi K, Shimizu A, Miyoshi M, Takagi K, Takagi K, Hasegawa T: Azithromycin reverses anticancer drug resistance and modifies hepatobiliary excretion of doxorubicin in rats. Eur J Pharmacol. 2004 Jan 26;484(2-3):333-9.","parent_key":"BE0001069"} {"ref-id":"A174184","pubmed-id":16377671,"citation":"Yamaguchi S, Zhao YL, Nadai M, Yoshizumi H, Cen X, Torita S, Takagi K, Takagi K, Hasegawa T: Involvement of the drug transporters p glycoprotein and multidrug resistance-associated protein Mrp2 in telithromycin transport. Antimicrob Agents Chemother. 2006 Jan;50(1):80-7. doi: 10.1128/AAC.50.1.80-87.2006.","parent_key":"BE0001069"} {"ref-id":"A174175","pubmed-id":28146011,"citation":"Fohner AE, Sparreboom A, Altman RB, Klein TE: PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics. 2017 Apr;27(4):164-167. doi: 10.1097/FPC.0000000000000270.","parent_key":"BE0001069"} {"ref-id":"A16156","pubmed-id":11770010,"citation":"Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF: Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001 Dec;364(6):551-7.","parent_key":"BE0001032"} {"ref-id":"A34962","pubmed-id":24550106,"citation":"Wedemeyer RS, Blume H: Pharmacokinetic drug interaction profiles of proton pump inhibitors: an update. Drug Saf. 2014 Apr;37(4):201-11. doi: 10.1007/s40264-014-0144-0.","parent_key":"BE0001032"} {"ref-id":"A174259","pubmed-id":18449471,"citation":"Oostendorp RL, Buckle T, Beijnen JH, van Tellingen O, Schellens JH: The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs. 2009 Feb;27(1):31-40. doi: 10.1007/s10637-008-9138-z. Epub 2008 May 1.","parent_key":"BE0001032"} {"ref-id":"A174265","pubmed-id":23749551,"citation":"Kunimatsu S, Mizuno T, Fukudo M, Katsura T: Effect of P-glycoprotein and breast cancer resistance protein inhibition on the pharmacokinetics of sunitinib in rats. Drug Metab Dispos. 2013 Aug;41(8):1592-7. doi: 10.1124/dmd.112.050286. Epub 2013 Jun 7.","parent_key":"BE0001032"} {"ref-id":"A16367","pubmed-id":15313923,"citation":"Breedveld P, Zelcer N, Pluim D, Sonmezer O, Tibben MM, Beijnen JH, Schinkel AH, van Tellingen O, Borst P, Schellens JH: Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res. 2004 Aug 15;64(16):5804-11.","parent_key":"BE0001067"} {"ref-id":"A16380","pubmed-id":19076159,"citation":"Suzuki K, Doki K, Homma M, Tamaki H, Hori S, Ohtani H, Sawada Y, Kohda Y: Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br J Clin Pharmacol. 2009 Jan;67(1):44-9. doi: 10.1111/j.1365-2125.2008.03303.x. Epub 2008 Nov 17.","parent_key":"BE0001067"} {"ref-id":"A15845","pubmed-id":19541926,"citation":"Dahan A, Amidon GL: Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G371-7. doi: 10.1152/ajpgi.00102.2009. Epub 2009 Jun 18.","parent_key":"BE0001067"} {"ref-id":"A16416","pubmed-id":19139163,"citation":"Oostendorp RL, van de Steeg E, van der Kruijssen CM, Beijnen JH, Kenworthy KE, Schinkel AH, Schellens JH: Organic anion-transporting polypeptide 1B1 mediates transport of Gimatecan and BNP1350 and can be inhibited by several classic ATP-binding cassette (ABC) B1 and/or ABCG2 inhibitors. Drug Metab Dispos. 2009 Apr;37(4):917-23. doi: 10.1124/dmd.108.024901. Epub 2009 Jan 12.","parent_key":"BE0003645"} {"ref-id":"A35035","pubmed-id":25239859,"citation":"Chioukh R, Noel-Hudson MS, Ribes S, Fournier N, Becquemont L, Verstuyft C: Proton pump inhibitors inhibit methotrexate transport by renal basolateral organic anion transporter hOAT3. Drug Metab Dispos. 2014 Dec;42(12):2041-8. doi: 10.1124/dmd.114.058529. Epub 2014 Sep 19.","parent_key":"BE0003645"} {"ref-id":"A16168","pubmed-id":18215618,"citation":"Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, Dose T, Ebinger M, Rosenhagen M, Kohli M, Kloiber S, Salyakina D, Bettecken T, Specht M, Putz B, Binder EB, Muller-Myhsok B, Holsboer F: Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron. 2008 Jan 24;57(2):203-9. doi: 10.1016/j.neuron.2007.11.017.","parent_key":"BE0001032"} {"ref-id":"A33364","pubmed-id":12650738,"citation":"Uhr M, Grauer MT: abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res. 2003 May-Jun;37(3):179-85.","parent_key":"BE0001032"} {"ref-id":"A17280","pubmed-id":12814962,"citation":"Evans DC, O'Connor D, Lake BG, Evers R, Allen C, Hargreaves R: Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab Dispos. 2003 Jul;31(7):861-9.","parent_key":"BE0001032"} {"ref-id":"A33368","pubmed-id":11480267,"citation":"Tepper SJ: Safety and rational use of the triptans. Med Clin North Am. 2001 Jul;85(4):959-70.","parent_key":"BE0001032"} {"ref-id":"A15807","pubmed-id":10894301,"citation":"Perloff MD, von Moltke LL, Fahey JM, Daily JP, Greenblatt DJ: Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS. 2000 Jun 16;14(9):1287-9.","parent_key":"BE0001032"} {"ref-id":"A15809","pubmed-id":10820137,"citation":"Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, Kim RB: Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000 Jun;28(6):655-60.","parent_key":"BE0001032"} {"ref-id":"A15818","pubmed-id":12699389,"citation":"Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J: Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003 Apr 24;46(9):1716-25.","parent_key":"BE0001032"} {"ref-id":"A15857","pubmed-id":9435299,"citation":"Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR: The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998 Jan 15;101(2):289-94.","parent_key":"BE0001032"} {"ref-id":"A16187","pubmed-id":10421612,"citation":"Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB: OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999 Aug;27(8):866-71.","parent_key":"BE0003642"} {"ref-id":"A16378","pubmed-id":15007102,"citation":"Gupta A, Zhang Y, Unadkat JD, Mao Q: HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004 Jul;310(1):334-41. Epub 2004 Mar 8.","parent_key":"BE0001067"} {"ref-id":"A16407","pubmed-id":12490595,"citation":"Tirona RG, Leake BF, Wolkoff AW, Kim RB: Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther. 2003 Jan;304(1):223-8.","parent_key":"BE0001004"} {"ref-id":"A18357","pubmed-id":22541068,"citation":"Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P: Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem. 2012 May 24;55(10):4740-63. doi: 10.1021/jm300212s. Epub 2012 May 15.","parent_key":"BE0003659"} {"ref-id":"A15858","pubmed-id":11181899,"citation":"Yamazaki M, Neway WE, Ohe T, Chen I, Rowe JF, Hochman JH, Chiba M, Lin JH: In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001 Mar;296(3):723-35.","parent_key":"BE0001032"} {"ref-id":"A15859","pubmed-id":10604964,"citation":"Hochman JH, Chiba M, Nishime J, Yamazaki M, Lin JH: Influence of P-glycoprotein on the transport and metabolism of indinavir in Caco-2 cells expressing cytochrome P-450 3A4. J Pharmacol Exp Ther. 2000 Jan;292(1):310-8.","parent_key":"BE0001032"} {"ref-id":"A15959","pubmed-id":12218384,"citation":"Olson DP, Scadden DT, D'Aquila RT, De Pasquale MP: The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1). AIDS. 2002 Sep 6;16(13):1743-7.","parent_key":"BE0000785"} {"ref-id":"A16001","pubmed-id":12441801,"citation":"Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, Schinkel AH: Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS. 2002 Nov 22;16(17):2295-301.","parent_key":"BE0001069"} {"ref-id":"A34523","pubmed-id":20102298,"citation":"Annaert P, Ye ZW, Stieger B, Augustijns P: Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010 Mar;40(3):163-76. doi: 10.3109/00498250903509375.","parent_key":"BE0001042"} {"ref-id":"A16136","pubmed-id":11474784,"citation":"Wang E, Casciano CN, Clement RP, Johnson WW: HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001 Jun;18(6):800-6.","parent_key":"BE0001032"} {"ref-id":"A15873","pubmed-id":10213372,"citation":"Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F, Chaudhary AK, Roden DM, Wood AJ, Wilkinson GR: Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999 Mar;16(3):408-14.","parent_key":"BE0001032"} {"ref-id":"A181961","pubmed-id":20012601,"citation":"Choi DH, Chung JH, Choi JS: Pharmacokinetic interaction between oral lovastatin and verapamil in healthy subjects: role of P-glycoprotein inhibition by lovastatin. Eur J Clin Pharmacol. 2010 Mar;66(3):285-90. doi: 10.1007/s00228-009-0757-x. Epub 2009 Dec 12.","parent_key":"BE0001032"} {"ref-id":"A35026","pubmed-id":18563955,"citation":"Neuvonen PJ, Backman JT, Niemi M: Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet. 2008;47(7):463-74. doi: 10.2165/00003088-200847070-00003.","parent_key":"BE0001032"} {"ref-id":"A16051","pubmed-id":15716364,"citation":"Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, Lin JH, Pearson PG, Kim RB: Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005 May;33(5):676-82. Epub 2005 Feb 16.","parent_key":"BE0001004"} {"ref-id":"A33777","pubmed-id":24989890,"citation":"Kunze A, Huwyler J, Camenisch G, Poller B: Prediction of organic anion-transporting polypeptide 1B1- and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos. 2014 Sep;42(9):1514-21. doi: 10.1124/dmd.114.058412. Epub 2014 Jul 2.","parent_key":"BE0001004"} {"ref-id":"A181946","pubmed-id":26020121,"citation":"Tornio A, Vakkilainen J, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M: SLCO1B1 polymorphism markedly affects the pharmacokinetics of lovastatin acid. Pharmacogenet Genomics. 2015 Aug;25(8):382-7. doi: 10.1097/FPC.0000000000000148.","parent_key":"BE0001004"} {"ref-id":"A181943","pubmed-id":27967318,"citation":"Zhao G, Liu M, Wu X, Li G, Qiu F, Gu J, Zhao L: Effect of polymorphisms in CYP3A4, PPARA, NR1I2, NFKB1, ABCG2 and SLCO1B1 on the pharmacokinetics of lovastatin in healthy Chinese volunteers. Pharmacogenomics. 2017 Jan;18(1):65-75. doi: 10.2217/pgs.16.31. Epub 2016 Dec 14.","parent_key":"BE0001004"} {"ref-id":"A181955","pubmed-id":30250148,"citation":"Xiang Q, Chen SQ, Ma LY, Hu K, Zhang Z, Mu GY, Xie QF, Zhang XD, Cui YM: Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharmacogenomics J. 2018 Dec;18(6):721-729. doi: 10.1038/s41397-018-0054-0. Epub 2018 Sep 24.","parent_key":"BE0001004"} {"ref-id":"A18014","pubmed-id":23562342,"citation":"Ellis LC, Hawksworth GM, Weaver RJ: ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol Appl Pharmacol. 2013 Jun 1;269(2):187-94. doi: 10.1016/j.taap.2013.03.019. Epub 2013 Apr 2.","parent_key":"BE0001069"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0001069"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0001042"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0003659"} {"ref-id":"A16304","pubmed-id":15618660,"citation":"Uwai Y, Saito H, Inui K: Rat renal organic anion transporter rOAT1 mediates transport of urinary-excreted cephalosporins, but not of biliary-excreted cefoperazone. Drug Metab Pharmacokinet. 2002;17(2):125-9.","parent_key":"BE0001066"} {"ref-id":"A33352","pubmed-id":19953504,"citation":"VanWert AL, Gionfriddo MR, Sweet DH: Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos. 2010 Jan;31(1):1-71. doi: 10.1002/bdd.693.","parent_key":"BE0003645"} {"ref-id":"A16483","pubmed-id":18765824,"citation":"de Wolf C, Jansen R, Yamaguchi H, de Haas M, van de Wetering K, Wijnholds J, Beijnen J, Borst P: Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides. Mol Cancer Ther. 2008 Sep;7(9):3092-102. doi: 10.1158/1535-7163.MCT-08-0427. Epub 2008 Sep 2.","parent_key":"BE0001067"} {"ref-id":"A174913","pubmed-id":26459200,"citation":"Saad M, Mahmoud A, Elgendy IY, Richard Conti C: Ranolazine in Cardiac Arrhythmia. Clin Cardiol. 2016 Mar;39(3):170-8. doi: 10.1002/clc.22476. Epub 2015 Oct 13.","parent_key":"BE0001032"} {"ref-id":"A174940","pubmed-id":29939605,"citation":"Reed M, Nicolas D: Ranolazine .","parent_key":"BE0001032"} {"ref-id":"A174949","pubmed-id":25028555,"citation":"Codolosa JN, Acharjee S, Figueredo VM: Update on ranolazine in the management of angina. Vasc Health Risk Manag. 2014 Jun 24;10:353-62. doi: 10.2147/VHRM.S40477. eCollection 2014.","parent_key":"BE0001032"} {"ref-id":"A189237","pubmed-id":25769815,"citation":"Montanari F, Ecker GF: Prediction of drug-ABC-transporter interaction--Recent advances and future challenges. Adv Drug Deliv Rev. 2015 Jun 23;86:17-26. doi: 10.1016/j.addr.2015.03.001. Epub 2015 Mar 11.","parent_key":"BE0001032"} {"ref-id":"A190597","pubmed-id":28539955,"citation":"Lv D, Zhao M, Chen L, Yu D, Yun X, Yang Q, Huang X: An Inter-Ethnic Comparison Study of Ziprasidone Plasma Levels, Dosage and Clinical Response in Patients with Schizophrenia. Psychiatry Investig. 2017 May;14(3):360-367. doi: 10.4306/pi.2017.14.3.360. Epub 2017 May 16.","parent_key":"BE0001032"} {"ref-id":"A37691","pubmed-id":22672924,"citation":"Athanasoulia AP, Sievers C, Ising M, Brockhaus AC, Yassouridis A, Stalla GK, Uhr M: Polymorphisms of the drug transporter gene ABCB1 predict side effects of treatment with cabergoline in patients with PRL adenomas. Eur J Endocrinol. 2012 Sep;167(3):327-35. doi: 10.1530/EJE-12-0198. Epub 2012 Jun 6.","parent_key":"BE0001032"} {"ref-id":"A15838","pubmed-id":17045309,"citation":"Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Loscher W: Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007 Feb;52(2):333-46. Epub 2006 Oct 10.","parent_key":"BE0001032"} {"ref-id":"A15918","pubmed-id":18824002,"citation":"Luna-Tortos C, Fedrowitz M, Loscher W: Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008 Dec;55(8):1364-75. doi: 10.1016/j.neuropharm.2008.08.032. Epub 2008 Sep 11.","parent_key":"BE0001032"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0001032"} {"ref-id":"A188781","pubmed-id":17376120,"citation":"Simon C, Stieger B, Kullak-Ublick GA, Fried M, Mueller S, Fritschy JM, Wieser HG, Pauli-Magnus C: Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand. 2007 Apr;115(4):232-42. doi: 10.1111/j.1600-0404.2006.00761.x.","parent_key":"BE0001032"} {"ref-id":"A15838","pubmed-id":17045309,"citation":"Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Loscher W: Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007 Feb;52(2):333-46. Epub 2006 Oct 10.","parent_key":"BE0001069"} {"ref-id":"A188778","pubmed-id":12663688,"citation":"Potschka H, Fedrowitz M, Loscher W: Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther. 2003 Jul;306(1):124-31. doi: 10.1124/jpet.103.049858. Epub 2003 Mar 27.","parent_key":"BE0001069"} {"ref-id":"A188781","pubmed-id":17376120,"citation":"Simon C, Stieger B, Kullak-Ublick GA, Fried M, Mueller S, Fritschy JM, Wieser HG, Pauli-Magnus C: Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand. 2007 Apr;115(4):232-42. doi: 10.1111/j.1600-0404.2006.00761.x.","parent_key":"BE0001069"} {"ref-id":"A15971","pubmed-id":8786566,"citation":"Bossuyt X, Muller M, Hagenbuch B, Meier PJ: Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J Pharmacol Exp Ther. 1996 Mar;276(3):891-6.","parent_key":"BE0003642"} {"ref-id":"A15876","pubmed-id":14661924,"citation":"Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, Dalton JT, Swaan PW: Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res. 2003 Nov;20(11):1794-803.","parent_key":"BE0001032"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0001032"} {"ref-id":"A16300","pubmed-id":11855680,"citation":"Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Sakthisekaran D, Endou H: Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002 Jan;88(1):69-76.","parent_key":"BE0001066"} {"ref-id":"A16363","pubmed-id":12533678,"citation":"Sugimoto Y, Tsukahara S, Imai Y, Sugimoto Y, Ueda K, Tsuruo T: Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Mol Cancer Ther. 2003 Jan;2(1):105-12.","parent_key":"BE0001067"} {"ref-id":"A16441","pubmed-id":7914405,"citation":"Rao US, Fine RL, Scarborough GA: Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994 Jul 19;48(2):287-92.","parent_key":"BE0001032"} {"ref-id":"A15878","pubmed-id":8917702,"citation":"Bain LJ, LeBlanc GA: Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicol Appl Pharmacol. 1996 Nov;141(1):288-98.","parent_key":"BE0001032"} {"ref-id":"A35430","pubmed-id":18321482,"citation":"Gui C, Miao Y, Thompson L, Wahlgren B, Mock M, Stieger B, Hagenbuch B: Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol. 2008 Apr 14;584(1):57-65. doi: 10.1016/j.ejphar.2008.01.042. Epub 2008 Feb 8.","parent_key":"BE0001004"} {"ref-id":"A35430","pubmed-id":18321482,"citation":"Gui C, Miao Y, Thompson L, Wahlgren B, Mock M, Stieger B, Hagenbuch B: Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol. 2008 Apr 14;584(1):57-65. doi: 10.1016/j.ejphar.2008.01.042. Epub 2008 Feb 8.","parent_key":"BE0003659"} {"ref-id":"A188357","pubmed-id":19730994,"citation":"Luna-Tortos C, Rambeck B, Jurgens UH, Loscher W: The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins. Pharm Res. 2009 Nov;26(11):2464-70. doi: 10.1007/s11095-009-9961-8.","parent_key":"BE0001032"} {"ref-id":"A188369","pubmed-id":12609264,"citation":"Sills GJ, Kwan P, Butler E, de Lange EC, van den Berg DJ, Brodie MJ: P-glycoprotein-mediated efflux of antiepileptic drugs: preliminary studies in mdr1a knockout mice. Epilepsy Behav. 2002 Oct;3(5):427-432. doi: 10.1016/s1525-5050(02)00511-5.","parent_key":"BE0001032"} {"ref-id":"A16013","pubmed-id":20222053,"citation":"Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Boger RH, Haefeli WE, Benndorf RA: Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010 Mar;31(2-3):150-61. doi: 10.1002/bdd.699.","parent_key":"BE0001069"} {"ref-id":"A16014","pubmed-id":16501004,"citation":"Nakagomi-Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, Ikeda T: OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos. 2006 May;34(5):862-9. Epub 2006 Feb 24.","parent_key":"BE0001069"} {"ref-id":"A16014","pubmed-id":16501004,"citation":"Nakagomi-Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, Ikeda T: OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos. 2006 May;34(5):862-9. Epub 2006 Feb 24.","parent_key":"BE0003659"} {"ref-id":"A16014","pubmed-id":16501004,"citation":"Nakagomi-Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, Ikeda T: OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos. 2006 May;34(5):862-9. Epub 2006 Feb 24.","parent_key":"BE0001004"} {"ref-id":"A16341","pubmed-id":11316767,"citation":"Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, Onogawa T, Suzuki T, Asano N, Tanemoto M, Seki M, Shiiba K, Suzuki M, Kondo Y, Nunoki K, Shimosegawa T, Iinuma K, Ito S, Matsuno S, Abe T: Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology. 2001 May;142(5):2005-12.","parent_key":"BE0003642"} {"ref-id":"A16460","pubmed-id":9918867,"citation":"Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ, Krenning EP, Hennemann G, Visser TJ: Identification of thyroid hormone transporters. Biochem Biophys Res Commun. 1999 Jan 19;254(2):497-501.","parent_key":"BE0003642"} {"ref-id":"A4466","pubmed-id":11159893,"citation":"Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33.","parent_key":"BE0003642"} {"ref-id":"A16017","pubmed-id":10358072,"citation":"Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, Nomura H, Unno M, Suzuki M, Naitoh T, Matsuno S, Yawo H: Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999 Jun 11;274(24):17159-63.","parent_key":"BE0001004"} {"ref-id":"A4466","pubmed-id":11159893,"citation":"Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33.","parent_key":"BE0001004"} {"ref-id":"A4466","pubmed-id":11159893,"citation":"Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33.","parent_key":"BE0003659"} {"ref-id":"A16474","pubmed-id":11375950,"citation":"Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, Nunoki K, Sato E, Kakyo M, Nishio T, Sugita J, Asano N, Tanemoto M, Seki M, Date F, Ono K, Kondo Y, Shiiba K, Suzuki M, Ohtani H, Shimosegawa T, Iinuma K, Nagura H, Ito S, Matsuno S: LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001 Jun;120(7):1689-99.","parent_key":"BE0003659"} {"ref-id":"A16460","pubmed-id":9918867,"citation":"Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ, Krenning EP, Hennemann G, Visser TJ: Identification of thyroid hormone transporters. Biochem Biophys Res Commun. 1999 Jan 19;254(2):497-501.","parent_key":"BE0003644"} {"ref-id":"A15894","pubmed-id":11897620,"citation":"Ashida K, Katsura T, Motohashi H, Saito H, Inui K: Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol. 2002 Apr;282(4):G617-23.","parent_key":"BE0001032"} {"ref-id":"A33382","pubmed-id":27906699,"citation":"Hu Y, Qin X, Cao H, Yu S, Feng J: Reversal effects of local anesthetics on P-glycoprotein-mediated cancer multidrug resistance. Anticancer Drugs. 2017 Mar;28(3):243-249. doi: 10.1097/CAD.0000000000000455.","parent_key":"BE0001032"} {"ref-id":"A16166","pubmed-id":14550684,"citation":"Uhr M, Grauer MT, Holsboer F: Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry. 2003 Oct 15;54(8):840-6.","parent_key":"BE0001032"} {"ref-id":"A16167","pubmed-id":20466523,"citation":"Karlsson L, Schmitt U, Josefsson M, Carlsson B, Ahlner J, Bengtsson F, Kugelberg FC, Hiemke C: Blood-brain barrier penetration of the enantiomers of venlafaxine and its metabolites in mice lacking P-glycoprotein. Eur Neuropsychopharmacol. 2010 Sep;20(9):632-40. doi: 10.1016/j.euroneuro.2010.04.004. Epub 2010 May 13.","parent_key":"BE0001032"} {"ref-id":"A17993","pubmed-id":21446053,"citation":"Bachmeier CJ, Beaulieu-Abdelahad D, Ganey NJ, Mullan MJ, Levin GM: Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine. Biopharm Drug Dispos. 2011 May;32(4):233-44. doi: 10.1002/bdd.753. Epub 2011 Mar 28.","parent_key":"BE0001032"} {"ref-id":"A177262","pubmed-id":25567760,"citation":"Zhou Y, Zhang G, Rao Z, Yang Y, Zhou Q, Qin H, Wei Y, Wu X: Increased brain uptake of venlafaxine loaded solid lipid nanoparticles by overcoming the efflux function and expression of P-gp. Arch Pharm Res. 2015 Jul;38(7):1325-35. doi: 10.1007/s12272-014-0539-6. Epub 2015 Jan 8.","parent_key":"BE0001032"} {"ref-id":"A17993","pubmed-id":21446053,"citation":"Bachmeier CJ, Beaulieu-Abdelahad D, Ganey NJ, Mullan MJ, Levin GM: Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine. Biopharm Drug Dispos. 2011 May;32(4):233-44. doi: 10.1002/bdd.753. Epub 2011 Mar 28.","parent_key":"BE0001067"} {"ref-id":"A16090","pubmed-id":12523936,"citation":"Zelcer N, Reid G, Wielinga P, Kuil A, van der Heijden I, Schuetz JD, Borst P: Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J. 2003 Apr 15;371(Pt 2):361-7.","parent_key":"BE0001188"} {"ref-id":"A16205","pubmed-id":11102445,"citation":"Qian YM, Song WC, Cui H, Cole SP, Deeley RG: Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. J Biol Chem. 2001 Mar 2;276(9):6404-11. Epub 2000 Dec 1.","parent_key":"BE0000785"} {"ref-id":"A16261","pubmed-id":10871297,"citation":"Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ: Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther. 2000 Jul;294(1):73-9.","parent_key":"BE0003642"} {"ref-id":"A16262","pubmed-id":9539145,"citation":"Kullak-Ublick GA, Fisch T, Oswald M, Hagenbuch B, Meier PJ, Beuers U, Paumgartner G: Dehydroepiandrosterone sulfate (DHEAS): identification of a carrier protein in human liver and brain. FEBS Lett. 1998 Mar 13;424(3):173-6.","parent_key":"BE0003642"} {"ref-id":"A15981","pubmed-id":8779894,"citation":"Kanai N, Lu R, Bao Y, Wolkoff AW, Vore M, Schuster VL: Estradiol 17 beta-D-glucuronide is a high-affinity substrate for oatp organic anion transporter. Am J Physiol. 1996 Feb;270(2 Pt 2):F326-31.","parent_key":"BE0003642"} {"ref-id":"A15972","pubmed-id":8968376,"citation":"Kontaxi M, Echkardt U, Hagenbuch B, Stieger B, Meier PJ, Petzinger E: Uptake of the mycotoxin ochratoxin A in liver cells occurs via the cloned organic anion transporting polypeptide. J Pharmacol Exp Ther. 1996 Dec;279(3):1507-13.","parent_key":"BE0003642"} {"ref-id":"A15974","pubmed-id":9794920,"citation":"Pang KS, Wang PJ, Chung AY, Wolkoff AW: The modified dipeptide, enalapril, an angiotensin-converting enzyme inhibitor, is transported by the rat liver organic anion transport protein. Hepatology. 1998 Nov;28(5):1341-6.","parent_key":"BE0003642"} {"ref-id":"A16263","pubmed-id":8938553,"citation":"Bossuyt X, Muller M, Meier PJ: Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol. 1996 Nov;25(5):733-8.","parent_key":"BE0003642"} {"ref-id":"A15978","pubmed-id":10600646,"citation":"Hagenbuch B, Adler ID, Schmid TE: Molecular cloning and functional characterization of the mouse organic-anion-transporting polypeptide 1 (Oatp1) and mapping of the gene to chromosome X. Biochem J. 2000 Jan 1;345 Pt 1:115-20.","parent_key":"BE0003642"} {"ref-id":"A15979","pubmed-id":12702494,"citation":"Lee TK, Koh AS, Cui Z, Pierce RH, Ballatori N: N-glycosylation controls functional activity of Oatp1, an organic anion transporter. Am J Physiol Gastrointest Liver Physiol. 2003 Aug;285(2):G371-81. Epub 2003 Apr 17.","parent_key":"BE0003642"} {"ref-id":"A15983","pubmed-id":9918568,"citation":"Kouzuki H, Suzuki H, Ito K, Ohashi R, Sugiyama Y: Contribution of organic anion transporting polypeptide to uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther. 1999 Feb;288(2):627-34.","parent_key":"BE0003642"} {"ref-id":"A15984","pubmed-id":10198348,"citation":"Eckhardt U, Schroeder A, Stieger B, Hochli M, Landmann L, Tynes R, Meier PJ, Hagenbuch B: Polyspecific substrate uptake by the hepatic organic anion transporter Oatp1 in stably transfected CHO cells. Am J Physiol. 1999 Apr;276(4 Pt 1):G1037-42.","parent_key":"BE0003642"} {"ref-id":"A16314","pubmed-id":12679720,"citation":"Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang YS, Hosoya K, Terasaki T: Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab. 2003 Apr;23(4):432-40.","parent_key":"BE0003645"} {"ref-id":"A16298","pubmed-id":11961115,"citation":"Nagata Y, Kusuhara H, Endou H, Sugiyama Y: Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol Pharmacol. 2002 May;61(5):982-8.","parent_key":"BE0003645"} {"ref-id":"A16306","pubmed-id":12011098,"citation":"Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK: Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem. 2002 Jul 26;277(30):26934-43. Epub 2002 May 13.","parent_key":"BE0003645"} {"ref-id":"A16316","pubmed-id":15100168,"citation":"Kobayashi Y, Ohshiro N, Tsuchiya A, Kohyama N, Ohbayashi M, Yamamoto T: Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3. Drug Metab Dispos. 2004 May;32(5):479-83.","parent_key":"BE0003645"} {"ref-id":"A6152","pubmed-id":10224140,"citation":"Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, Sugiyama Y, Kanai Y, Endou H: Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem. 1999 May 7;274(19):13675-80.","parent_key":"BE0003645"} {"ref-id":"A16111","pubmed-id":11683238,"citation":"Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A: Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res. 2001 Sep;18(9):1262-9.","parent_key":"BE0001004"} {"ref-id":"A16015","pubmed-id":12906759,"citation":"Nozawa T, Tamai I, Sai Y, Nezu J, Tsuji A: Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin. J Pharm Pharmacol. 2003 Jul;55(7):1013-20.","parent_key":"BE0001004"} {"ref-id":"A16016","pubmed-id":11134001,"citation":"Cui Y, Konig J, Leier I, Buchholz U, Keppler D: Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 2001 Mar 30;276(13):9626-30. Epub 2000 Dec 27.","parent_key":"BE0001004"} {"ref-id":"A16409","pubmed-id":15159445,"citation":"Hirano M, Maeda K, Shitara Y, Sugiyama Y: Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004 Oct;311(1):139-46. Epub 2004 May 24.","parent_key":"BE0001004"} {"ref-id":"A16410","pubmed-id":12101011,"citation":"van Montfoort JE, Schmid TE, Adler ID, Meier PJ, Hagenbuch B: Functional characterization of the mouse organic-anion-transporting polypeptide 2. Biochim Biophys Acta. 2002 Aug 19;1564(1):183-8.","parent_key":"BE0001004"} {"ref-id":"A4466","pubmed-id":11159893,"citation":"Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33.","parent_key":"BE0001042"} {"ref-id":"A16111","pubmed-id":11683238,"citation":"Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A: Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res. 2001 Sep;18(9):1262-9.","parent_key":"BE0001042"} {"ref-id":"A16114","pubmed-id":15640378,"citation":"Satoh H, Yamashita F, Tsujimoto M, Murakami H, Koyabu N, Ohtani H, Sawada Y: Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab Dispos. 2005 Apr;33(4):518-23. Epub 2005 Jan 7.","parent_key":"BE0001042"} {"ref-id":"A16306","pubmed-id":12011098,"citation":"Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK: Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem. 2002 Jul 26;277(30):26934-43. Epub 2002 May 13.","parent_key":"BE0001066"} {"ref-id":"A16467","pubmed-id":15652233,"citation":"Spears KJ, Ross J, Stenhouse A, Ward CJ, Goh LB, Wolf CR, Morgan P, Ayrton A, Friedberg TH: Directional trans-epithelial transport of organic anions in porcine LLC-PK1 cells that co-express human OATP1B1 (OATP-C) and MRP2. Biochem Pharmacol. 2005 Feb 1;69(3):415-23. Epub 2004 Dec 22.","parent_key":"BE0001069"} {"ref-id":"A16016","pubmed-id":11134001,"citation":"Cui Y, Konig J, Leier I, Buchholz U, Keppler D: Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 2001 Mar 30;276(13):9626-30. Epub 2000 Dec 27.","parent_key":"BE0003659"} {"ref-id":"A16409","pubmed-id":15159445,"citation":"Hirano M, Maeda K, Shitara Y, Sugiyama Y: Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004 Oct;311(1):139-46. Epub 2004 May 24.","parent_key":"BE0003659"} {"ref-id":"A16349","pubmed-id":14977862,"citation":"Nozawa T, Sugiura S, Nakajima M, Goto A, Yokoi T, Nezu J, Tsuji A, Tamai I: Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate: implications for understanding troglitazone hepatotoxicity. Drug Metab Dispos. 2004 Mar;32(3):291-4.","parent_key":"BE0003659"} {"ref-id":"A16350","pubmed-id":10660625,"citation":"Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H: Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000 Feb 11;275(6):4507-12.","parent_key":"BE0000879"} {"ref-id":"A16375","pubmed-id":12920197,"citation":"Imai Y, Asada S, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y: Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol. 2003 Sep;64(3):610-8.","parent_key":"BE0001067"} {"ref-id":"A17888","pubmed-id":9322525,"citation":"Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G: Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology. 1997 Oct;113(4):1295-305.","parent_key":"BE0003642"} {"ref-id":"A15851","pubmed-id":12948019,"citation":"Troutman MD, Thakker DR: Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003 Aug;20(8):1210-24.","parent_key":"BE0001032"} {"ref-id":"A18094","pubmed-id":11563082,"citation":"Cihlar T, Ho ES, Lin DC, Mulato AS: Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids. 2001 Apr-Jul;20(4-7):641-8.","parent_key":"BE0001066"} {"ref-id":"A18095","pubmed-id":17372702,"citation":"Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K: Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007 Apr;24(4):811-5. Epub 2007 Feb 15.","parent_key":"BE0001066"} {"ref-id":"A18095","pubmed-id":17372702,"citation":"Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K: Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007 Apr;24(4):811-5. Epub 2007 Feb 15.","parent_key":"BE0003645"} {"ref-id":"A174598","pubmed-id":25426075,"citation":"Moss DM, Neary M, Owen A: The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol. 2014 Nov 11;5:248. doi: 10.3389/fphar.2014.00248. eCollection 2014.","parent_key":"BE0003645"} {"ref-id":"A18097","pubmed-id":17110501,"citation":"Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y: Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol. 2007 Feb;71(2):619-27. Epub 2006 Nov 16.","parent_key":"BE0001188"} {"ref-id":"A174601","pubmed-id":28167562,"citation":"Tun-Yhong W, Chinpaisal C, Pamonsinlapatham P, Kaewkitichai S: Tenofovir Disoproxil Fumarate Is a New Substrate of ATP-Binding Cassette Subfamily C Member 11. Antimicrob Agents Chemother. 2017 Mar 24;61(4). pii: AAC.01725-16. doi: 10.1128/AAC.01725-16. Print 2017 Apr.","parent_key":"BE0001188"} {"ref-id":"A18098","pubmed-id":17083032,"citation":"Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, Valantin MA, Lechat P, Deray AG: Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006 Dec 1;194(11):1481-91. Epub 2006 Oct 26.","parent_key":"BE0001069"} {"ref-id":"A174604","pubmed-id":21076445,"citation":"Perazella MA: Tenofovir-induced kidney disease: an acquired renal tubular mitochondriopathy. Kidney Int. 2010 Dec;78(11):1060-3. doi: 10.1038/ki.2010.344.","parent_key":"BE0001069"} {"ref-id":"A16671","pubmed-id":17328866,"citation":"Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J: Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007 May 15;73(10):1573-81. Epub 2007 Jan 24.","parent_key":"BE0001032"} {"ref-id":"A40093","pubmed-id":28689442,"citation":"Soriano V, Labarga P, Fernandez-Montero JV, Mendoza C, Benitez-Gutierrez L, Pena JM, Barreiro P: Drug interactions in HIV-infected patients treated for hepatitis C. Expert Opin Drug Metab Toxicol. 2017 Aug;13(8):807-816. doi: 10.1080/17425255.2017.1351942. Epub 2017 Jul 13.","parent_key":"BE0001032"} {"ref-id":"A40095","pubmed-id":12124311,"citation":"van Gelder J, Deferme S, Naesens L, De Clercq E, van den Mooter G, Kinget R, Augustijns P: Intestinal absorption enhancement of the ester prodrug tenofovir disoproxil fumarate through modulation of the biochemical barrier by defined ester mixtures. Drug Metab Dispos. 2002 Aug;30(8):924-30.","parent_key":"BE0001032"} {"ref-id":"A40096","pubmed-id":28416547,"citation":"Moss DM, Domanico P, Watkins M, Park S, Randolph R, Wring S, Rajoli RKR, Hobson J, Rannard S, Siccardi M, Owen A: Simulating Intestinal Transporter and Enzyme Activity in a Physiologically Based Pharmacokinetic Model for Tenofovir Disoproxil Fumarate. Antimicrob Agents Chemother. 2017 Jun 27;61(7). pii: AAC.00105-17. doi: 10.1128/AAC.00105-17. Print 2017 Jul.","parent_key":"BE0001032"} {"ref-id":"A15998","pubmed-id":10991988,"citation":"Uwai Y, Saito H, Hashimoto Y, Inui KI: Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther. 2000 Oct;295(1):261-5.","parent_key":"BE0001066"} {"ref-id":"A16294","pubmed-id":9228014,"citation":"Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H: Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997 Jul 25;272(30):18526-9.","parent_key":"BE0001066"} {"ref-id":"A16319","pubmed-id":12358729,"citation":"Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, Terasaki T: Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002 Oct;83(1):57-66.","parent_key":"BE0003645"} {"ref-id":"A198774","pubmed-id":17524230,"citation":"Yu L, Zeng S: Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2. J Pharm Pharmacol. 2007 May;59(5):655-60. doi: 10.1211/jpp.59.5.0005.","parent_key":"BE0001032"} {"ref-id":"A15852","pubmed-id":12954186,"citation":"Faassen F, Vogel G, Spanings H, Vromans H: Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003 Sep 16;263(1-2):113-22.","parent_key":"BE0001032"} {"ref-id":"A176321","pubmed-id":23897240,"citation":"Novak A, Carpini GD, Ruiz ML, Luquita MG, Rubio MC, Mottino AD, Ghanem CI: Acetaminophen inhibits intestinal p-glycoprotein transport activity. J Pharm Sci. 2013 Oct;102(10):3830-7. doi: 10.1002/jps.23673. Epub 2013 Jul 29.","parent_key":"BE0001032"} {"ref-id":"A191218","pubmed-id":16930294,"citation":"Manov I, Bashenko Y, Hirsh M, Iancu TC: Involvement of the multidrug resistance P-glycoprotein in acetaminophen-induced toxicity in hepatoma-derived HepG2 and Hep3B cells. Basic Clin Pharmacol Toxicol. 2006 Sep;99(3):213-24. doi: 10.1111/j.1742-7843.2006.pto_443.x.","parent_key":"BE0001032"} {"ref-id":"A16201","pubmed-id":19567673,"citation":"Shen J, Carcaboso AM, Hubbard KE, Tagen M, Wynn HG, Panetta JC, Waters CM, Elmeliegy MA, Stewart CF: Compartment-specific roles of ATP-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid. Cancer Res. 2009 Jul 15;69(14):5885-92. doi: 10.1158/0008-5472.CAN-09-0700. Epub 2009 Jun 30.","parent_key":"BE0001032"} {"ref-id":"A16356","pubmed-id":15155841,"citation":"Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, Keri G, Orfi L, Nemet K, Sarkadi B: High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol. 2004 Jun;65(6):1485-95.","parent_key":"BE0001067"} {"ref-id":"A16357","pubmed-id":19708828,"citation":"An Y, Ongkeko WM: ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 2009 Dec;5(12):1529-42. doi: 10.1517/17425250903228834.","parent_key":"BE0001067"} {"ref-id":"A16201","pubmed-id":19567673,"citation":"Shen J, Carcaboso AM, Hubbard KE, Tagen M, Wynn HG, Panetta JC, Waters CM, Elmeliegy MA, Stewart CF: Compartment-specific roles of ATP-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid. Cancer Res. 2009 Jul 15;69(14):5885-92. doi: 10.1158/0008-5472.CAN-09-0700. Epub 2009 Jun 30.","parent_key":"BE0001067"} {"ref-id":"A15846","pubmed-id":19493273,"citation":"Noguchi K, Kawahara H, Kaji A, Katayama K, Mitsuhashi J, Sugimoto Y: Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci. 2009 Sep;100(9):1701-7. doi: 10.1111/j.1349-7006.2009.01213.x. Epub 2009 May 12.","parent_key":"BE0001067"} {"ref-id":"A16358","pubmed-id":19148526,"citation":"Shi Z, Parmar S, Peng XX, Shen T, Robey RW, Bates SE, Fu LW, Shao Y, Chen YM, Zang F, Chen ZS: The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance. Oncol Rep. 2009 Feb;21(2):483-9.","parent_key":"BE0001067"} {"ref-id":"A15733","pubmed-id":10411577,"citation":"Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, Endou H: The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999 Aug;290(2):672-7.","parent_key":"BE0001066"} {"ref-id":"A36984","pubmed-id":29277663,"citation":"Wen S, Wang C, Duan Y, Huo X, Meng Q, Liu Z, Yang S, Zhu Y, Sun H, Ma X, Yang S, Liu K: OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int J Pharm. 2018 Feb 15;537(1-2):172-182. doi: 10.1016/j.ijpharm.2017.12.037. Epub 2017 Dec 23.","parent_key":"BE0003645"} {"ref-id":"A175009","pubmed-id":15107187,"citation":"Grauer MT, Uhr M: P-glycoprotein reduces the ability of amitriptyline metabolites to cross the blood brain barrier in mice after a 10-day administration of amitriptyline. J Psychopharmacol. 2004 Mar;18(1):66-74. doi: 10.1177/0269881104042831.","parent_key":"BE0001032"} {"ref-id":"A175012","pubmed-id":23931269,"citation":"O'Brien FE, Clarke G, Dinan TG, Cryan JF, Griffin BT: Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood-brain barrier permeability. Int J Neuropsychopharmacol. 2013 Nov;16(10):2259-72. doi: 10.1017/S1461145713000692. Epub 2013 Aug 9.","parent_key":"BE0001032"} {"ref-id":"A175015","pubmed-id":17092666,"citation":"Abaut AY, Chevanne F, Le Corre P: Oral bioavailability and intestinal secretion of amitriptyline: Role of P-glycoprotein? Int J Pharm. 2007 Feb 7;330(1-2):121-8. doi: 10.1016/j.ijpharm.2006.09.026. Epub 2006 Sep 23.","parent_key":"BE0001032"} {"ref-id":"A175018","pubmed-id":10700657,"citation":"Uhr M, Steckler T, Yassouridis A, Holsboer F: Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology. 2000 Apr;22(4):380-7. doi: 10.1016/S0893-133X(99)00095-0.","parent_key":"BE0001032"} {"ref-id":"A16091","pubmed-id":12835412,"citation":"Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, Wijnholds J, Borst P: The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9244-9. Epub 2003 Jun 30.","parent_key":"BE0001188"} {"ref-id":"A16085","pubmed-id":14643890,"citation":"Bai J, Lai L, Yeo HC, Goh BC, Tan TM: Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol. 2004 Feb;36(2):247-57.","parent_key":"BE0001188"} {"ref-id":"A16204","pubmed-id":14511674,"citation":"Hong J, Lambert JD, Lee SH, Sinko PJ, Yang CS: Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun. 2003 Oct 10;310(1):222-7.","parent_key":"BE0000785"} {"ref-id":"A16118","pubmed-id":11880368,"citation":"Ilias A, Urban Z, Seidl TL, Le Saux O, Sinko E, Boyd CD, Sarkadi B, Varadi A: Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem. 2002 May 10;277(19):16860-7. Epub 2002 Mar 5.","parent_key":"BE0000785"} {"ref-id":"A16091","pubmed-id":12835412,"citation":"Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, Wijnholds J, Borst P: The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9244-9. Epub 2003 Jun 30.","parent_key":"BE0000785"} {"ref-id":"A16072","pubmed-id":16460798,"citation":"Gedeon C, Behravan J, Koren G, Piquette-Miller M: Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta. 2006 Nov-Dec;27(11-12):1096-102. Epub 2006 Feb 3.","parent_key":"BE0000785"} {"ref-id":"A16264","pubmed-id":11883641,"citation":"Shitara Y, Sugiyama D, Kusuhara H, Kato Y, Abe T, Meier PJ, Itoh T, Sugiyama Y: Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm Res. 2002 Feb;19(2):147-53.","parent_key":"BE0003642"} {"ref-id":"A16266","pubmed-id":10870987,"citation":"Kouzuki H, Suzuki H, Sugiyama Y: Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm Res. 2000 Apr;17(4):432-8.","parent_key":"BE0003642"} {"ref-id":"A16280","pubmed-id":10991954,"citation":"Mulato AS, Ho ES, Cihlar T: Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther. 2000 Oct;295(1):10-5.","parent_key":"BE0001066"} {"ref-id":"A6155","pubmed-id":12130730,"citation":"Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002 Aug;302(2):666-71.","parent_key":"BE0001066"} {"ref-id":"A15996","pubmed-id":9887087,"citation":"Hosoyamada M, Sekine T, Kanai Y, Endou H: Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol. 1999 Jan;276(1 Pt 2):F122-8.","parent_key":"BE0001066"} {"ref-id":"A15997","pubmed-id":9950961,"citation":"Lu R, Chan BS, Schuster VL: Cloning of the human kidney PAH transporter: narrow substrate specificity and regulation by protein kinase C. Am J Physiol. 1999 Feb;276(2 Pt 2):F295-303.","parent_key":"BE0001066"} {"ref-id":"A16051","pubmed-id":15716364,"citation":"Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, Lin JH, Pearson PG, Kim RB: Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005 May;33(5):676-82. Epub 2005 Feb 16.","parent_key":"BE0001066"} {"ref-id":"A16278","pubmed-id":11099697,"citation":"Uwai Y, Saito H, Inui K: Interaction between methotrexate and nonsteroidal anti-inflammatory drugs in organic anion transporter. Eur J Pharmacol. 2000 Dec 1;409(1):31-6.","parent_key":"BE0001066"} {"ref-id":"A16279","pubmed-id":10220563,"citation":"Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, Endou H: Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol. 1999 May;55(5):847-54.","parent_key":"BE0001066"} {"ref-id":"A6155","pubmed-id":12130730,"citation":"Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002 Aug;302(2):666-71.","parent_key":"BE0003645"} {"ref-id":"A16072","pubmed-id":16460798,"citation":"Gedeon C, Behravan J, Koren G, Piquette-Miller M: Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta. 2006 Nov-Dec;27(11-12):1096-102. Epub 2006 Feb 3.","parent_key":"BE0001069"} {"ref-id":"A15845","pubmed-id":19541926,"citation":"Dahan A, Amidon GL: Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G371-7. doi: 10.1152/ajpgi.00102.2009. Epub 2009 Jun 18.","parent_key":"BE0001069"} {"ref-id":"A15847","pubmed-id":19319690,"citation":"Dahan A, Sabit H, Amidon GL: The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009 Jun;11(2):205-13. doi: 10.1208/s12248-009-9092-5. Epub 2009 Mar 25.","parent_key":"BE0001069"} {"ref-id":"A16266","pubmed-id":10870987,"citation":"Kouzuki H, Suzuki H, Sugiyama Y: Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm Res. 2000 Apr;17(4):432-8.","parent_key":"BE0001069"} {"ref-id":"A6155","pubmed-id":12130730,"citation":"Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002 Aug;302(2):666-71.","parent_key":"BE0000879"} {"ref-id":"A16266","pubmed-id":10870987,"citation":"Kouzuki H, Suzuki H, Sugiyama Y: Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm Res. 2000 Apr;17(4):432-8.","parent_key":"BE0003644"} {"ref-id":"A16134","pubmed-id":11408360,"citation":"Stormer E, Perloff MD, von Moltke LL, Greenblatt DJ: Methadone inhibits rhodamine123 transport in Caco-2 cells. Drug Metab Dispos. 2001 Jul;29(7):954-6.","parent_key":"BE0001032"} {"ref-id":"A16135","pubmed-id":19887017,"citation":"Tournier N, Chevillard L, Megarbane B, Pirnay S, Scherrmann JM, Decleves X: Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol. 2010 Aug;13(7):905-15. doi: 10.1017/S1461145709990848. Epub 2009 Nov 4.","parent_key":"BE0001032"} {"ref-id":"A497","pubmed-id":12405865,"citation":"Eap CB, Buclin T, Baumann P: Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clin Pharmacokinet. 2002;41(14):1153-93. doi: 10.2165/00003088-200241140-00003.","parent_key":"BE0001032"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0001032"} {"ref-id":"A16146","pubmed-id":12031686,"citation":"Boulton DW, DeVane CL, Liston HL, Markowitz JS: In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002 May 31;71(2):163-9.","parent_key":"BE0001032"} {"ref-id":"A35010","pubmed-id":23745048,"citation":"Li W, Zeng S, Yu LS, Zhou Q: Pharmacokinetic drug interaction profile of omeprazole with adverse consequences and clinical risk management. Ther Clin Risk Manag. 2013;9:259-71. doi: 10.2147/TCRM.S43151. Epub 2013 May 27.","parent_key":"BE0001032"} {"ref-id":"A175201","pubmed-id":25719441,"citation":"Shah Y, Iqbal Z, Ahmad L, Khuda F, Khan A, Khan A, Khan MI, Ismail: Effect of Omeprazole on the Pharmacokinetics of Rosuvastatin in Healthy Male Volunteers. Am J Ther. 2016 Nov/Dec;23(6):e1514-e1523. doi: 10.1097/MJT.0000000000000221.","parent_key":"BE0001032"} {"ref-id":"A175066","pubmed-id":27123426,"citation":"Mesgari Abbasi M, Valizadeh H, Hamishekar H, Mohammadnejad L, Zakeri-Milani P: The Effects of Cetirizine on P-glycoprotein Expression and Function In vitro and In situ. Adv Pharm Bull. 2016 Mar;6(1):111-8. doi: 10.15171/apb.2016.017. Epub 2016 Mar 17.","parent_key":"BE0001032"} {"ref-id":"A175069","pubmed-id":14502547,"citation":"Polli JW, Baughman TM, Humphreys JE, Jordan KH, Mote AL, Salisbury JA, Tippin TK, Serabjit-Singh CJ: P-glycoprotein influences the brain concentrations of cetirizine (Zyrtec), a second-generation non-sedating antihistamine. J Pharm Sci. 2003 Oct;92(10):2082-9. doi: 10.1002/jps.10453.","parent_key":"BE0001032"} {"ref-id":"A175072","pubmed-id":23564211,"citation":"Conen S, Theunissen EL, Vermeeren A, van Ruitenbeek P, Stiers P, Mehta MA, Toennes SW, Ramaekers JG: The role of P-glycoprotein in CNS antihistamine effects. Psychopharmacology (Berl). 2013 Sep;229(1):9-19. doi: 10.1007/s00213-013-3075-z. Epub 2013 Apr 7.","parent_key":"BE0001032"} {"ref-id":"A175075","pubmed-id":17180728,"citation":"Obradovic T, Dobson GG, Shingaki T, Kungu T, Hidalgo IJ: Assessment of the first and second generation antihistamines brain penetration and role of P-glycoprotein. Pharm Res. 2007 Feb;24(2):318-27. doi: 10.1007/s11095-006-9149-4. Epub 2006 Dec 19.","parent_key":"BE0001032"} {"ref-id":"A15824","pubmed-id":8094615,"citation":"Hait WN, Gesmonde JF, Murren JR, Yang JM, Chen HX, Reiss M: Terfenadine (Seldane): a new drug for restoring sensitivity to multidrug resistant cancer cells. Biochem Pharmacol. 1993 Jan 26;45(2):401-6.","parent_key":"BE0001032"} {"ref-id":"A15872","pubmed-id":12128170,"citation":"Takara K, Sakaeda T, Tanigawara Y, Nishiguchi K, Ohmoto N, Horinouchi M, Komada F, Ohnishi N, Yokoyama T, Okumura K: Effects of 12 Ca2+ antagonists on multidrug resistance, MDR1-mediated transport and MDR1 mRNA expression. Eur J Pharm Sci. 2002 Aug;16(3):159-65.","parent_key":"BE0001032"} {"ref-id":"A16143","pubmed-id":8099333,"citation":"Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T: P-glycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett. 1993 Jun 7;324(1):99-102.","parent_key":"BE0001032"} {"ref-id":"A15820","pubmed-id":11082465,"citation":"Ibrahim S, Peggins J, Knapton A, Licht T, Aszalos A: Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J Pharmacol Exp Ther. 2000 Dec;295(3):1276-83.","parent_key":"BE0001032"} {"ref-id":"A16276","pubmed-id":10929807,"citation":"Cihlar T, Ho ES: Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal Biochem. 2000 Jul 15;283(1):49-55.","parent_key":"BE0001066"} {"ref-id":"A16281","pubmed-id":12472777,"citation":"Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, Hosoya T, Endou H: Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003 Jan;63(1):143-55.","parent_key":"BE0001066"} {"ref-id":"A16287","pubmed-id":11641438,"citation":"Pombrio JM, Giangreco A, Li L, Wempe MF, Anders MW, Sweet DH, Pritchard JB, Ballatori N: Mercapturic acids (N-acetylcysteine S-conjugates) as endogenous substrates for the renal organic anion transporter-1. Mol Pharmacol. 2001 Nov;60(5):1091-9.","parent_key":"BE0001066"} {"ref-id":"A16288","pubmed-id":11602689,"citation":"Islinger F, Gekle M, Wright SH: Interaction of 2,3-dimercapto-1-propane sulfonate with the human organic anion transporter hOAT1. J Pharmacol Exp Ther. 2001 Nov;299(2):741-7.","parent_key":"BE0001066"} {"ref-id":"A16289","pubmed-id":11815391,"citation":"Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T: Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br J Pharmacol. 2002 Jan;135(2):555-63.","parent_key":"BE0001066"} {"ref-id":"A16290","pubmed-id":12538807,"citation":"Groves CE, Munoz L, Bahn A, Burckhardt G, Wright SH: Interaction of cysteine conjugates with human and rabbit organic anion transporter 1. J Pharmacol Exp Ther. 2003 Feb;304(2):560-6.","parent_key":"BE0001066"} {"ref-id":"A16291","pubmed-id":12837685,"citation":"Aslamkhan A, Han YH, Walden R, Sweet DH, Pritchard JB: Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. Am J Physiol Renal Physiol. 2003 Oct;285(4):F775-83. Epub 2003 Jul 1.","parent_key":"BE0001066"} {"ref-id":"A16292","pubmed-id":10462545,"citation":"Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH: The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol. 1999 Sep;56(3):570-80.","parent_key":"BE0001066"} {"ref-id":"A16293","pubmed-id":10703662,"citation":"Ho ES, Lin DC, Mendel DB, Cihlar T: Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol. 2000 Mar;11(3):383-93.","parent_key":"BE0001066"} {"ref-id":"A16285","pubmed-id":10594788,"citation":"Takeda M, Tojo A, Sekine T, Hosoyamada M, Kanai Y, Endou H: Role of organic anion transporter 1 (OAT1) in cephaloridine (CER)-induced nephrotoxicity. Kidney Int. 1999 Dec;56(6):2128-36.","parent_key":"BE0001066"} {"ref-id":"A15968","pubmed-id":11408557,"citation":"Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y: Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther. 2001 Jul;298(1):316-22.","parent_key":"BE0001066"} {"ref-id":"A5715","pubmed-id":16434549,"citation":"Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J: Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos. 2006 Apr;34(4):547-55. Epub 2006 Jan 24.","parent_key":"BE0001066"} {"ref-id":"A15968","pubmed-id":11408557,"citation":"Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y: Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther. 2001 Jul;298(1):316-22.","parent_key":"BE0003645"} {"ref-id":"A16317","pubmed-id":14586168,"citation":"Bakhiya A, Bahn A, Burckhardt G, Wolff N: Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol Biochem. 2003;13(5):249-56.","parent_key":"BE0003645"} {"ref-id":"A16277","pubmed-id":10049739,"citation":"Race JE, Grassl SM, Williams WJ, Holtzman EJ: Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun. 1999 Feb 16;255(2):508-14.","parent_key":"BE0003645"} {"ref-id":"A16338","pubmed-id":10760098,"citation":"Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D: ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000 Apr;57(4):1636-42.","parent_key":"BE0001069"} {"ref-id":"A16338","pubmed-id":10760098,"citation":"Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D: ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000 Apr;57(4):1636-42.","parent_key":"BE0000785"} {"ref-id":"A15970","pubmed-id":8779893,"citation":"Kanai N, Lu R, Bao Y, Wolkoff AW, Schuster VL: Transient expression of oatp organic anion transporter in mammalian cells: identification of candidate substrates. Am J Physiol. 1996 Feb;270(2 Pt 2):F319-25.","parent_key":"BE0003642"} {"ref-id":"A16179","pubmed-id":8194172,"citation":"Wang L, Yang CP, Horwitz SB, Trail PA, Casazza AM: Reversal of the human and murine multidrug-resistance phenotype with megestrol acetate. Cancer Chemother Pharmacol. 1994;34(2):96-102.","parent_key":"BE0001032"} {"ref-id":"A15811","pubmed-id":11031728,"citation":"Fujita R, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K: Enhancement of doxorubicin activity in multidrug-resistant cells by mefloquine. Methods Find Exp Clin Pharmacol. 2000 Jun;22(5):281-4.","parent_key":"BE0001032"} {"ref-id":"A16185","pubmed-id":10992002,"citation":"Yamaguchi H, Yano I, Hashimoto Y, Inui KI: Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2. J Pharmacol Exp Ther. 2000 Oct;295(1):360-6.","parent_key":"BE0001032"} {"ref-id":"A16436","pubmed-id":11370709,"citation":"Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, Tsuji A: Active intestinal secretion of new quinolone antimicrobials and the partial contribution of P-glycoprotein. J Pharm Pharmacol. 2001 May;53(5):699-709.","parent_key":"BE0001032"} {"ref-id":"A15892","pubmed-id":15032316,"citation":"Yamaguchi H, Yano I, Saito H, Inui K: Effect of cisplatin-induced acute renal failure on bioavailability and intestinal secretion of quinolone antibacterial drugs in rats. Pharm Res. 2004 Feb;21(2):330-8.","parent_key":"BE0001032"} {"ref-id":"A16449","pubmed-id":10991972,"citation":"Tamai I, Yamashita J, Kido Y, Ohnari A, Sai Y, Shima Y, Naruhashi K, Koizumi S, Tsuji A: Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. J Pharmacol Exp Ther. 2000 Oct;295(1):146-52.","parent_key":"BE0000785"} {"ref-id":"A16334","pubmed-id":9495864,"citation":"Sasabe H, Tsuji A, Sugiyama Y: Carrier-mediated mechanism for the biliary excretion of the quinolone antibiotic grepafloxacin and its glucuronide in rats. J Pharmacol Exp Ther. 1998 Mar;284(3):1033-9.","parent_key":"BE0001069"} {"ref-id":"A176786","pubmed-id":23563132,"citation":"Wessler JD, Grip LT, Mendell J, Giugliano RP: The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013 Jun 25;61(25):2495-502. doi: 10.1016/j.jacc.2013.02.058. Epub 2013 Apr 3.","parent_key":"BE0001032"} {"ref-id":"A16130","pubmed-id":11145223,"citation":"Katoh M, Nakajima M, Yamazaki H, Yokoi T: Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000 Oct;17(10):1189-97.","parent_key":"BE0001032"} {"ref-id":"A175354","pubmed-id":15285842,"citation":"Darvari R, Boroujerdi M: Concentration dependency of modulatory effect of amlodipine on P-glycoprotein efflux activity of doxorubicin--a comparison with tamoxifen. J Pharm Pharmacol. 2004 Aug;56(8):985-91. doi: 10.1211/0022357043941.","parent_key":"BE0001032"} {"ref-id":"A175357","pubmed-id":14501869,"citation":"Kuzuya T, Kobayashi T, Moriyama N, Nagasaka T, Yokoyama I, Uchida K, Nakao A, Nabeshima T: Amlodipine, but not MDR1 polymorphisms, alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients. Transplantation. 2003 Sep 15;76(5):865-8. doi: 10.1097/01.TP.0000084873.20157.67.","parent_key":"BE0001032"} {"ref-id":"A175360","pubmed-id":16869811,"citation":"Kim KA, Park PW, Park JY: Effect of ABCB1 (MDR1) haplotypes derived from G2677T/C3435T on the pharmacokinetics of amlodipine in healthy subjects. Br J Clin Pharmacol. 2007 Jan;63(1):53-8. doi: 10.1111/j.1365-2125.2006.02733.x. Epub 2006 Jul 21.","parent_key":"BE0001032"} {"ref-id":"A33366","pubmed-id":25224352,"citation":"Mohamed LA, Kaddoumi A: Tacrine sinusoidal uptake and biliary excretion in sandwich-cultured primary rat hepatocytes. J Pharm Pharm Sci. 2014;17(3):427-38.","parent_key":"BE0001032"} {"ref-id":"A15884","pubmed-id":11890691,"citation":"Takara K, Tsujimoto M, Ohnishi N, Yokoyama T: Digoxin up-regulates MDR1 in human colon carcinoma Caco-2 cells. Biochem Biophys Res Commun. 2002 Mar 22;292(1):190-4.","parent_key":"BE0001032"} {"ref-id":"A15885","pubmed-id":12788075,"citation":"Takara K, Takagi K, Tsujimoto M, Ohnishi N, Yokoyama T: Digoxin up-regulates multidrug resistance transporter (MDR1) mRNA and simultaneously down-regulates steroid xenobiotic receptor mRNA. Biochem Biophys Res Commun. 2003 Jun 20;306(1):116-20.","parent_key":"BE0001032"} {"ref-id":"A15886","pubmed-id":10746169,"citation":"Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T, Okumura K: Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull. 1999 Dec;22(12):1355-9.","parent_key":"BE0001032"} {"ref-id":"A15850","pubmed-id":11785684,"citation":"Adachi Y, Suzuki H, Sugiyama Y: Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res. 2001 Dec;18(12):1660-8.","parent_key":"BE0001032"} {"ref-id":"A15887","pubmed-id":12948010,"citation":"Neuhoff S, Ungell AL, Zamora I, Artursson P: pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm Res. 2003 Aug;20(8):1141-8.","parent_key":"BE0001032"} {"ref-id":"A15853","pubmed-id":14698039,"citation":"Dagenais C, Graff CL, Pollack GM: Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004 Jan 15;67(2):269-76.","parent_key":"BE0001032"} {"ref-id":"A15888","pubmed-id":14706813,"citation":"Taipalensuu J, Tavelin S, Lazorova L, Svensson AC, Artursson P: Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur J Pharm Sci. 2004 Jan;21(1):69-75.","parent_key":"BE0001032"} {"ref-id":"A15889","pubmed-id":1359120,"citation":"Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, Komano T, Hori R: Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992 Nov;263(2):840-5.","parent_key":"BE0001032"} {"ref-id":"A15890","pubmed-id":9927403,"citation":"Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM: Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine [seecomments]. Circulation. 1999 Feb 2;99(4):552-7.","parent_key":"BE0001032"} {"ref-id":"A15855","pubmed-id":15180340,"citation":"Collett A, Tanianis-Hughes J, Hallifax D, Warhurst G: Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(-/-) mice in vivo. Pharm Res. 2004 May;21(5):819-26.","parent_key":"BE0001032"} {"ref-id":"A15893","pubmed-id":19806783,"citation":"Takara K, Sakaeda T, Kakumoto M, Tanigawara Y, Kobayashi H, Okumura K, Ohnishi N, Yokoyama T: Effects of alpha-adrenoceptor antagonist doxazosin on MDR1-mediated multidrug resistance and transcellular transport. Oncol Res. 2009;17(11-12):527-33.","parent_key":"BE0001032"} {"ref-id":"A15843","pubmed-id":19631272,"citation":"Jutabha P, Wempe MF, Anzai N, Otomo J, Kadota T, Endou H: Xenopus laevis oocytes expressing human P-glycoprotein: probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux. Pharmacol Res. 2010 Jan;61(1):76-84. doi: 10.1016/j.phrs.2009.07.002. Epub 2009 Jul 21.","parent_key":"BE0001032"} {"ref-id":"A178381","pubmed-id":15621665,"citation":"Chan LM, Cooper AE, Dudley AL, Ford D, Hirst BH: P-glycoprotein potentiates CYP3A4-mediated drug disappearance during Caco-2 intestinal secretory detoxification. J Drug Target. 2004;12(7):405-13. doi: 10.1080/10611860412331285224 .","parent_key":"BE0001032"} {"ref-id":"A178435","pubmed-id":18703021,"citation":"Haslam IS, Jones K, Coleman T, Simmons NL: Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem Pharmacol. 2008 Oct 1;76(7):850-61. doi: 10.1016/j.bcp.2008.07.020. Epub 2008 Jul 23.","parent_key":"BE0001032"} {"ref-id":"A22296","pubmed-id":19647009,"citation":"Riganti C, Campia I, Polimeni M, Pescarmona G, Ghigo D, Bosia A: Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxia-inducible factor-1alpha in human colon cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):385-92. doi: 10.1016/j.taap.2009.07.026. Epub 2009 Jul 30.","parent_key":"BE0001032"} {"ref-id":"A15986","pubmed-id":11451172,"citation":"Hagenbuch N, Reichel C, Stieger B, Cattori V, Fattinger KE, Landmann L, Meier PJ, Kullak-Ublick GA: Effect of phenobarbital on the expression of bile salt and organic anion transporters of rat liver. J Hepatol. 2001 Jun;34(6):881-7.","parent_key":"BE0000703"} {"ref-id":"A16461","pubmed-id":9294213,"citation":"Noe B, Hagenbuch B, Stieger B, Meier PJ: Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10346-50.","parent_key":"BE0003642"} {"ref-id":"A16488","pubmed-id":11257421,"citation":"Dagenais C, Ducharme J, Pollack GM: Uptake and efflux of the peptidic delta-opioid receptor agonist. Neurosci Lett. 2001 Apr 6;301(3):155-8.","parent_key":"BE0001004"} {"ref-id":"A15968","pubmed-id":11408557,"citation":"Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y: Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther. 2001 Jul;298(1):316-22.","parent_key":"BE0001004"} {"ref-id":"A15986","pubmed-id":11451172,"citation":"Hagenbuch N, Reichel C, Stieger B, Cattori V, Fattinger KE, Landmann L, Meier PJ, Kullak-Ublick GA: Effect of phenobarbital on the expression of bile salt and organic anion transporters of rat liver. J Hepatol. 2001 Jun;34(6):881-7.","parent_key":"BE0001004"} {"ref-id":"A16489","pubmed-id":11818398,"citation":"Gao B, Wenzel A, Grimm C, Vavricka SR, Benke D, Meier PJ, Reme CE: Localization of organic anion transport protein 2 in the apical region of rat retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2002 Feb;43(2):510-4.","parent_key":"BE0001004"} {"ref-id":"A16264","pubmed-id":11883641,"citation":"Shitara Y, Sugiyama D, Kusuhara H, Kato Y, Abe T, Meier PJ, Itoh T, Sugiyama Y: Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm Res. 2002 Feb;19(2):147-53.","parent_key":"BE0001004"} {"ref-id":"A37212","pubmed-id":22464980,"citation":"Crowe A, Tan AM: Oral and inhaled corticosteroids: differences in P-glycoprotein (ABCB1) mediated efflux. Toxicol Appl Pharmacol. 2012 May 1;260(3):294-302. doi: 10.1016/j.taap.2012.03.008. Epub 2012 Mar 23.","parent_key":"BE0001032"} {"ref-id":"A180253","pubmed-id":15365089,"citation":"Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, Schinkel AH: Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther. 2005 Jan;312(1):144-52. doi: 10.1124/jpet.104.073916. Epub 2004 Sep 13.","parent_key":"BE0001067"} {"ref-id":"A180256","pubmed-id":22711709,"citation":"de Graan AJ, Lancaster CS, Obaidat A, Hagenbuch B, Elens L, Friberg LE, de Bruijn P, Hu S, Gibson AA, Bruun GH, Corydon TJ, Mikkelsen TS, Walker AL, Du G, Loos WJ, van Schaik RH, Baker SD, Mathijssen RH, Sparreboom A: Influence of polymorphic OATP1B-type carriers on the disposition of docetaxel. Clin Cancer Res. 2012 Aug 15;18(16):4433-40. doi: 10.1158/1078-0432.CCR-12-0761. Epub 2012 Jun 18.","parent_key":"BE0001004"} {"ref-id":"A175855","pubmed-id":20448812,"citation":"Gui C, Obaidat A, Chaguturu R, Hagenbuch B: Development of a cell-based high-throughput assay to screen for inhibitors of organic anion transporting polypeptides 1B1 and 1B3. Curr Chem Genomics. 2010 Mar 1;4:1-8. doi: 10.2174/1875397301004010001.","parent_key":"BE0001004"} {"ref-id":"A180256","pubmed-id":22711709,"citation":"de Graan AJ, Lancaster CS, Obaidat A, Hagenbuch B, Elens L, Friberg LE, de Bruijn P, Hu S, Gibson AA, Bruun GH, Corydon TJ, Mikkelsen TS, Walker AL, Du G, Loos WJ, van Schaik RH, Baker SD, Mathijssen RH, Sparreboom A: Influence of polymorphic OATP1B-type carriers on the disposition of docetaxel. Clin Cancer Res. 2012 Aug 15;18(16):4433-40. doi: 10.1158/1078-0432.CCR-12-0761. Epub 2012 Jun 18.","parent_key":"BE0003659"} {"ref-id":"A175855","pubmed-id":20448812,"citation":"Gui C, Obaidat A, Chaguturu R, Hagenbuch B: Development of a cell-based high-throughput assay to screen for inhibitors of organic anion transporting polypeptides 1B1 and 1B3. Curr Chem Genomics. 2010 Mar 1;4:1-8. doi: 10.2174/1875397301004010001.","parent_key":"BE0003659"} {"ref-id":"A15808","pubmed-id":12387747,"citation":"Romiti N, Tramonti G, Chieli E: Influence of different chemicals on MDR-1 P-glycoprotein expression and activity in the HK-2 proximal tubular cell line. Toxicol Appl Pharmacol. 2002 Sep 1;183(2):83-91.","parent_key":"BE0001032"} {"ref-id":"A15814","pubmed-id":11784143,"citation":"Leonessa F, Kim JH, Ghiorghis A, Kulawiec RJ, Hammer C, Talebian A, Clarke R: C-7 analogues of progesterone as potent inhibitors of the P-glycoprotein efflux pump. J Med Chem. 2002 Jan 17;45(2):390-8.","parent_key":"BE0001032"} {"ref-id":"A15896","pubmed-id":1360010,"citation":"Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R: Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992 Dec 5;267(34):24248-52.","parent_key":"BE0001032"} {"ref-id":"A15897","pubmed-id":15290871,"citation":"Kim WY, Benet LZ: P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 2004 Jul;21(7):1284-93.","parent_key":"BE0001032"} {"ref-id":"A175849","pubmed-id":26045261,"citation":"Abu-Hayyeh S, Williamson C: Progesterone metabolites as farnesoid X receptor inhibitors. Dig Dis. 2015;33(3):300-6. doi: 10.1159/000371565. Epub 2015 May 27.","parent_key":"BE0000703"} {"ref-id":"A16209","pubmed-id":10329417,"citation":"Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O: Reversal of MRP-mediated multidrug resistance in human lung cancer cells by the antiprogestatin drug RU486. Biochem Biophys Res Commun. 1999 May 19;258(3):513-8.","parent_key":"BE0000785"} {"ref-id":"A175849","pubmed-id":26045261,"citation":"Abu-Hayyeh S, Williamson C: Progesterone metabolites as farnesoid X receptor inhibitors. Dig Dis. 2015;33(3):300-6. doi: 10.1159/000371565. Epub 2015 May 27.","parent_key":"BE0003644"} {"ref-id":"A175852","pubmed-id":20177056,"citation":"Abu-Hayyeh S, Martinez-Becerra P, Sheikh Abdul Kadir SH, Selden C, Romero MR, Rees M, Marschall HU, Marin JJ, Williamson C: Inhibition of Na+-taurocholate Co-transporting polypeptide-mediated bile acid transport by cholestatic sulfated progesterone metabolites. J Biol Chem. 2010 May 28;285(22):16504-12. doi: 10.1074/jbc.M109.072140. Epub 2010 Feb 20.","parent_key":"BE0003644"} {"ref-id":"A27311","pubmed-id":10565843,"citation":"Kim RB, Leake B, Cvetkovic M, Roden MM, Nadeau J, Walubo A, Wilkinson GR: Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity. J Pharmacol Exp Ther. 1999 Dec;291(3):1204-9.","parent_key":"BE0003644"} {"ref-id":"A37193","pubmed-id":25236865,"citation":"Mao Q, Unadkat JD: Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J. 2015 Jan;17(1):65-82. doi: 10.1208/s12248-014-9668-6. Epub 2014 Sep 19.","parent_key":"BE0001067"} {"ref-id":"A175861","pubmed-id":18202831,"citation":"Mao Q: BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res. 2008 Jun;25(6):1244-55. doi: 10.1007/s11095-008-9537-z.","parent_key":"BE0001067"} {"ref-id":"A175864","pubmed-id":23988382,"citation":"Wu X, Zhang X, Sun L, Zhang H, Li L, Wang X, Li W, Su P, Hu J, Gao P, Zhou G: Progesterone negatively regulates BCRP in progesterone receptor-positive human breast cancer cells. Cell Physiol Biochem. 2013;32(2):344-54. doi: 10.1159/000354442. Epub 2013 Aug 14.","parent_key":"BE0001067"} {"ref-id":"A175858","pubmed-id":29422623,"citation":"Patik I, Szekely V, Nemet O, Szepesi A, Kucsma N, Varady G, Szakacs G, Bakos E, Ozvegy-Laczka C: Identification of novel cell-impermeant fluorescent substrates for testing the function and drug interaction of Organic Anion-Transporting Polypeptides, OATP1B1/1B3 and 2B1. Sci Rep. 2018 Feb 8;8(1):2630. doi: 10.1038/s41598-018-20815-1.","parent_key":"BE0003659"} {"ref-id":"A16093","pubmed-id":19773380,"citation":"Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, Sparreboom A, Baker SD: Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res. 2009 Oct 1;15(19):6062-9. doi: 10.1158/1078-0432.CCR-09-0048. Epub 2009 Sep 22.","parent_key":"BE0001067"} {"ref-id":"A16199","pubmed-id":20103600,"citation":"Lagas JS, van Waterschoot RA, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH: Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010 Feb;9(2):319-26. doi: 10.1158/1535-7163.MCT-09-0663. Epub 2010 Jan 26.","parent_key":"BE0001067"} {"ref-id":"A33307","pubmed-id":22593228,"citation":"Wei Y, Ma Y, Zhao Q, Ren Z, Li Y, Hou T, Peng H: New use for an old drug: inhibiting ABCG2 with sorafenib. Mol Cancer Ther. 2012 Aug;11(8):1693-702. doi: 10.1158/1535-7163.MCT-12-0215. Epub 2012 May 16.","parent_key":"BE0001067"} {"ref-id":"A33308","pubmed-id":24391798,"citation":"Huang WC, Hsieh YL, Hung CM, Chien PH, Chien YF, Chen LC, Tu CY, Chen CH, Hsu SC, Lin YM, Chen YJ: BCRP/ABCG2 inhibition sensitizes hepatocellular carcinoma cells to sorafenib. PLoS One. 2013 Dec 31;8(12):e83627. doi: 10.1371/journal.pone.0083627. eCollection 2013.","parent_key":"BE0001067"} {"ref-id":"A16093","pubmed-id":19773380,"citation":"Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, Sparreboom A, Baker SD: Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res. 2009 Oct 1;15(19):6062-9. doi: 10.1158/1078-0432.CCR-09-0048. Epub 2009 Sep 22.","parent_key":"BE0001188"} {"ref-id":"A16093","pubmed-id":19773380,"citation":"Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, Sparreboom A, Baker SD: Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res. 2009 Oct 1;15(19):6062-9. doi: 10.1158/1078-0432.CCR-09-0048. Epub 2009 Sep 22.","parent_key":"BE0001032"} {"ref-id":"A16199","pubmed-id":20103600,"citation":"Lagas JS, van Waterschoot RA, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH: Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010 Feb;9(2):319-26. doi: 10.1158/1535-7163.MCT-09-0663. Epub 2010 Jan 26.","parent_key":"BE0001032"} {"ref-id":"A16093","pubmed-id":19773380,"citation":"Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, Sparreboom A, Baker SD: Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res. 2009 Oct 1;15(19):6062-9. doi: 10.1158/1078-0432.CCR-09-0048. Epub 2009 Sep 22.","parent_key":"BE0001069"} {"ref-id":"A34567","pubmed-id":24398510,"citation":"Hu S, Mathijssen RH, de Bruijn P, Baker SD, Sparreboom A: Inhibition of OATP1B1 by tyrosine kinase inhibitors: in vitro-in vivo correlations. Br J Cancer. 2014 Feb 18;110(4):894-8. doi: 10.1038/bjc.2013.811. Epub 2014 Jan 7.","parent_key":"BE0001004"} {"ref-id":"A15964","pubmed-id":16458542,"citation":"Yildiz M, Celik-Ozenci C, Akan S, Akan I, Sati L, Demir R, Savas B, Ozben T, Samur M, Ozdogan M, Artac M, Bozcuk H: Zoledronic acid is synergic with vinblastine to induce apoptosis in a multidrug resistance protein-1 dependent way: an in vitro study. Cell Biol Int. 2006 Mar;30(3):278-82. Epub 2006 Feb 2.","parent_key":"BE0000785"} {"ref-id":"A16012","pubmed-id":12011477,"citation":"Johnson DR, Klaassen CD: Regulation of rat multidrug resistance protein 2 by classes of prototypical microsomal enzyme inducers that activate distinct transcription pathways. Toxicol Sci. 2002 Jun;67(2):182-9.","parent_key":"BE0001069"} {"ref-id":"A24333","pubmed-id":21459122,"citation":"Rigalli JP, Ruiz ML, Perdomo VG, Villanueva SS, Mottino AD, Catania VA: Pregnane X receptor mediates the induction of P-glycoprotein by spironolactone in HepG2 cells. Toxicology. 2011 Jul 11;285(1-2):18-24. doi: 10.1016/j.tox.2011.03.015. Epub 2011 Apr 1.","parent_key":"BE0001032"} {"ref-id":"A15942","pubmed-id":12065443,"citation":"Brady JM, Cherrington NJ, Hartley DP, Buist SC, Li N, Klaassen CD: Tissue distribution and chemical induction of multiple drug resistance genes in rats. Drug Metab Dispos. 2002 Jul;30(7):838-44.","parent_key":"BE0001032"} {"ref-id":"A16301","pubmed-id":10945832,"citation":"Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y, Endou H: Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther. 2000 Sep;294(3):844-9.","parent_key":"BE0001066"} {"ref-id":"A176023","pubmed-id":29342419,"citation":"Nakamura M, Fujita K, Toyoda Y, Takada T, Hasegawa H, Ichida K: Investigation of the transport of xanthine dehydrogenase inhibitors by the urate transporter ABCG2. Drug Metab Pharmacokinet. 2018 Feb;33(1):77-81. doi: 10.1016/j.dmpk.2017.11.002. Epub 2017 Nov 22.","parent_key":"BE0001067"} {"ref-id":"A176029","pubmed-id":25676789,"citation":"Wen CC, Yee SW, Liang X, Hoffmann TJ, Kvale MN, Banda Y, Jorgenson E, Schaefer C, Risch N, Giacomini KM: Genome-wide association study identifies ABCG2 (BCRP) as an allopurinol transporter and a determinant of drug response. Clin Pharmacol Ther. 2015 May;97(5):518-25. doi: 10.1002/cpt.89. Epub 2015 Apr 6.","parent_key":"BE0001067"} {"ref-id":"A176032","pubmed-id":28855613,"citation":"Yu KH, Chang PY, Chang SC, Wu-Chou YH, Wu LA, Chen DP, Lo FS, Lu JJ: A comprehensive analysis of the association of common variants of ABCG2 with gout. Sci Rep. 2017 Aug 30;7(1):9988. doi: 10.1038/s41598-017-10196-2.","parent_key":"BE0001067"} {"ref-id":"A33778","pubmed-id":23652407,"citation":"Tamraz B, Fukushima H, Wolfe AR, Kaspera R, Totah RA, Floyd JS, Ma B, Chu C, Marciante KD, Heckbert SR, Psaty BM, Kroetz DL, Kwok PY: OATP1B1-related drug-drug and drug-gene interactions as potential risk factors for cerivastatin-induced rhabdomyolysis. Pharmacogenet Genomics. 2013 Jul;23(7):355-64. doi: 10.1097/FPC.0b013e3283620c3b.","parent_key":"BE0001004"} {"ref-id":"A191191","pubmed-id":12033380,"citation":"Susanto M, Benet LZ: Can the enhanced renal clearance of antibiotics in cystic fibrosis patients be explained by P-glycoprotein transport? Pharm Res. 2002 Apr;19(4):457-62. doi: 10.1023/a:1015191511817.","parent_key":"BE0001032"} {"ref-id":"A191212","pubmed-id":21572514,"citation":"Park MS, Okochi H, Benet LZ: Is Ciprofloxacin a Substrate of P-glycoprotein? Arch Drug Inf. 2011 Mar;4(1):1-9. doi: 10.1111/j.1753-5174.2010.00032.x.","parent_key":"BE0001032"} {"ref-id":"A16445","pubmed-id":12799644,"citation":"Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJ, van der Wilt CL, Peters GJ: Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003 Jun 16;88(12):1963-70.","parent_key":"BE0001032"} {"ref-id":"A16366","pubmed-id":12649196,"citation":"Allen JD, Van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH: Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res. 2003 Mar 15;63(6):1339-44.","parent_key":"BE0001067"} {"ref-id":"A16214","pubmed-id":12657726,"citation":"Godinot N, Iversen PW, Tabas L, Xia X, Williams DC, Dantzig AH, Perry WL 3rd: Cloning and functional characterization of the multidrug resistance-associated protein (MRP1/ABCC1) from the cynomolgus monkey. Mol Cancer Ther. 2003 Mar;2(3):307-16.","parent_key":"BE0000785"} {"ref-id":"A16215","pubmed-id":12867490,"citation":"Nunoya K, Grant CE, Zhang D, Cole SP, Deeley RG: Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1). Drug Metab Dispos. 2003 Aug;31(8):1016-26.","parent_key":"BE0000785"} {"ref-id":"A16218","pubmed-id":9281595,"citation":"Stride BD, Grant CE, Loe DW, Hipfner DR, Cole SP, Deeley RG: Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells. Mol Pharmacol. 1997 Sep;52(3):344-53.","parent_key":"BE0000785"} {"ref-id":"A16157","pubmed-id":19238367,"citation":"Kodaira C, Sugimoto M, Nishino M, Yamade M, Shirai N, Uchida S, Ikuma M, Yamada S, Watanabe H, Hishida A, Furuta T: Effect of MDR1 C3435T polymorphism on lansoprazole in healthy Japanese subjects. Eur J Clin Pharmacol. 2009 Jun;65(6):593-600. doi: 10.1007/s00228-009-0625-8. Epub 2009 Feb 24.","parent_key":"BE0001032"} {"ref-id":"A39955","pubmed-id":29353278,"citation":"Hamada Y, Ikemura K, Iwamoto T, Okuda M: Stereoselective Inhibition of Renal Basolateral Human Organic Anion Transporter 3 by Lansoprazole Enantiomers. Pharmacology. 2018;101(3-4):176-183. doi: 10.1159/000485920. Epub 2018 Jan 19.","parent_key":"BE0003645"} {"ref-id":"A15895","pubmed-id":12235446,"citation":"Siegmund W, Altmannsberger S, Paneitz A, Hecker U, Zschiesche M, Franke G, Meng W, Warzok R, Schroeder E, Sperker B, Terhaag B, Cascorbi I, Kroemer HK: Effect of levothyroxine administration on intestinal P-glycoprotein expression: consequences for drug disposition. Clin Pharmacol Ther. 2002 Sep;72(3):256-64.","parent_key":"BE0001032"} {"ref-id":"A18357","pubmed-id":22541068,"citation":"Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P: Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem. 2012 May 24;55(10):4740-63. doi: 10.1021/jm300212s. Epub 2012 May 15.","parent_key":"BE0003642"} {"ref-id":"A191242","pubmed-id":19370547,"citation":"Hassan HE, Myers AL, Coop A, Eddington ND: Differential involvement of P-glycoprotein (ABCB1) in permeability, tissue distribution, and antinociceptive activity of methadone, buprenorphine, and diprenorphine: in vitro and in vivo evaluation. J Pharm Sci. 2009 Dec;98(12):4928-40. doi: 10.1002/jps.21770.","parent_key":"BE0001032"} {"ref-id":"A191245","pubmed-id":19481690,"citation":"Hassan HE, Mercer SL, Cunningham CW, Coop A, Eddington ND: Evaluation of the P-glycoprotein (Abcb1) affinity status of a series of morphine analogs: comparative study with meperidine analogs to identify opioids with minimal P-glycoprotein interactions. Int J Pharm. 2009 Jun 22;375(1-2):48-54. doi: 10.1016/j.ijpharm.2009.03.037. Epub 2009 Apr 5.","parent_key":"BE0001032"} {"ref-id":"A15821","pubmed-id":11454724,"citation":"Wang EJ, Casciano CN, Clement RP, Johnson WW: Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab Dispos. 2001 Aug;29(8):1080-3.","parent_key":"BE0001032"} {"ref-id":"A185879","pubmed-id":12584158,"citation":"Chen C, Hanson E, Watson JW, Lee JS: P-glycoprotein limits the brain penetration of nonsedating but not sedating H1-antagonists. Drug Metab Dispos. 2003 Mar;31(3):312-8. doi: 10.1124/dmd.31.3.312.","parent_key":"BE0001032"} {"ref-id":"A16302","pubmed-id":11909604,"citation":"Takeda M, Babu E, Narikawa S, Endou H: Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002 Mar 8;438(3):137-42.","parent_key":"BE0001066"} {"ref-id":"A16303","pubmed-id":12005172,"citation":"Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, Chairoungdua A, Choi BK, Kusuhara H, Sugiyama Y, Sekine T, Endou H: Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. 2002 Mar 8;70(16):1861-74.","parent_key":"BE0001066"} {"ref-id":"A16302","pubmed-id":11909604,"citation":"Takeda M, Babu E, Narikawa S, Endou H: Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002 Mar 8;438(3):137-42.","parent_key":"BE0003645"} {"ref-id":"A16303","pubmed-id":12005172,"citation":"Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, Chairoungdua A, Choi BK, Kusuhara H, Sugiyama Y, Sekine T, Endou H: Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. 2002 Mar 8;70(16):1861-74.","parent_key":"BE0003645"} {"ref-id":"A16302","pubmed-id":11909604,"citation":"Takeda M, Babu E, Narikawa S, Endou H: Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002 Mar 8;438(3):137-42.","parent_key":"BE0000879"} {"ref-id":"A16142","pubmed-id":9380680,"citation":"Dey S, Ramachandra M, Pastan I, Gottesman MM, Ambudkar SV: Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10594-9.","parent_key":"BE0001032"} {"ref-id":"A176711","pubmed-id":9530286,"citation":"Lee CG, Gottesman MM, Cardarelli CO, Ramachandra M, Jeang KT, Ambudkar SV, Pastan I, Dey S: HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry. 1998 Mar 17;37(11):3594-601. doi: 10.1021/bi972709x.","parent_key":"BE0001032"} {"ref-id":"A176714","pubmed-id":12423172,"citation":"Andrus MB, Mettath SN, Song C: A modified synthesis of iodoazidoaryl prazosin. J Org Chem. 2002 Nov 15;67(23):8284-6.","parent_key":"BE0001032"} {"ref-id":"A176723","pubmed-id":16455806,"citation":"Rautio J, Humphreys JE, Webster LO, Balakrishnan A, Keogh JP, Kunta JR, Serabjit-Singh CJ, Polli JW: In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos. 2006 May;34(5):786-92. doi: 10.1124/dmd.105.008615. Epub 2006 Feb 2.","parent_key":"BE0001032"} {"ref-id":"A176717","pubmed-id":29521222,"citation":"Mukkavilli R, Jadhav G, Vangala S: Evaluation of Drug Transport in MDCKII-Wild Type, MDCKII-MDR1, MDCKII-BCRP and Caco-2 Cell Lines. Curr Pharm Biotechnol. 2017;18(14):1151-1158. doi: 10.2174/1389201019666180308091855.","parent_key":"BE0001067"} {"ref-id":"A176720","pubmed-id":22004608,"citation":"Wright JA, Haslam IS, Coleman T, Simmons NL: Breast cancer resistance protein BCRP (ABCG2)-mediated transepithelial nitrofurantoin secretion and its regulation in human intestinal epithelial (Caco-2) layers. Eur J Pharmacol. 2011 Dec 15;672(1-3):70-6. doi: 10.1016/j.ejphar.2011.10.004. Epub 2011 Oct 10.","parent_key":"BE0001067"} {"ref-id":"A176726","pubmed-id":19056916,"citation":"Giri N, Agarwal S, Shaik N, Pan G, Chen Y, Elmquist WF: Substrate-dependent breast cancer resistance protein (Bcrp1/Abcg2)-mediated interactions: consideration of multiple binding sites in in vitro assay design. Drug Metab Dispos. 2009 Mar;37(3):560-70. doi: 10.1124/dmd.108.022046. Epub 2008 Dec 4.","parent_key":"BE0001067"} {"ref-id":"A176729","pubmed-id":29246313,"citation":"Shemesh CS, Yu RZ, Warren MS, Liu M, Jahic M, Nichols B, Post N, Lin S, Norris DA, Hurh E, Huang J, Watanabe T, Henry SP, Wang Y: Assessment of the Drug Interaction Potential of Unconjugated and GalNAc3-Conjugated 2'-MOE-ASOs. Mol Ther Nucleic Acids. 2017 Dec 15;9:34-47. doi: 10.1016/j.omtn.2017.08.012. Epub 2017 Aug 30.","parent_key":"BE0001067"} {"ref-id":"A15819","pubmed-id":11042226,"citation":"van der Sandt IC, Blom-Roosemalen MC, de Boer AG, Breimer DD: Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur J Pharm Sci. 2000 Sep;11(3):207-14.","parent_key":"BE0001032"} {"ref-id":"A188835","pubmed-id":30583596,"citation":"Alsherbiny MA, Li CG: Medicinal Cannabis-Potential Drug Interactions. Medicines (Basel). 2018 Dec 23;6(1). pii: medicines6010003. doi: 10.3390/medicines6010003.","parent_key":"BE0001032"} {"ref-id":"A16135","pubmed-id":19887017,"citation":"Tournier N, Chevillard L, Megarbane B, Pirnay S, Scherrmann JM, Decleves X: Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol. 2010 Aug;13(7):905-15. doi: 10.1017/S1461145709990848. Epub 2009 Nov 4.","parent_key":"BE0001067"} {"ref-id":"A33414","pubmed-id":21718296,"citation":"O'Brien FE, Dinan TG, Griffin BT, Cryan JF: Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol. 2012 Jan;165(2):289-312. doi: 10.1111/j.1476-5381.2011.01557.x.","parent_key":"BE0001032"} {"ref-id":"A178558","pubmed-id":21312289,"citation":"Ruike Z, Junhua C, Wenxing P: In vitro and in vivo evaluation of the effects of duloxetine on P-gp function. Hum Psychopharmacol. 2010 Nov;25(7-8):553-9. doi: 10.1002/hup.1152.","parent_key":"BE0001032"} {"ref-id":"A178906","pubmed-id":22533838,"citation":"Trdan Lusin T, Stieger B, Marc J, Mrhar A, Trontelj J, Zavratnik A, Ostanek B: Organic anion transporting polypeptides OATP1B1 and OATP1B3 and their genetic variants influence the pharmacokinetics and pharmacodynamics of raloxifene. J Transl Med. 2012 Apr 25;10:76. doi: 10.1186/1479-5876-10-76.","parent_key":"BE0001004"} {"ref-id":"A178906","pubmed-id":22533838,"citation":"Trdan Lusin T, Stieger B, Marc J, Mrhar A, Trontelj J, Zavratnik A, Ostanek B: Organic anion transporting polypeptides OATP1B1 and OATP1B3 and their genetic variants influence the pharmacokinetics and pharmacodynamics of raloxifene. J Transl Med. 2012 Apr 25;10:76. doi: 10.1186/1479-5876-10-76.","parent_key":"BE0003659"} {"ref-id":"A178909","pubmed-id":22683417,"citation":"Trdan Lusin T, Mrhar A, Stieger B, Kullak-Ublick GA, Marc J, Ostanek B, Zavratnik A, Kristl A, Berginc K, Delic K, Trontelj J: Influence of hepatic and intestinal efflux transporters and their genetic variants on the pharmacokinetics and pharmacodynamics of raloxifene in osteoporosis treatment. Transl Res. 2012 Oct;160(4):298-308. doi: 10.1016/j.trsl.2012.03.002. Epub 2012 Mar 28.","parent_key":"BE0001032"} {"ref-id":"A178915","pubmed-id":16959878,"citation":"Chang JH, Kochansky CJ, Shou M: The role of P-glycoprotein in the bioactivation of raloxifene. Drug Metab Dispos. 2006 Dec;34(12):2073-8. doi: 10.1124/dmd.106.012179. Epub 2006 Sep 7.","parent_key":"BE0001032"} {"ref-id":"A178909","pubmed-id":22683417,"citation":"Trdan Lusin T, Mrhar A, Stieger B, Kullak-Ublick GA, Marc J, Ostanek B, Zavratnik A, Kristl A, Berginc K, Delic K, Trontelj J: Influence of hepatic and intestinal efflux transporters and their genetic variants on the pharmacokinetics and pharmacodynamics of raloxifene in osteoporosis treatment. Transl Res. 2012 Oct;160(4):298-308. doi: 10.1016/j.trsl.2012.03.002. Epub 2012 Mar 28.","parent_key":"BE0001067"} {"ref-id":"A178909","pubmed-id":22683417,"citation":"Trdan Lusin T, Mrhar A, Stieger B, Kullak-Ublick GA, Marc J, Ostanek B, Zavratnik A, Kristl A, Berginc K, Delic K, Trontelj J: Influence of hepatic and intestinal efflux transporters and their genetic variants on the pharmacokinetics and pharmacodynamics of raloxifene in osteoporosis treatment. Transl Res. 2012 Oct;160(4):298-308. doi: 10.1016/j.trsl.2012.03.002. Epub 2012 Mar 28.","parent_key":"BE0001069"} {"ref-id":"A178912","pubmed-id":26611713,"citation":"Zhou X, Wang S, Sun H, Wu B: Sulfonation of raloxifene in HEK293 cells overexpressing SULT1A3: Involvement of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in excretion of sulfate metabolites. Drug Metab Pharmacokinet. 2015 Dec;30(6):425-33. doi: 10.1016/j.dmpk.2015.09.001. Epub 2015 Oct 9.","parent_key":"BE0001188"} {"ref-id":"A34163","pubmed-id":23705854,"citation":"Pagliarulo V, Ancona P, Niso M, Colabufo NA, Contino M, Cormio L, Azzariti A, Pagliarulo A: The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line. Mol Cancer. 2013 May 24;12:47. doi: 10.1186/1476-4598-12-47.","parent_key":"BE0001032"} {"ref-id":"A34163","pubmed-id":23705854,"citation":"Pagliarulo V, Ancona P, Niso M, Colabufo NA, Contino M, Cormio L, Azzariti A, Pagliarulo A: The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line. Mol Cancer. 2013 May 24;12:47. doi: 10.1186/1476-4598-12-47.","parent_key":"BE0001067"} {"ref-id":"A180994","pubmed-id":17962372,"citation":"Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, Troutman MD, de Morais SM: In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008 Feb;36(2):268-75. doi: 10.1124/dmd.107.017434. Epub 2007 Oct 25.","parent_key":"BE0001032"} {"ref-id":"A17878","pubmed-id":1094583,"citation":"Worner P, Brossmer R: Platelet aggregation and the release induced by inophores for divalent cations. Thromb Res. 1975 Apr;6(4):295-305.","parent_key":"BE0001066"} {"ref-id":"A16056","pubmed-id":11861798,"citation":"Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Endou H: Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002 Mar;300(3):918-24.","parent_key":"BE0001066"} {"ref-id":"A16056","pubmed-id":11861798,"citation":"Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Endou H: Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002 Mar;300(3):918-24.","parent_key":"BE0003645"} {"ref-id":"A16056","pubmed-id":11861798,"citation":"Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Endou H: Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002 Mar;300(3):918-24.","parent_key":"BE0000879"} {"ref-id":"A17994","pubmed-id":16791115,"citation":"Anderson PL, Lamba J, Aquilante CL, Schuetz E, Fletcher CV: Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006 Aug 1;42(4):441-9.","parent_key":"BE0001032"} {"ref-id":"A17995","pubmed-id":18364470,"citation":"Abla N, Chinn LW, Nakamura T, Liu L, Huang CC, Johns SJ, Kawamoto M, Stryke D, Taylor TR, Ferrin TE, Giacomini KM, Kroetz DL: The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene. J Pharmacol Exp Ther. 2008 Jun;325(3):859-68. doi: 10.1124/jpet.108.136523. Epub 2008 Mar 25.","parent_key":"BE0001188"} {"ref-id":"A17997","pubmed-id":17437964,"citation":"Pan G, Giri N, Elmquist WF: Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos. 2007 Jul;35(7):1165-73. Epub 2007 Apr 16.","parent_key":"BE0001067"} {"ref-id":"A15912","pubmed-id":11303953,"citation":"Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE: Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res. 2000 Dec;17(12):1456-60.","parent_key":"BE0001032"} {"ref-id":"A15903","pubmed-id":9262363,"citation":"Ito T, Yano I, Tanaka K, Inui KI: Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997 Aug;282(2):955-60.","parent_key":"BE0001032"} {"ref-id":"A16298","pubmed-id":11961115,"citation":"Nagata Y, Kusuhara H, Endou H, Sugiyama Y: Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol Pharmacol. 2002 May;61(5):982-8.","parent_key":"BE0001066"} {"ref-id":"A16299","pubmed-id":12429554,"citation":"Burckhardt BC, Brai S, Wallis S, Krick W, Wolff NA, Burckhardt G: Transport of cimetidine by flounder and human renal organic anion transporter 1. Am J Physiol Renal Physiol. 2003 Mar;284(3):F503-9. Epub 2002 Nov 12.","parent_key":"BE0001066"} {"ref-id":"A16038","pubmed-id":15496291,"citation":"Motohashi H, Uwai Y, Hiramoto K, Okuda M, Inui K: Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur J Pharmacol. 2004 Oct 25;503(1-3):25-30.","parent_key":"BE0003645"} {"ref-id":"A16318","pubmed-id":16291876,"citation":"Tahara H, Kusuhara H, Chida M, Fuse E, Sugiyama Y: Is the monkey an appropriate animal model to examine drug-drug interactions involving renal clearance? Effect of probenecid on the renal elimination of H2 receptor antagonists. J Pharmacol Exp Ther. 2006 Mar;316(3):1187-94. Epub 2005 Nov 16.","parent_key":"BE0003645"} {"ref-id":"A15882","pubmed-id":11745741,"citation":"Perloff MD, Von Moltke LL, Marchand JE, Greenblatt DJ: Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci. 2001 Nov;90(11):1829-37. doi: 10.1002/jps.1133.","parent_key":"BE0001032"} {"ref-id":"A15883","pubmed-id":12604693,"citation":"Kumar S, Kwei GY, Poon GK, Iliff SA, Wang Y, Chen Q, Franklin RB, Didolkar V, Wang RW, Yamazaki M, Chiu SH, Lin JH, Pearson PG, Baillie TA: Pharmacokinetics and interactions of a novel antagonist of chemokine receptor 5 (CCR5) with ritonavir in rats and monkeys: role of CYP3A and P-glycoprotein. J Pharmacol Exp Ther. 2003 Mar;304(3):1161-71.","parent_key":"BE0001032"} {"ref-id":"A15856","pubmed-id":11259625,"citation":"Huisman MT, Smit JW, Wiltshire HR, Hoetelmans RM, Beijnen JH, Schinkel AH: P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir. Mol Pharmacol. 2001 Apr;59(4):806-13.","parent_key":"BE0001032"} {"ref-id":"A40133","pubmed-id":27747723,"citation":"Corallo CE, Grannell L, Tran H: Postoperative Bleeding After Administration of a Single Dose of Rivaroxaban to a Patient Receiving Antiretroviral Therapy. Drug Saf Case Rep. 2015 Dec;2(1):11. doi: 10.1007/s40800-015-0014-4.","parent_key":"BE0001032"} {"ref-id":"A15882","pubmed-id":11745741,"citation":"Perloff MD, Von Moltke LL, Marchand JE, Greenblatt DJ: Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci. 2001 Nov;90(11):1829-37. doi: 10.1002/jps.1133.","parent_key":"BE0000785"} {"ref-id":"A16000","pubmed-id":11466304,"citation":"Dussault I, Lin M, Hollister K, Wang EH, Synold TW, Forman BM: Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem. 2001 Sep 7;276(36):33309-12. Epub 2001 Jul 20.","parent_key":"BE0001069"} {"ref-id":"A15785","pubmed-id":11323161,"citation":"Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM: Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001 Mar 31;120(1-3):51-7.","parent_key":"BE0001069"} {"ref-id":"A16006","pubmed-id":10600929,"citation":"Demeule M, Brossard M, Beliveau R: Cisplatin induces renal expression of P-glycoprotein and canalicular multispecific organic anion transporter. Am J Physiol. 1999 Dec;277(6 Pt 2):F832-40.","parent_key":"BE0001069"} {"ref-id":"A15925","pubmed-id":12608535,"citation":"Li D, Jang SH, Kim J, Wientjes MG, Au JL: Enhanced drug-induced apoptosis associated with P-glycoprotein overexpression is specific to antimicrotubule agents. Pharm Res. 2003 Jan;20(1):45-50.","parent_key":"BE0001032"} {"ref-id":"A16484","pubmed-id":18801423,"citation":"Ceckova M, Vackova Z, Radilova H, Libra A, Buncek M, Staud F: Effect of ABCG2 on cytotoxicity of platinum drugs: interference of EGFP. Toxicol In Vitro. 2008 Dec;22(8):1846-52. doi: 10.1016/j.tiv.2008.09.001. Epub 2008 Sep 9.","parent_key":"BE0001067"} {"ref-id":"A16159","pubmed-id":11901088,"citation":"Merino G, Alvarez AI, Prieto JG, Kim RB: The anthelminthic agent albendazole does not interact with p-glycoprotein. Drug Metab Dispos. 2002 Apr;30(4):365-9.","parent_key":"BE0001032"} {"ref-id":"A16051","pubmed-id":15716364,"citation":"Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, Lin JH, Pearson PG, Kim RB: Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005 May;33(5):676-82. Epub 2005 Feb 16.","parent_key":"BE0001032"} {"ref-id":"A36169","pubmed-id":27001813,"citation":"Lempers VJ, van den Heuvel JJ, Russel FG, Aarnoutse RE, Burger DM, Bruggemann RJ, Koenderink JB: Inhibitory Potential of Antifungal Drugs on ATP-Binding Cassette Transporters P-Glycoprotein, MRP1 to MRP5, BCRP, and BSEP. Antimicrob Agents Chemother. 2016 May 23;60(6):3372-9. doi: 10.1128/AAC.02931-15. Print 2016 Jun.","parent_key":"BE0001032"} {"ref-id":"A16051","pubmed-id":15716364,"citation":"Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, Lin JH, Pearson PG, Kim RB: Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005 May;33(5):676-82. Epub 2005 Feb 16.","parent_key":"BE0003659"} {"ref-id":"A16444","pubmed-id":9473310,"citation":"Schuetz EG, Yasuda K, Arimori K, Schuetz JD: Human MDR1 and mouse mdr1a P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys. 1998 Feb 15;350(2):340-7.","parent_key":"BE0001032"} {"ref-id":"A16448","pubmed-id":18723475,"citation":"Marchetti S, de Vries NA, Buckle T, Bolijn MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O, Schellens JH: Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther. 2008 Aug;7(8):2280-7. doi: 10.1158/1535-7163.MCT-07-2250.","parent_key":"BE0001032"} {"ref-id":"A191296","pubmed-id":20963470,"citation":"de Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JH, van Tellingen O: Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs. 2012 Apr;30(2):443-9. doi: 10.1007/s10637-010-9569-1. Epub 2010 Oct 21.","parent_key":"BE0001032"} {"ref-id":"A15846","pubmed-id":19493273,"citation":"Noguchi K, Kawahara H, Kaji A, Katayama K, Mitsuhashi J, Sugimoto Y: Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci. 2009 Sep;100(9):1701-7. doi: 10.1111/j.1349-7006.2009.01213.x. Epub 2009 May 12.","parent_key":"BE0001032"} {"ref-id":"A191299","pubmed-id":23095522,"citation":"Lainey E, Sebert M, Thepot S, Scoazec M, Bouteloup C, Leroy C, De Botton S, Galluzzi L, Fenaux P, Kroemer G: Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell Cycle. 2012 Nov 1;11(21):4079-92. doi: 10.4161/cc.22382. Epub 2012 Oct 24.","parent_key":"BE0001032"} {"ref-id":"A180745","pubmed-id":25266751,"citation":"Kim YC, Kim IB, Noh CK, Quach HP, Yoon IS, Chow ECY, Kim M, Jin HE, Cho KH, Chung SJ, Pang KS, Maeng HJ: Effects of 1alpha,25-dihydroxyvitamin D3 , the natural vitamin D receptor ligand, on the pharmacokinetics of cefdinir and cefadroxil, organic anion transporter substrates, in rat. J Pharm Sci. 2014 Nov;103(11):3793-3805. doi: 10.1002/jps.24195. Epub 2014 Sep 29.","parent_key":"BE0001066"} {"ref-id":"A180742","pubmed-id":30047127,"citation":"Wang H, Sun P, Wang C, Meng Q, Liu Z, Huo X, Sun H, Ma X, Peng J, Liu K: Pharmacokinetic changes of cefdinir and cefditoren and its molecular mechanisms in acute kidney injury in rats. J Pharm Pharmacol. 2018 Nov;70(11):1503-1512. doi: 10.1111/jphp.12994. Epub 2018 Jul 25.","parent_key":"BE0003645"} {"ref-id":"A180745","pubmed-id":25266751,"citation":"Kim YC, Kim IB, Noh CK, Quach HP, Yoon IS, Chow ECY, Kim M, Jin HE, Cho KH, Chung SJ, Pang KS, Maeng HJ: Effects of 1alpha,25-dihydroxyvitamin D3 , the natural vitamin D receptor ligand, on the pharmacokinetics of cefdinir and cefadroxil, organic anion transporter substrates, in rat. J Pharm Sci. 2014 Nov;103(11):3793-3805. doi: 10.1002/jps.24195. Epub 2014 Sep 29.","parent_key":"BE0003645"} {"ref-id":"A180778","pubmed-id":16098483,"citation":"Ueo H, Motohashi H, Katsura T, Inui K: Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005 Oct 1;70(7):1104-13. doi: 10.1016/j.bcp.2005.06.024.","parent_key":"BE0003645"} {"ref-id":"A18599","pubmed-id":12082591,"citation":"Roberts RL, Joyce PR, Mulder RT, Begg EJ, Kennedy MA: A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2002;2(3):191-6.","parent_key":"BE0001032"} {"ref-id":"A191239","pubmed-id":15624117,"citation":"Ejsing TB, Linnet K: Influence of P-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood-brain barrier. Hum Psychopharmacol. 2005 Mar;20(2):149-53. doi: 10.1002/hup.667.","parent_key":"BE0001032"} {"ref-id":"A15923","pubmed-id":12490309,"citation":"Arora A, Shukla Y: Modulation of vinca-alkaloid induced P-glycoprotein expression by indole-3-carbinol. Cancer Lett. 2003 Jan 28;189(2):167-73.","parent_key":"BE0001032"} {"ref-id":"A15924","pubmed-id":9862789,"citation":"Doppenschmitt S, Langguth P, Regardh CG, Andersson TB, Hilgendorf C, Spahn-Langguth H: Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J Pharmacol Exp Ther. 1999 Jan;288(1):348-57.","parent_key":"BE0001032"} {"ref-id":"A15798","pubmed-id":10617675,"citation":"Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35.","parent_key":"BE0001032"} {"ref-id":"A15926","pubmed-id":15231674,"citation":"Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, Chang YL, Chen LT, Chen CT, Chang JY: BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 2004 Jul 1;64(13):4621-8.","parent_key":"BE0001032"} {"ref-id":"A15927","pubmed-id":19123050,"citation":"Woodahl EL, Crouthamel MH, Bui T, Shen DD, Ho RJ: MDR1 (ABCB1) G1199A (Ser400Asn) polymorphism alters transepithelial permeability and sensitivity to anticancer agents. Cancer Chemother Pharmacol. 2009 Jun;64(1):183-8. doi: 10.1007/s00280-008-0906-4. Epub 2009 Jan 4.","parent_key":"BE0001032"} {"ref-id":"A15928","pubmed-id":19427995,"citation":"Tiwari AK, Sodani K, Wang SR, Kuang YH, Ashby CR Jr, Chen X, Chen ZS: Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol. 2009 Jul 15;78(2):153-61. doi: 10.1016/j.bcp.2009.04.002. Epub 2009 Apr 11.","parent_key":"BE0001032"} {"ref-id":"A15963","pubmed-id":8621644,"citation":"Loe DW, Almquist KC, Cole SP, Deeley RG: ATP-dependent 17 beta-estradiol 17-(beta-D-glucuronide) transport by multidrug resistance protein (MRP). Inhibition by cholestatic steroids. J Biol Chem. 1996 Apr 19;271(16):9683-9.","parent_key":"BE0000785"} {"ref-id":"A16216","pubmed-id":9058594,"citation":"Sumizawa T, Chen ZS, Chuman Y, Seto K, Furukawa T, Haraguchi M, Tani A, Shudo N, Akiyama SI: Reversal of multidrug resistance-associated protein-mediated drug resistance by the pyridine analog PAK-104P. Mol Pharmacol. 1997 Mar;51(3):399-405.","parent_key":"BE0000785"} {"ref-id":"A16217","pubmed-id":10188979,"citation":"Renes J, de Vries EG, Nienhuis EF, Jansen PL, Muller M: ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br J Pharmacol. 1999 Feb;126(3):681-8.","parent_key":"BE0000785"} {"ref-id":"A16204","pubmed-id":14511674,"citation":"Hong J, Lambert JD, Lee SH, Sinko PJ, Yang CS: Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun. 2003 Oct 10;310(1):222-7.","parent_key":"BE0001069"} {"ref-id":"A16011","pubmed-id":2172249,"citation":"Ishikawa T, Muller M, Klunemann C, Schaub T, Keppler D: ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279-86.","parent_key":"BE0001069"} {"ref-id":"A16323","pubmed-id":10570049,"citation":"Chen ZS, Kawabe T, Ono M, Aoki S, Sumizawa T, Furukawa T, Uchiumi T, Wada M, Kuwano M, Akiyama SI: Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol. 1999 Dec;56(6):1219-28.","parent_key":"BE0001069"} {"ref-id":"A18059","pubmed-id":18820913,"citation":"Yuan J, Lv H, Peng B, Wang C, Yu Y, He Z: Role of BCRP as a biomarker for predicting resistance to 5-fluorouracil in breast cancer. Cancer Chemother Pharmacol. 2009 May;63(6):1103-10. doi: 10.1007/s00280-008-0838-z. Epub 2008 Sep 27.","parent_key":"BE0001067"} {"ref-id":"A18060","pubmed-id":19077464,"citation":"Hagmann W, Jesnowski R, Faissner R, Guo C, Lohr JM: ATP-binding cassette C transporters in human pancreatic carcinoma cell lines. Upregulation in 5-fluorouracil-resistant cells. Pancreatology. 2009;9(1-2):136-44. doi: 10.1159/000178884. Epub 2008 Dec 13.","parent_key":"BE0001188"} {"ref-id":"A17991","pubmed-id":22614107,"citation":"Sun YL, Kathawala RJ, Singh S, Zheng K, Talele TT, Jiang WQ, Chen ZS: Zafirlukast antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Anticancer Drugs. 2012 Sep;23(8):865-73. doi: 10.1097/CAD.0b013e328354a196.","parent_key":"BE0001067"} {"ref-id":"A191365","pubmed-id":12954800,"citation":"Weiss J, Kerpen CJ, Lindenmaier H, Dormann SM, Haefeli WE: Interaction of antiepileptic drugs with human P-glycoprotein in vitro. J Pharmacol Exp Ther. 2003 Oct;307(1):262-7. doi: 10.1124/jpet.103.054197. Epub 2003 Sep 3.","parent_key":"BE0001032"} {"ref-id":"A189696","pubmed-id":22188412,"citation":"Crowe A, Wright C: The impact of P-glycoprotein mediated efflux on absorption of 11 sedating and less-sedating antihistamines using Caco-2 monolayers. Xenobiotica. 2012 Jun;42(6):538-49. doi: 10.3109/00498254.2011.643256. Epub 2011 Dec 22.","parent_key":"BE0001032"} {"ref-id":"A16125","pubmed-id":11309550,"citation":"Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, Meier PJ: The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther. 2001 Apr;69(4):223-31.","parent_key":"BE0000703"} {"ref-id":"A16083","pubmed-id":11447229,"citation":"Chen ZS, Lee K, Kruh GD: Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem. 2001 Sep 7;276(36):33747-54. Epub 2001 Jul 10.","parent_key":"BE0001188"} {"ref-id":"A16086","pubmed-id":11856762,"citation":"van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG: The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002 Mar;13(3):595-603.","parent_key":"BE0001188"} {"ref-id":"A16070","pubmed-id":11585759,"citation":"Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD: Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001 Oct 1;61(19):7225-32.","parent_key":"BE0000785"} {"ref-id":"A16082","pubmed-id":12731885,"citation":"Paumi CM, Wright M, Townsend AJ, Morrow CS: Multidrug resistance protein (MRP) 1 and MRP3 attenuate cytotoxic and transactivating effects of the cyclopentenone prostaglandin, 15-deoxy-Delta(12,14)prostaglandin J2 in MCF7 breast cancer cells. Biochemistry. 2003 May 13;42(18):5429-37.","parent_key":"BE0000785"} {"ref-id":"A16286","pubmed-id":20460822,"citation":"Uwai Y, Iwamoto K: Transport of aminopterin by human organic anion transporters hOAT1 and hOAT3: Comparison with methotrexate. Drug Metab Pharmacokinet. 2010;25(2):163-9.","parent_key":"BE0001066"} {"ref-id":"A16286","pubmed-id":20460822,"citation":"Uwai Y, Iwamoto K: Transport of aminopterin by human organic anion transporters hOAT1 and hOAT3: Comparison with methotrexate. Drug Metab Pharmacokinet. 2010;25(2):163-9.","parent_key":"BE0003645"} {"ref-id":"A16332","pubmed-id":11465411,"citation":"Han YH, Kato Y, Haramura M, Ohta M, Matsuoka H, Sugiyama Y: Physicochemical parameters responsible for the affinity of methotrexate analogs for rat canalicular multispecific organic anion transporter (cMOAT/MRP2). Pharm Res. 2001 May;18(5):579-86.","parent_key":"BE0001069"} {"ref-id":"A16333","pubmed-id":9270020,"citation":"Masuda M, I'izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni'inuma K, Suzuki H, Sugiyama Y: Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res. 1997 Aug 15;57(16):3506-10.","parent_key":"BE0001069"} {"ref-id":"A16210","pubmed-id":10363967,"citation":"Hooijberg JH, Broxterman HJ, Kool M, Assaraf YG, Peters GJ, Noordhuis P, Scheper RJ, Borst P, Pinedo HM, Jansen G: Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999 Jun 1;59(11):2532-5.","parent_key":"BE0001069"} {"ref-id":"A6372","pubmed-id":10727523,"citation":"Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B: Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000 Apr;57(4):760-8.","parent_key":"BE0001069"} {"ref-id":"A16326","pubmed-id":12608533,"citation":"Chen C, Scott D, Hanson E, Franco J, Berryman E, Volberg M, Liu X: Impact of Mrp2 on the biliary excretion and intestinal absorption of furosemide, probenecid, and methotrexate using Eisai hyperbilirubinemic rats. Pharm Res. 2003 Jan;20(1):31-7.","parent_key":"BE0001069"} {"ref-id":"A16443","pubmed-id":8598312,"citation":"Norris MD, De Graaf D, Haber M, Kavallaris M, Madafiglio J, Gilbert J, Kwan E, Stewart BW, Mechetner EB, Gudkov AV, Roninson IB: Involvement of MDR1 P-glycoprotein in multifactorial resistance to methotrexate. Int J Cancer. 1996 Mar 1;65(5):613-9.","parent_key":"BE0001032"} {"ref-id":"A16459","pubmed-id":11713643,"citation":"Cattori V, van Montfoort JE, Stieger B, Landmann L, Meijer DK, Winterhalter KH, Meier PJ, Hagenbuch B: Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflugers Arch. 2001 Nov;443(2):188-95.","parent_key":"BE0003642"} {"ref-id":"A16479","pubmed-id":12741957,"citation":"Mitomo H, Kato R, Ito A, Kasamatsu S, Ikegami Y, Kii I, Kudo A, Kobatake E, Sumino Y, Ishikawa T: A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem J. 2003 Aug 1;373(Pt 3):767-74.","parent_key":"BE0001067"} {"ref-id":"A16389","pubmed-id":14500392,"citation":"Volk EL, Schneider E: Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res. 2003 Sep 1;63(17):5538-43.","parent_key":"BE0001067"} {"ref-id":"A16480","pubmed-id":19691360,"citation":"Hou YX, Li CZ, Palaniyandi K, Magtibay PM, Homolya L, Sarkadi B, Chang XB: Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport. Biochemistry. 2009 Sep 29;48(38):9122-31. doi: 10.1021/bi900675v.","parent_key":"BE0001067"} {"ref-id":"A15928","pubmed-id":19427995,"citation":"Tiwari AK, Sodani K, Wang SR, Kuang YH, Ashby CR Jr, Chen X, Chen ZS: Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol. 2009 Jul 15;78(2):153-61. doi: 10.1016/j.bcp.2009.04.002. Epub 2009 Apr 11.","parent_key":"BE0001067"} {"ref-id":"A16385","pubmed-id":19232821,"citation":"Dai CL, Liang YJ, Wang YS, Tiwari AK, Yan YY, Wang F, Chen ZS, Tong XZ, Fu LW: Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett. 2009 Jun 28;279(1):74-83. doi: 10.1016/j.canlet.2009.01.027. Epub 2009 Feb 18.","parent_key":"BE0001067"} {"ref-id":"A16474","pubmed-id":11375950,"citation":"Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, Nunoki K, Sato E, Kakyo M, Nishio T, Sugita J, Asano N, Tanemoto M, Seki M, Date F, Ono K, Kondo Y, Shiiba K, Suzuki M, Ohtani H, Shimosegawa T, Iinuma K, Nagura H, Ito S, Matsuno S: LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001 Jun;120(7):1689-99.","parent_key":"BE0001004"} {"ref-id":"A16486","pubmed-id":19022939,"citation":"van de Steeg E, van der Kruijssen CM, Wagenaar E, Burggraaff JE, Mesman E, Kenworthy KE, Schinkel AH: Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos. 2009 Feb;37(2):277-81. doi: 10.1124/dmd.108.024315. Epub 2008 Nov 20.","parent_key":"BE0001004"} {"ref-id":"A15879","pubmed-id":11318771,"citation":"Owen A, Pirmohamed M, Tettey JN, Morgan P, Chadwick D, Park BK: Carbamazepine is not a substrate for P-glycoprotein. Br J Clin Pharmacol. 2001 Apr;51(4):345-9.","parent_key":"BE0001032"} {"ref-id":"A18027","pubmed-id":19415824,"citation":"Ufer M, Mosyagin I, Muhle H, Jacobsen T, Haenisch S, Hasler R, Faltraco F, Remmler C, von Spiczak S, Kroemer HK, Runge U, Boor R, Stephani U, Cascorbi I: Non-response to antiepileptic pharmacotherapy is associated with the ABCC2 -24C>T polymorphism in young and adult patients with epilepsy. Pharmacogenet Genomics. 2009 May;19(5):353-62.","parent_key":"BE0001069"} {"ref-id":"A180409","pubmed-id":14636316,"citation":"Potschka H, Fedrowitz M, Loscher W: Brain access and anticonvulsant efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2-deficient TR- rats. Epilepsia. 2003 Dec;44(12):1479-86.","parent_key":"BE0001069"} {"ref-id":"A15812","pubmed-id":11405287,"citation":"Gao J, Murase O, Schowen RL, Aube J, Borchardt RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001 Feb;18(2):171-6.","parent_key":"BE0001032"} {"ref-id":"A15921","pubmed-id":8862725,"citation":"Tiberghien F, Loor F: Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs. 1996 Jul;7(5):568-78.","parent_key":"BE0001032"} {"ref-id":"A15825","pubmed-id":8960059,"citation":"Pouliot JF, L'Heureux F, Liu Z, Prichard RK, Georges E: Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997 Jan 10;53(1):17-25.","parent_key":"BE0001032"} {"ref-id":"A15929","pubmed-id":9655875,"citation":"Smit JW, Weert B, Schinkel AH, Meijer DK: Heterologous expression of various P-glycoproteins in polarized epithelial cells induces directional transport of small (type 1) and bulky (type 2) cationic drugs. J Pharmacol Exp Ther. 1998 Jul;286(1):321-7.","parent_key":"BE0001032"} {"ref-id":"A15930","pubmed-id":9751076,"citation":"Shepard RL, Winter MA, Hsaio SC, Pearce HL, Beck WT, Dantzig AH: Effect of modulators on the ATPase activity and vanadate nucleotide trapping of human P-glycoprotein. Biochem Pharmacol. 1998 Sep 15;56(6):719-27.","parent_key":"BE0001032"} {"ref-id":"A15829","pubmed-id":10087141,"citation":"Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R: P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. 1999 Apr;437(5):652-60.","parent_key":"BE0001032"} {"ref-id":"A15899","pubmed-id":12724138,"citation":"Atkinson DE, Greenwood SL, Sibley CP, Glazier JD, Fairbairn LJ: Role of MDR1 and MRP1 in trophoblast cells, elucidated using retroviral gene transfer. Am J Physiol Cell Physiol. 2003 Sep;285(3):C584-91. Epub 2003 Apr 30.","parent_key":"BE0001032"} {"ref-id":"A15932","pubmed-id":8100632,"citation":"Hunter J, Hirst BH, Simmons NL: Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm Res. 1993 May;10(5):743-9.","parent_key":"BE0001032"} {"ref-id":"A15933","pubmed-id":10411602,"citation":"Dantzig AH, Shepard RL, Law KL, Tabas L, Pratt S, Gillespie JS, Binkley SN, Kuhfeld MT, Starling JJ, Wrighton SA: Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther. 1999 Aug;290(2):854-62.","parent_key":"BE0001032"} {"ref-id":"A15934","pubmed-id":14991868,"citation":"Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC: P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate. 2004 Apr 1;59(1):77-90.","parent_key":"BE0001032"} {"ref-id":"A15844","pubmed-id":19530439,"citation":"Kugawa F, Suzuki T, Miyata M, Tomono K, Tamanoi F: Construction of a model cell line for the assay of MDR1 (multi drug resistance gene-1) substrates/inhibitors using HeLa cells. Pharmazie. 2009 May;64(5):296-300.","parent_key":"BE0001032"} {"ref-id":"A15935","pubmed-id":11961114,"citation":"Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, Yasuda K, Shepard RL, Winter MA, Schuetz JD, Wikel JH, Wrighton SA: Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Mol Pharmacol. 2002 May;61(5):974-81.","parent_key":"BE0001032"} {"ref-id":"A15936","pubmed-id":12081145,"citation":"Takara K, Sakaeda T, Yagami T, Kobayashi H, Ohmoto N, Horinouchi M, Nishiguchi K, Okumura K: Cytotoxic effects of 27 anticancer drugs in HeLa and MDR1-overexpressing derivative cell lines. Biol Pharm Bull. 2002 Jun;25(6):771-8.","parent_key":"BE0001032"} {"ref-id":"A15937","pubmed-id":12107852,"citation":"Henning U, Loffler S, Krieger K, Klimke A: Uptake of clozapine into HL-60 promyelocytic leukaemia cells. Pharmacopsychiatry. 2002 May;35(3):90-5.","parent_key":"BE0001032"} {"ref-id":"A15785","pubmed-id":11323161,"citation":"Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM: Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001 Mar 31;120(1-3):51-7.","parent_key":"BE0000785"} {"ref-id":"A12472","pubmed-id":11834888,"citation":"Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ: Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126-34.","parent_key":"BE0000785"} {"ref-id":"A15931","pubmed-id":15616150,"citation":"Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, Smolarek TA: Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005 Apr;33(4):537-46. Epub 2004 Dec 22.","parent_key":"BE0001069"} {"ref-id":"A15907","pubmed-id":15023456,"citation":"D'Emanuele A, Jevprasesphant R, Penny J, Attwood D: The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004 Mar 24;95(3):447-53.","parent_key":"BE0001032"} {"ref-id":"A175930","pubmed-id":26410689,"citation":"Mooij MG, Nies AT, Knibbe CA, Schaeffeler E, Tibboel D, Schwab M, de Wildt SN: Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics. Clin Pharmacokinet. 2016 May;55(5):507-24. doi: 10.1007/s40262-015-0328-5.","parent_key":"BE0003645"} {"ref-id":"A175930","pubmed-id":26410689,"citation":"Mooij MG, Nies AT, Knibbe CA, Schaeffeler E, Tibboel D, Schwab M, de Wildt SN: Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics. Clin Pharmacokinet. 2016 May;55(5):507-24. doi: 10.1007/s40262-015-0328-5.","parent_key":"BE0001066"} {"ref-id":"A16151","pubmed-id":11895100,"citation":"Takara K, Kakumoto M, Tanigawara Y, Funakoshi J, Sakaeda T, Okumura K: Interaction of digoxin with antihypertensive drugs via MDR1. Life Sci. 2002 Feb 15;70(13):1491-500.","parent_key":"BE0001032"} {"ref-id":"A16458","pubmed-id":10859154,"citation":"Abu-Zahra TN, Wolkoff AW, Kim RB, Pang KS: Uptake of enalapril and expression of organic anion transporting polypeptide 1 in zonal, isolated rat hepatocytes. Drug Metab Dispos. 2000 Jul;28(7):801-6.","parent_key":"BE0003642"} {"ref-id":"A15847","pubmed-id":19319690,"citation":"Dahan A, Sabit H, Amidon GL: The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009 Jun;11(2):205-13. doi: 10.1208/s12248-009-9092-5. Epub 2009 Mar 25.","parent_key":"BE0001032"} {"ref-id":"A191215","pubmed-id":24520393,"citation":"Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Zhang Y, Laracuente ML, DeMarco KM, Ronaldson PT, Davis TP: P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac. PLoS One. 2014 Feb 10;9(2):e88516. doi: 10.1371/journal.pone.0088516. eCollection 2014.","parent_key":"BE0001032"} {"ref-id":"A16300","pubmed-id":11855680,"citation":"Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Sakthisekaran D, Endou H: Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002 Jan;88(1):69-76.","parent_key":"BE0003645"} {"ref-id":"A16300","pubmed-id":11855680,"citation":"Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Sakthisekaran D, Endou H: Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002 Jan;88(1):69-76.","parent_key":"BE0000879"} {"ref-id":"A15877","pubmed-id":7560060,"citation":"Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P: Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995 Oct;96(4):1698-705.","parent_key":"BE0001032"} {"ref-id":"A16163","pubmed-id":20574995,"citation":"Jani M, Makai I, Kis E, Szabo P, Nagy T, Krajcsi P, Lespine A: Ivermectin interacts with human ABCG2. J Pharm Sci. 2011 Jan;100(1):94-7. doi: 10.1002/jps.22262. Epub 2010 Jun 22.","parent_key":"BE0001032"} {"ref-id":"A191200","pubmed-id":22024132,"citation":"Menez C, Mselli-Lakhal L, Foucaud-Vignault M, Balaguer P, Alvinerie M, Lespine A: Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line. Biochem Pharmacol. 2012 Jan 15;83(2):269-78. doi: 10.1016/j.bcp.2011.10.010. Epub 2011 Oct 18.","parent_key":"BE0001032"} {"ref-id":"A16232","pubmed-id":16384552,"citation":"Lespine A, Dupuy J, Orlowski S, Nagy T, Glavinas H, Krajcsi P, Alvinerie M: Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chem Biol Interact. 2006 Feb 25;159(3):169-79. Epub 2005 Dec 27.","parent_key":"BE0000785"} {"ref-id":"A16232","pubmed-id":16384552,"citation":"Lespine A, Dupuy J, Orlowski S, Nagy T, Glavinas H, Krajcsi P, Alvinerie M: Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chem Biol Interact. 2006 Feb 25;159(3):169-79. Epub 2005 Dec 27.","parent_key":"BE0001069"} {"ref-id":"A16163","pubmed-id":20574995,"citation":"Jani M, Makai I, Kis E, Szabo P, Nagy T, Krajcsi P, Lespine A: Ivermectin interacts with human ABCG2. J Pharm Sci. 2011 Jan;100(1):94-7. doi: 10.1002/jps.22262. Epub 2010 Jun 22.","parent_key":"BE0001067"} {"ref-id":"A191317","pubmed-id":15061868,"citation":"Englund G, Hallberg P, Artursson P, Michaelsson K, Melhus H: Association between the number of coadministered P-glycoprotein inhibitors and serum digoxin levels in patients on therapeutic drug monitoring. BMC Med. 2004 Apr 2;2:8. doi: 10.1186/1741-7015-2-8.","parent_key":"BE0001032"} {"ref-id":"A191320","pubmed-id":7645952,"citation":"Zibera C, Gibelli N, Maestri L, Della Cuna GR: Medroxyprogesterone-acetate reverses the MDR phenotype of the CG5-doxorubicin resistant human breast cancer cell line. Anticancer Res. 1995 May-Jun;15(3):745-9.","parent_key":"BE0001032"} {"ref-id":"A36129","pubmed-id":16917012,"citation":"Crowe A, Ilett KF, Karunajeewa HA, Batty KT, Davis TM: Role of P glycoprotein in absorption of novel antimalarial drugs. Antimicrob Agents Chemother. 2006 Oct;50(10):3504-6. doi: 10.1128/AAC.00708-06. Epub 2006 Aug 17.","parent_key":"BE0001032"} {"ref-id":"A38285","pubmed-id":16671962,"citation":"Bachmakov I, Werner U, Endress B, Auge D, Fromm MF: Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006 Jun;20(3):273-82. doi: 10.1111/j.1472-8206.2006.00408.x.","parent_key":"BE0001032"} {"ref-id":"A180517","pubmed-id":18974611,"citation":"Tahara K, Kagawa Y, Takaai M, Taguchi M, Hashimoto Y: Directional transcellular transport of bisoprolol in P-glycoprotein-expressed LLC-GA5-COL150 cells, but not in renal epithelial LLC-PK1 Cells. Drug Metab Pharmacokinet. 2008;23(5):340-6.","parent_key":"BE0001032"} {"ref-id":"A180520","pubmed-id":30074534,"citation":"Nehaj F, Sokol J, Ivankova J, Mokan M, Mokan M: Effect of Bisoprolol on the Level of Dabigatran. Am J Ther. 2018 Jul 12. doi: 10.1097/MJT.0000000000000786.","parent_key":"BE0001032"} {"ref-id":"A180523","pubmed-id":24309303,"citation":"Klatt S, Fromm MF, Konig J: Transporter-mediated drug-drug interactions with oral antidiabetic drugs. Pharmaceutics. 2011 Oct 12;3(4):680-705. doi: 10.3390/pharmaceutics3040680.","parent_key":"BE0001032"} {"ref-id":"A36137","pubmed-id":27045516,"citation":"Senarathna SM, Page-Sharp M, Crowe A: The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation. PLoS One. 2016 Apr 5;11(4):e0152677. doi: 10.1371/journal.pone.0152677. eCollection 2016.","parent_key":"BE0001032"} {"ref-id":"A173551","pubmed-id":23136913,"citation":"Baciewicz AM, Chrisman CR, Finch CK, Self TH: Update on rifampin, rifabutin, and rifapentine drug interactions. Curr Med Res Opin. 2013 Jan;29(1):1-12. doi: 10.1185/03007995.2012.747952. Epub 2012 Nov 30.","parent_key":"BE0001032"} {"ref-id":"A34863","pubmed-id":29569712,"citation":"Lutz JD, Kirby BJ, Wang L, Song Q, Ling J, Massetto B, Worth A, Kearney BP, Mathias A: Cytochrome P450 3A Induction Predicts P-glycoprotein Induction; Part 2: Prediction of Decreased Substrate Exposure After Rifabutin or Carbamazepine. Clin Pharmacol Ther. 2018 Mar 23. doi: 10.1002/cpt.1072.","parent_key":"BE0001032"} {"ref-id":"A36010","pubmed-id":22644026,"citation":"Vourvahis M, Davis J, Wang R, Layton G, Choo HW, Chong CL, Tawadrous M: Effect of rifampin and rifabutin on the pharmacokinetics of lersivirine and effect of lersivirine on the pharmacokinetics of rifabutin and 25-O-desacetyl-rifabutin in healthy subjects. Antimicrob Agents Chemother. 2012 Aug;56(8):4303-9. doi: 10.1128/AAC.06282-11. Epub 2012 May 29.","parent_key":"BE0001032"} {"ref-id":"A16066","pubmed-id":19710702,"citation":"Davies A, Jordanides NE, Giannoudis A, Lucas CM, Hatziieremia S, Harris RJ, Jorgensen HG, Holyoake TL, Pirmohamed M, Clark RE, Mountford JC: Nilotinib concentration in cell lines and primary CD34(+) chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia. 2009 Nov;23(11):1999-2006. doi: 10.1038/leu.2009.166. Epub 2009 Aug 27.","parent_key":"BE0001032"} {"ref-id":"A16141","pubmed-id":20423956,"citation":"Dohse M, Scharenberg C, Shukla S, Robey RW, Volkmann T, Deeken JF, Brendel C, Ambudkar SV, Neubauer A, Bates SE: Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos. 2010 Aug;38(8):1371-80. doi: 10.1124/dmd.109.031302. Epub 2010 Apr 27.","parent_key":"BE0001032"} {"ref-id":"A15900","pubmed-id":12975485,"citation":"Hamada A, Miyano H, Watanabe H, Saito H: Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003 Nov;307(2):824-8. Epub 2003 Sep 15.","parent_key":"BE0001032"} {"ref-id":"A16192","pubmed-id":15315971,"citation":"Thomas J, Wang L, Clark RE, Pirmohamed M: Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004 Dec 1;104(12):3739-45. Epub 2004 Aug 17.","parent_key":"BE0001032"} {"ref-id":"A16193","pubmed-id":19785662,"citation":"Hegedus C, Ozvegy-Laczka C, Apati A, Magocsi M, Nemet K, Orfi L, Keri G, Katona M, Takats Z, Varadi A, Szakacs G, Sarkadi B: Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol. 2009 Oct;158(4):1153-64. doi: 10.1111/j.1476-5381.2009.00383.x. Epub 2009 Sep 28.","parent_key":"BE0001032"} {"ref-id":"A16194","pubmed-id":18669873,"citation":"Giannoudis A, Davies A, Lucas CM, Harris RJ, Pirmohamed M, Clark RE: Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood. 2008 Oct 15;112(8):3348-54. doi: 10.1182/blood-2007-10-116236. Epub 2008 Jul 31.","parent_key":"BE0001032"} {"ref-id":"A16195","pubmed-id":15805252,"citation":"Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, Schellens JH: The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 2005 Apr 1;65(7):2577-82.","parent_key":"BE0001032"} {"ref-id":"A16196","pubmed-id":15918555,"citation":"Oka M, Fukuda M, Soda H: [Anticancer drugs and ABC transporters]. Gan To Kagaku Ryoho. 2005 May;32(5):585-92.","parent_key":"BE0001032"} {"ref-id":"A16197","pubmed-id":15970668,"citation":"Burger H, van Tol H, Brok M, Wiemer EA, de Bruijn EA, Guetens G, de Boeck G, Sparreboom A, Verweij J, Nooter K: Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther. 2005 Jul;4(7):747-52. Epub 2005 Jul 9.","parent_key":"BE0001032"} {"ref-id":"A16198","pubmed-id":16157201,"citation":"Galimberti S, Cervetti G, Guerrini F, Testi R, Pacini S, Fazzi R, Simi P, Petrini M: Quantitative molecular monitoring of BCR-ABL and MDR1 transcripts in patients with chronic myeloid leukemia during Imatinib treatment. Cancer Genet Cytogenet. 2005 Oct 1;162(1):57-62.","parent_key":"BE0001032"} {"ref-id":"A11711","pubmed-id":16890580,"citation":"Gardner ER, Burger H, van Schaik RH, van Oosterom AT, de Bruijn EA, Guetens G, Prenen H, de Jong FA, Baker SD, Bates SE, Figg WD, Verweij J, Sparreboom A, Nooter K: Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther. 2006 Aug;80(2):192-201.","parent_key":"BE0001032"} {"ref-id":"A16361","pubmed-id":15059881,"citation":"Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, Traxler P: Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004 Apr 1;64(7):2333-7.","parent_key":"BE0001067"} {"ref-id":"A16066","pubmed-id":19710702,"citation":"Davies A, Jordanides NE, Giannoudis A, Lucas CM, Hatziieremia S, Harris RJ, Jorgensen HG, Holyoake TL, Pirmohamed M, Clark RE, Mountford JC: Nilotinib concentration in cell lines and primary CD34(+) chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia. 2009 Nov;23(11):1999-2006. doi: 10.1038/leu.2009.166. Epub 2009 Aug 27.","parent_key":"BE0001067"} {"ref-id":"A16141","pubmed-id":20423956,"citation":"Dohse M, Scharenberg C, Shukla S, Robey RW, Volkmann T, Deeken JF, Brendel C, Ambudkar SV, Neubauer A, Bates SE: Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos. 2010 Aug;38(8):1371-80. doi: 10.1124/dmd.109.031302. Epub 2010 Apr 27.","parent_key":"BE0001067"} {"ref-id":"A16386","pubmed-id":15251980,"citation":"Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G, Nooter K: Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004 Nov 1;104(9):2940-2. Epub 2004 Jul 13.","parent_key":"BE0001067"} {"ref-id":"A16193","pubmed-id":19785662,"citation":"Hegedus C, Ozvegy-Laczka C, Apati A, Magocsi M, Nemet K, Orfi L, Keri G, Katona M, Takats Z, Varadi A, Szakacs G, Sarkadi B: Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol. 2009 Oct;158(4):1153-64. doi: 10.1111/j.1476-5381.2009.00383.x. Epub 2009 Sep 28.","parent_key":"BE0001067"} {"ref-id":"A16195","pubmed-id":15805252,"citation":"Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, Schellens JH: The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 2005 Apr 1;65(7):2577-82.","parent_key":"BE0001067"} {"ref-id":"A16196","pubmed-id":15918555,"citation":"Oka M, Fukuda M, Soda H: [Anticancer drugs and ABC transporters]. Gan To Kagaku Ryoho. 2005 May;32(5):585-92.","parent_key":"BE0001067"} {"ref-id":"A16197","pubmed-id":15970668,"citation":"Burger H, van Tol H, Brok M, Wiemer EA, de Bruijn EA, Guetens G, de Boeck G, Sparreboom A, Verweij J, Nooter K: Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther. 2005 Jul;4(7):747-52. Epub 2005 Jul 9.","parent_key":"BE0001067"} {"ref-id":"A16387","pubmed-id":16303243,"citation":"Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y: Functional SNPs of the breast cancer resistance protein-therapeutic effects and inhibitor development. Cancer Lett. 2006 Mar 8;234(1):73-80. Epub 2005 Nov 21.","parent_key":"BE0001067"} {"ref-id":"A16388","pubmed-id":16543472,"citation":"Nakanishi T, Shiozawa K, Hassel BA, Ross DD: Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood. 2006 Jul 15;108(2):678-84. Epub 2006 Mar 16.","parent_key":"BE0001067"} {"ref-id":"A15999","pubmed-id":11779196,"citation":"Kobayashi Y, Hirokawa N, Ohshiro N, Sekine T, Sasaki T, Tokuyama S, Endou H, Yamamoto T: Differential gene expression of organic anion transporters in male and female rats. Biochem Biophys Res Commun. 2002 Jan 11;290(1):482-7.","parent_key":"BE0003645"} {"ref-id":"A16478","pubmed-id":12668685,"citation":"Janvilisri T, Venter H, Shahi S, Reuter G, Balakrishnan L, van Veen HW: Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. J Biol Chem. 2003 Jun 6;278(23):20645-51. Epub 2003 Mar 28.","parent_key":"BE0001067"} {"ref-id":"A187012","pubmed-id":25147980,"citation":"Cho E, Montgomery RB, Mostaghel EA: Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014 Nov;155(11):4124-32. doi: 10.1210/en.2014-1337. Epub 2014 Aug 22.","parent_key":"BE0003659"} {"ref-id":"A176807","pubmed-id":18537956,"citation":"Sharifi N, Hamada A, Sissung T, Danesi R, Venzon D, Baum C, Gulley JL, Price DK, Dahut WL, Figg WD: A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer. BJU Int. 2008 Aug 5;102(5):617-21. doi: 10.1111/j.1464-410X.2008.07629.x. Epub 2008 Jun 4.","parent_key":"BE0003659"} {"ref-id":"A16189","pubmed-id":15472518,"citation":"Dilger K, Schwab M, Fromm MF: Identification of budesonide and prednisone as substrates of the intestinal drug efflux pump P-glycoprotein. Inflamm Bowel Dis. 2004 Sep;10(5):578-83.","parent_key":"BE0001032"} {"ref-id":"A16165","pubmed-id":10706423,"citation":"Ishikawa M, Fujita R, Takayanagi M, Takayanagi Y, Sasaki K: Reversal of acquired resistance to doxorubicin in K562 human leukemia cells by astemizole. Biol Pharm Bull. 2000 Jan;23(1):112-5.","parent_key":"BE0001032"} {"ref-id":"A16137","pubmed-id":15497697,"citation":"Hochman JH, Pudvah N, Qiu J, Yamazaki M, Tang C, Lin JH, Prueksaritanont T: Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 2004 Sep;21(9):1686-91.","parent_key":"BE0001032"} {"ref-id":"A15840","pubmed-id":19739078,"citation":"Sieczkowski E, Lehner C, Ambros PF, Hohenegger M: Double impact on p-glycoprotein by statins enhances doxorubicin cytotoxicity in human neuroblastoma cells. Int J Cancer. 2010 May 1;126(9):2025-35. doi: 10.1002/ijc.24885.","parent_key":"BE0001032"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0001032"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0001004"} {"ref-id":"A181460","pubmed-id":23047648,"citation":"Elsby R, Hilgendorf C, Fenner K: Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther. 2012 Nov;92(5):584-98. doi: 10.1038/clpt.2012.163. Epub 2012 Oct 10.","parent_key":"BE0001004"} {"ref-id":"A34995","pubmed-id":17108811,"citation":"Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M: SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006 Dec;16(12):873-9. doi: 10.1097/01.fpc.0000230416.82349.90.","parent_key":"BE0001004"} {"ref-id":"A18012","pubmed-id":22186618,"citation":"Becker ML, Elens LL, Visser LE, Hofman A, Uitterlinden AG, van Schaik RH, Stricker BH: Genetic variation in the ABCC2 gene is associated with dose decreases or switches to other cholesterol-lowering drugs during simvastatin and atorvastatin therapy. Pharmacogenomics J. 2013 Jun;13(3):251-6. doi: 10.1038/tpj.2011.59. Epub 2011 Dec 20.","parent_key":"BE0001069"} {"ref-id":"A191284","pubmed-id":25096913,"citation":"Gagliano T, Gentilin E, Benfini K, Di Pasquale C, Tassinari M, Falletta S, Feo C, Tagliati F, Uberti ED, Zatelli MC: Mitotane enhances doxorubicin cytotoxic activity by inhibiting P-gp in human adrenocortical carcinoma cells. Endocrine. 2014 Dec;47(3):943-51. doi: 10.1007/s12020-014-0374-z. Epub 2014 Aug 6.","parent_key":"BE0001032"} {"ref-id":"A191248","pubmed-id":15187451,"citation":"Moriki Y, Suzuki T, Fukami T, Hanano M, Tomono K, Watanabe J: Involvement of P-glycoprotein in blood-brain barrier transport of pentazocine in rats using brain uptake index method. Biol Pharm Bull. 2004 Jun;27(6):932-5. doi: 10.1248/bpb.27.932.","parent_key":"BE0001032"} {"ref-id":"A191251","pubmed-id":15848954,"citation":"Moriki Y, Suzuki T, Furuishi T, Fukami T, Tomono K, Watanabe J: In vivo evidence for the efflux transport of pentazocine from the brain across the blood-brain barrier using the brain efflux index method. J Drug Target. 2005 Jan;13(1):53-9. doi: 10.1080/10611860400024110.","parent_key":"BE0001032"} {"ref-id":"A16031","pubmed-id":11907186,"citation":"Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H: Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther. 2002 Apr;301(1):293-8.","parent_key":"BE0001066"} {"ref-id":"A184796","pubmed-id":16338963,"citation":"Sauvant C, Holzinger H, Gekle M: Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3. J Am Soc Nephrol. 2006 Jan;17(1):46-53. doi: 10.1681/ASN.2005070727. Epub 2005 Dec 7.","parent_key":"BE0001066"} {"ref-id":"A184796","pubmed-id":16338963,"citation":"Sauvant C, Holzinger H, Gekle M: Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3. J Am Soc Nephrol. 2006 Jan;17(1):46-53. doi: 10.1681/ASN.2005070727. Epub 2005 Dec 7.","parent_key":"BE0003645"} {"ref-id":"A16031","pubmed-id":11907186,"citation":"Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H: Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther. 2002 Apr;301(1):293-8.","parent_key":"BE0003645"} {"ref-id":"A16360","pubmed-id":15205350,"citation":"Imai Y, Tsukahara S, Asada S, Sugimoto Y: Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res. 2004 Jun 15;64(12):4346-52.","parent_key":"BE0001067"} {"ref-id":"A16376","pubmed-id":14566825,"citation":"Miwa M, Tsukahara S, Ishikawa E, Asada S, Imai Y, Sugimoto Y: Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants. Int J Cancer. 2003 Dec 10;107(5):757-63.","parent_key":"BE0001067"} {"ref-id":"A16377","pubmed-id":11927002,"citation":"Imai Y, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y: Estrone and 17beta-estradiol reverse breast cancer resistance protein-mediated multidrug resistance. Jpn J Cancer Res. 2002 Mar;93(3):231-5.","parent_key":"BE0001067"} {"ref-id":"A15881","pubmed-id":11452702,"citation":"Stormer E, von Moltke LL, Perloff MD, Greenblatt DJ: P-glycoprotein interactions of nefazodone and trazodone in cell culture. J Clin Pharmacol. 2001 Jul;41(7):708-14.","parent_key":"BE0001032"} {"ref-id":"A38329","pubmed-id":27317413,"citation":"Smolders EJ, de Kanter CT, de Knegt RJ, van der Valk M, Drenth JP, Burger DM: Drug-Drug Interactions Between Direct-Acting Antivirals and Psychoactive Medications. Clin Pharmacokinet. 2016 Dec;55(12):1471-1494. doi: 10.1007/s40262-016-0407-2.","parent_key":"BE0001032"} {"ref-id":"A13983","pubmed-id":19125880,"citation":"Tfelt-Hansen P, Tfelt-Hansen J: Verapamil for cluster headache. Clinical pharmacology and possible mode of action. Headache. 2009 Jan;49(1):117-25. doi: 10.1111/j.1526-4610.2008.01298.x.","parent_key":"BE0001032"} {"ref-id":"A16416","pubmed-id":19139163,"citation":"Oostendorp RL, van de Steeg E, van der Kruijssen CM, Beijnen JH, Kenworthy KE, Schinkel AH, Schellens JH: Organic anion-transporting polypeptide 1B1 mediates transport of Gimatecan and BNP1350 and can be inhibited by several classic ATP-binding cassette (ABC) B1 and/or ABCG2 inhibitors. Drug Metab Dispos. 2009 Apr;37(4):917-23. doi: 10.1124/dmd.108.024901. Epub 2009 Jan 12.","parent_key":"BE0001004"} {"ref-id":"A188438","pubmed-id":17646169,"citation":"Perrotton T, Trompier D, Chang XB, Di Pietro A, Baubichon-Cortay H: (R)- and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1. J Biol Chem. 2007 Oct 26;282(43):31542-8. doi: 10.1074/jbc.M703964200. Epub 2007 Jul 22.","parent_key":"BE0000785"} {"ref-id":"A15987","pubmed-id":8779895,"citation":"Lu R, Kanai N, Bao Y, Wolkoff AW, Schuster VL: Regulation of renal oatp mRNA expression by testosterone. Am J Physiol. 1996 Feb;270(2 Pt 2):F332-7.","parent_key":"BE0003642"} {"ref-id":"A33371","pubmed-id":11745719,"citation":"Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P: HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci. 2001 Oct;90(10):1608-19.","parent_key":"BE0001032"} {"ref-id":"A16487","pubmed-id":11076394,"citation":"Suzuki H, Sugiyama Y: Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver. Semin Liver Dis. 2000;20(3):251-63.","parent_key":"BE0001004"} {"ref-id":"A16305","pubmed-id":10854830,"citation":"Uwai Y, Saito H, Hashimoto Y, Inui K: Inhibitory effect of anti-diabetic agents on rat organic anion transporter rOAT1. Eur J Pharmacol. 2000 Jun 16;398(2):193-7.","parent_key":"BE0001066"} {"ref-id":"A203492","pubmed-id":19683513,"citation":"Namanja HA, Emmert D, Pires MM, Hrycyna CA, Chmielewski J: Inhibition of human P-glycoprotein transport and substrate binding using a galantamine dimer. Biochem Biophys Res Commun. 2009 Oct 30;388(4):672-6. doi: 10.1016/j.bbrc.2009.08.056. Epub 2009 Aug 14.","parent_key":"BE0001032"} {"ref-id":"A15940","pubmed-id":10825468,"citation":"Riley J, Styles J, Verschoyle RD, Stanley LA, White IN, Gant TW: Association of tamoxifen biliary excretion rate with prior tamoxifen exposure and increased mdr1b expression. Biochem Pharmacol. 2000 Jul 15;60(2):233-9.","parent_key":"BE0001032"} {"ref-id":"A15941","pubmed-id":15386482,"citation":"Bekaii-Saab TS, Perloff MD, Weemhoff JL, Greenblatt DJ, von Moltke LL: Interactions of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen with P-glycoprotein and CYP3A. Biopharm Drug Dispos. 2004 Oct;25(7):283-9.","parent_key":"BE0001032"} {"ref-id":"A18093","pubmed-id":20124171,"citation":"Kiyotani K, Mushiroda T, Imamura CK, Hosono N, Tsunoda T, Kubo M, Tanigawara Y, Flockhart DA, Desta Z, Skaar TC, Aki F, Hirata K, Takatsuka Y, Okazaki M, Ohsumi S, Yamakawa T, Sasa M, Nakamura Y, Zembutsu H: Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol. 2010 Mar 10;28(8):1287-93. doi: 10.1200/JCO.2009.25.7246. Epub 2010 Feb 1.","parent_key":"BE0001069"} {"ref-id":"A16158","pubmed-id":10725273,"citation":"Soldner A, Benet LZ, Mutschler E, Christians U: Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol. 2000 Mar;129(6):1235-43.","parent_key":"BE0001032"} {"ref-id":"A16277","pubmed-id":10049739,"citation":"Race JE, Grassl SM, Williams WJ, Holtzman EJ: Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun. 1999 Feb 16;255(2):508-14.","parent_key":"BE0001066"} {"ref-id":"A18110","pubmed-id":22359229,"citation":"Lipkowitz MS: Regulation of uric acid excretion by the kidney. Curr Rheumatol Rep. 2012 Apr;14(2):179-88. doi: 10.1007/s11926-012-0240-z.","parent_key":"BE0004782"} {"ref-id":"A18111","pubmed-id":8743498,"citation":"Burnier M, Roch-Ramel F, Brunner HR: Renal effects of angiotensin II receptor blockade in normotensive subjects. Kidney Int. 1996 Jun;49(6):1787-90.","parent_key":"BE0004782"} {"ref-id":"A18078","pubmed-id":17906856,"citation":"Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue T, Suzuki T, Habuchi T: Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007 Dec;63(12):1161-9. Epub 2007 Sep 29.","parent_key":"BE0001004"} {"ref-id":"A180898","pubmed-id":24220207,"citation":"Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE: PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9. doi: 10.1097/FPC.0000000000000010.","parent_key":"BE0001004"} {"ref-id":"A181006","pubmed-id":19890249,"citation":"Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM, Marquet P: The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010 Jan;87(1):100-8. doi: 10.1038/clpt.2009.205. Epub 2009 Nov 4.","parent_key":"BE0001004"} {"ref-id":"A18078","pubmed-id":17906856,"citation":"Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue T, Suzuki T, Habuchi T: Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007 Dec;63(12):1161-9. Epub 2007 Sep 29.","parent_key":"BE0003659"} {"ref-id":"A180898","pubmed-id":24220207,"citation":"Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE: PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9. doi: 10.1097/FPC.0000000000000010.","parent_key":"BE0003659"} {"ref-id":"A181006","pubmed-id":19890249,"citation":"Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM, Marquet P: The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010 Jan;87(1):100-8. doi: 10.1038/clpt.2009.205. Epub 2009 Nov 4.","parent_key":"BE0003659"} {"ref-id":"A18080","pubmed-id":18695635,"citation":"Miura M, Kagaya H, Satoh S, Inoue K, Saito M, Habuchi T, Suzuki T: Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit. 2008 Oct;30(5):559-64. doi: 10.1097/FTD.0b013e3181838063.","parent_key":"BE0001067"} {"ref-id":"A18080","pubmed-id":18695635,"citation":"Miura M, Kagaya H, Satoh S, Inoue K, Saito M, Habuchi T, Suzuki T: Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit. 2008 Oct;30(5):559-64. doi: 10.1097/FTD.0b013e3181838063.","parent_key":"BE0001032"} {"ref-id":"A181009","pubmed-id":18586494,"citation":"Wang J, Figurski M, Shaw LM, Burckart GJ: The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice. Transpl Immunol. 2008 Jul;19(3-4):192-6. doi: 10.1016/j.trim.2008.05.009. Epub 2008 Jun 18.","parent_key":"BE0001032"} {"ref-id":"A181009","pubmed-id":18586494,"citation":"Wang J, Figurski M, Shaw LM, Burckart GJ: The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice. Transpl Immunol. 2008 Jul;19(3-4):192-6. doi: 10.1016/j.trim.2008.05.009. Epub 2008 Jun 18.","parent_key":"BE0001069"} {"ref-id":"A181012","pubmed-id":14978191,"citation":"Kobayashi M, Saitoh H, Kobayashi M, Tadano K, Takahashi Y, Hirano T: Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J Pharmacol Exp Ther. 2004 Jun;309(3):1029-35. doi: 10.1124/jpet.103.063073. Epub 2004 Feb 20.","parent_key":"BE0001069"} {"ref-id":"A16450","pubmed-id":11409873,"citation":"Sun H, Johnson DR, Finch RA, Sartorelli AC, Miller DW, Elmquist WF: Transport of fluorescein in MDCKII-MRP1 transfected cells and mrp1-knockout mice. Biochem Biophys Res Commun. 2001 Jun 22;284(4):863-9.","parent_key":"BE0000785"} {"ref-id":"A15950","pubmed-id":9624121,"citation":"Zhou G, Kuo MT: Wild-type p53-mediated induction of rat mdr1b expression by the anticancer drug daunorubicin. J Biol Chem. 1998 Jun 19;273(25):15387-94.","parent_key":"BE0001032"} {"ref-id":"A15951","pubmed-id":15067695,"citation":"Tang F, Ouyang H, Yang JZ, Borchardt RT: Bidirectional transport of rhodamine 123 and Hoechst 33342, fluorescence probes of the binding sites on P-glycoprotein, across MDCK-MDR1 cell monolayers. J Pharm Sci. 2004 May;93(5):1185-94.","parent_key":"BE0001032"} {"ref-id":"A15952","pubmed-id":20335952,"citation":"Borska S, Sopel M, Chmielewska M, Zabel M, Dziegiel P: Quercetin as a potential modulator of P-glycoprotein expression and function in cells of human pancreatic carcinoma line resistant to daunorubicin. Molecules. 2010 Feb 9;15(2):857-70. doi: 10.3390/molecules15020857.","parent_key":"BE0001032"} {"ref-id":"A15953","pubmed-id":10026252,"citation":"Perez-Victoria JM, Chiquero MJ, Conseil G, Dayan G, Di Pietro A, Barron D, Castanys S, Gamarro F: Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry. 1999 Feb 9;38(6):1736-43.","parent_key":"BE0001032"} {"ref-id":"A15954","pubmed-id":10050713,"citation":"Pallis M, Turzanski J, Harrison G, Wheatley K, Langabeer S, Burnett AK, Russell NH: Use of standardized flow cytometric determinants of multidrug resistance to analyse response to remission induction chemotherapy in patients with acute myeloblastic leukaemia. Br J Haematol. 1999 Feb;104(2):307-12.","parent_key":"BE0001032"} {"ref-id":"A15955","pubmed-id":10342576,"citation":"Chiodini B, Bassan R, Barbui T: Cellular uptake and antiproliferative effects of therapeutic concentrations of idarubicin or daunorubicin and their alcohol metabolites, with or without cyclosporin A, in MDR1+ human leukemic cells. Leuk Lymphoma. 1999 May;33(5-6):485-97.","parent_key":"BE0001032"} {"ref-id":"A15956","pubmed-id":10346910,"citation":"Romsicki Y, Sharom FJ: The membrane lipid environment modulates drug interactions with the P-glycoprotein multidrug transporter. Biochemistry. 1999 May 25;38(21):6887-96.","parent_key":"BE0001032"} {"ref-id":"A15957","pubmed-id":10354400,"citation":"Hiessbock R, Wolf C, Richter E, Hitzler M, Chiba P, Kratzel M, Ecker G: Synthesis and in vitro multidrug resistance modulating activity of a series of dihydrobenzopyrans and tetrahydroquinolines. J Med Chem. 1999 Jun 3;42(11):1921-6.","parent_key":"BE0001032"} {"ref-id":"A16222","pubmed-id":9647783,"citation":"Priebe W, Krawczyk M, Kuo MT, Yamane Y, Savaraj N, Ishikawa T: Doxorubicin- and daunorubicin-glutathione conjugates, but not unconjugated drugs, competitively inhibit leukotriene C4 transport mediated by MRP/GS-X pump. Biochem Biophys Res Commun. 1998 Jun 29;247(3):859-63.","parent_key":"BE0000785"} {"ref-id":"A16223","pubmed-id":7945406,"citation":"Versantvoort CH, Broxterman HJ, Lankelma J, Feller N, Pinedo HM: Competitive inhibition by genistein and ATP dependence of daunorubicin transport in intact MRP overexpressing human small cell lung cancer cells. Biochem Pharmacol. 1994 Sep 15;48(6):1129-36.","parent_key":"BE0000785"} {"ref-id":"A16224","pubmed-id":16830181,"citation":"Yazaki K, Yamanaka N, Masuno T, Konagai S, Shitan N, Kaneko S, Ueda K, Sato F: Heterologous expression of a mammalian ABC transporter in plant and its application to phytoremediation. Plant Mol Biol. 2006 Jun;61(3):491-503.","parent_key":"BE0000785"} {"ref-id":"A16225","pubmed-id":19944162,"citation":"Nabekura T, Yamaki T, Hiroi T, Ueno K, Kitagawa S: Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals. Pharmacol Res. 2010 Mar;61(3):259-63. doi: 10.1016/j.phrs.2009.11.010. Epub 2009 Nov 26.","parent_key":"BE0000785"} {"ref-id":"A16226","pubmed-id":10708754,"citation":"Hooijberg JH, Pinedo HM, Vrasdonk C, Priebe W, Lankelma J, Broxterman HJ: The effect of glutathione on the ATPase activity of MRP1 in its natural membranes. FEBS Lett. 2000 Mar 3;469(1):47-51.","parent_key":"BE0000785"} {"ref-id":"A16227","pubmed-id":10729360,"citation":"Marbeuf-Gueye C, Salerno M, Quidu P, Garnier-Suillerot A: Inhibition of the P-glycoprotein- and multidrug resistance protein-mediated efflux of anthracyclines and calceinacetoxymethyl ester by PAK-104P. Eur J Pharmacol. 2000 Mar 17;391(3):207-16.","parent_key":"BE0000785"} {"ref-id":"A16228","pubmed-id":10917553,"citation":"Evers R, Kool M, Smith AJ, van Deemter L, de Haas M, Borst P: Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer. 2000 Aug;83(3):366-74.","parent_key":"BE0000785"} {"ref-id":"A16391","pubmed-id":14645676,"citation":"Nakanishi T, Doyle LA, Hassel B, Wei Y, Bauer KS, Wu S, Pumplin DW, Fang HB, Ross DD: Functional characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol Pharmacol. 2003 Dec;64(6):1452-62.","parent_key":"BE0001067"} {"ref-id":"A15995","pubmed-id":12897087,"citation":"Kim GH, Na KY, Kim SY, Joo KW, Oh YK, Chae SW, Endou H, Han JS: Up-regulation of organic anion transporter 1 protein is induced by chronic furosemide or hydrochlorothiazide infusion in rat kidney. Nephrol Dial Transplant. 2003 Aug;18(8):1505-11.","parent_key":"BE0001066"} {"ref-id":"A16381","pubmed-id":19754918,"citation":"Perez M, Real R, Mendoza G, Merino G, Prieto JG, Alvarez AI: Milk secretion of nitrofurantoin, as a specific BCRP/ABCG2 substrate, in assaf sheep: modulation by isoflavones. J Vet Pharmacol Ther. 2009 Oct;32(5):498-502. doi: 10.1111/j.1365-2885.2008.01050.x.","parent_key":"BE0001067"} {"ref-id":"A179803","pubmed-id":19924425,"citation":"Feinshtein V, Holcberg G, Amash A, Erez N, Rubin M, Sheiner E, Polachek H, Ben-Zvi Z: Nitrofurantoin transport by placental choriocarcinoma JAr cells: involvement of BCRP, OATP2B1 and other MDR transporters. Arch Gynecol Obstet. 2010 Jun;281(6):1037-44. doi: 10.1007/s00404-009-1286-7. Epub 2009 Nov 19.","parent_key":"BE0001032"} {"ref-id":"A179803","pubmed-id":19924425,"citation":"Feinshtein V, Holcberg G, Amash A, Erez N, Rubin M, Sheiner E, Polachek H, Ben-Zvi Z: Nitrofurantoin transport by placental choriocarcinoma JAr cells: involvement of BCRP, OATP2B1 and other MDR transporters. Arch Gynecol Obstet. 2010 Jun;281(6):1037-44. doi: 10.1007/s00404-009-1286-7. Epub 2009 Nov 19.","parent_key":"BE0001069"} {"ref-id":"A16383","pubmed-id":12488537,"citation":"Wang X, Furukawa T, Nitanda T, Okamoto M, Sugimoto Y, Akiyama S, Baba M: Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol. 2003 Jan;63(1):65-72.","parent_key":"BE0001067"} {"ref-id":"A18066","pubmed-id":20504255,"citation":"Errasti-Murugarren E, Pastor-Anglada M: Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics. 2010 Jun;11(6):809-41. doi: 10.2217/pgs.10.70.","parent_key":"BE0001032"} {"ref-id":"A18066","pubmed-id":20504255,"citation":"Errasti-Murugarren E, Pastor-Anglada M: Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics. 2010 Jun;11(6):809-41. doi: 10.2217/pgs.10.70.","parent_key":"BE0001188"} {"ref-id":"A18066","pubmed-id":20504255,"citation":"Errasti-Murugarren E, Pastor-Anglada M: Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics. 2010 Jun;11(6):809-41. doi: 10.2217/pgs.10.70.","parent_key":"BE0001069"} {"ref-id":"A181811","pubmed-id":15961125,"citation":"Maines LW, Antonetti DA, Wolpert EB, Smith CD: Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology. 2005 Oct;49(5):610-7. doi: 10.1016/j.neuropharm.2005.04.028.","parent_key":"BE0001032"} {"ref-id":"A181814","pubmed-id":14690877,"citation":"Ketabi-Kiyanvash N, Weiss J, Haefeli WE, Mikus G: P-glycoprotein modulation by the designer drugs methylenedioxymethamphetamine, methylenedioxyethylamphetamine and paramethoxyamphetamine. Addict Biol. 2003 Dec;8(4):413-8. doi: 10.1080/13556210310001646475.","parent_key":"BE0001032"} {"ref-id":"A188060","pubmed-id":15548387,"citation":"Frohlich M, Albermann N, Sauer A, Walter-Sack I, Haefeli WE, Weiss J: In vitro and ex vivo evidence for modulation of P-glycoprotein activity by progestins. Biochem Pharmacol. 2004 Dec 15;68(12):2409-16. doi: 10.1016/j.bcp.2004.08.026.","parent_key":"BE0001032"} {"ref-id":"A16428","pubmed-id":10470083,"citation":"Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, Kumar A, Fridland A: MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med. 1999 Sep;5(9):1048-51.","parent_key":"BE0001188"} {"ref-id":"A15172","pubmed-id":10490898,"citation":"van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52.","parent_key":"BE0003642"} {"ref-id":"A16794","pubmed-id":17939016,"citation":"Uchida Y, Kamiie J, Ohtsuki S, Terasaki T: Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res. 2007 Dec;24(12):2281-96. Epub 2007 Oct 16.","parent_key":"BE0001188"} {"ref-id":"A31779","pubmed-id":5389589,"citation":"Saikachi H, Nakamura S: [Synthesis of the furan derivatives. XLIX. Wittig reaction of organosulfurphosphoranes with some aromatic aldehydes]. Yakugaku Zasshi. 1969 Oct;89(10):1446-56.","parent_key":"BE0001032"} {"ref-id":"A193530","pubmed-id":16118767,"citation":"Ejsing TB, Pedersen AD, Linnet K: P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments. Hum Psychopharmacol. 2005 Oct;20(7):493-500. doi: 10.1002/hup.720.","parent_key":"BE0001032"} {"ref-id":"A16482","pubmed-id":19146924,"citation":"Milane A, Vautier S, Chacun H, Meininger V, Bensimon G, Farinotti R, Fernandez C: Interactions between riluzole and ABCG2/BCRP transporter. Neurosci Lett. 2009 Mar 6;452(1):12-6. doi: 10.1016/j.neulet.2008.12.061. Epub 2009 Jan 6.","parent_key":"BE0001067"} {"ref-id":"A16164","pubmed-id":8713080,"citation":"Orlowski S, Mir LM, Belehradek J Jr, Garrigos M: Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochem J. 1996 Jul 15;317 ( Pt 2):515-22.","parent_key":"BE0001032"} {"ref-id":"A16446","pubmed-id":15100174,"citation":"Ishiguro N, Nozawa T, Tsujihata A, Saito A, Kishimoto W, Yokoyama K, Yotsumoto T, Sakai K, Igarashi T, Tamai I: Influx and efflux transport of H1-antagonist epinastine across the blood-brain barrier. Drug Metab Dispos. 2004 May;32(5):519-24.","parent_key":"BE0001032"} {"ref-id":"A18029","pubmed-id":17112805,"citation":"Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, Kastrati A, Schomig A, Schomig E: Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006 Nov;80(5):486-501.","parent_key":"BE0001032"} {"ref-id":"A16414","pubmed-id":15608127,"citation":"Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I: Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos. 2005 Mar;33(3):434-9. Epub 2004 Dec 17.","parent_key":"BE0001004"} {"ref-id":"A16454","pubmed-id":10220571,"citation":"Chen ZS, Furukawa T, Sumizawa T, Ono K, Ueda K, Seto K, Akiyama SI: ATP-Dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol Pharmacol. 1999 May;55(5):921-8.","parent_key":"BE0000785"} {"ref-id":"A16362","pubmed-id":11309344,"citation":"Maliepaard M, van Gastelen MA, Tohgo A, Hausheer FH, van Waardenburg RC, de Jong LA, Pluim D, Beijnen JH, Schellens JH: Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res. 2001 Apr;7(4):935-41.","parent_key":"BE0001067"} {"ref-id":"A18063","pubmed-id":16895999,"citation":"Kroetz DL: Role for drug transporters beyond tumor resistance: hepatic functional imaging and genotyping of multidrug resistance transporters for the prediction of irinotecan toxicity. J Clin Oncol. 2006 Sep 10;24(26):4225-7. Epub 2006 Aug 8.","parent_key":"BE0001032"} {"ref-id":"A18064","pubmed-id":18221820,"citation":"Han JY, Lim HS, Park YH, Lee SY, Lee JS: Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer. 2009 Jan;63(1):115-20. doi: 10.1016/j.lungcan.2007.12.003. Epub 2008 Jan 24.","parent_key":"BE0001032"} {"ref-id":"A18063","pubmed-id":16895999,"citation":"Kroetz DL: Role for drug transporters beyond tumor resistance: hepatic functional imaging and genotyping of multidrug resistance transporters for the prediction of irinotecan toxicity. J Clin Oncol. 2006 Sep 10;24(26):4225-7. Epub 2006 Aug 8.","parent_key":"BE0001069"} {"ref-id":"A18064","pubmed-id":18221820,"citation":"Han JY, Lim HS, Park YH, Lee SY, Lee JS: Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer. 2009 Jan;63(1):115-20. doi: 10.1016/j.lungcan.2007.12.003. Epub 2008 Jan 24.","parent_key":"BE0001069"} {"ref-id":"A179749","pubmed-id":18445990,"citation":"Mimura N, Nagata Y, Kuwabara T, Kubo N, Fuse E: P-glycoprotein limits the brain penetration of olopatadine hydrochloride, H1-receptor antagonist. Drug Metab Pharmacokinet. 2008;23(2):106-14.","parent_key":"BE0001032"} {"ref-id":"A16115","pubmed-id":10973807,"citation":"Nishio T, Adachi H, Nakagomi R, Tokui T, Sato E, Tanemoto M, Fujiwara K, Okabe M, Onogawa T, Suzuki T, Nakai D, Shiiba K, Suzuki M, Ohtani H, Kondo Y, Unno M, Ito S, Iinuma K, Nunoki K, Matsuno S, Abe T: Molecular identification of a rat novel organic anion transporter moat1, which transports prostaglandin D(2), leukotriene C(4), and taurocholate. Biochem Biophys Res Commun. 2000 Sep 7;275(3):831-8.","parent_key":"BE0001042"} {"ref-id":"A16133","pubmed-id":11901101,"citation":"Guo A, Marinaro W, Hu P, Sinko PJ: Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos. 2002 Apr;30(4):457-63.","parent_key":"BE0001032"} {"ref-id":"A16133","pubmed-id":11901101,"citation":"Guo A, Marinaro W, Hu P, Sinko PJ: Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos. 2002 Apr;30(4):457-63.","parent_key":"BE0000785"} {"ref-id":"A16220","pubmed-id":19725578,"citation":"Wong IL, Chan KF, Tsang KH, Lam CY, Zhao Y, Chan TH, Chow LM: Modulation of multidrug resistance protein 1 (MRP1/ABCC1)-mediated multidrug resistance by bivalent apigenin homodimers and their derivatives. J Med Chem. 2009 Sep 10;52(17):5311-22. doi: 10.1021/jm900194w.","parent_key":"BE0000785"} {"ref-id":"A16133","pubmed-id":11901101,"citation":"Guo A, Marinaro W, Hu P, Sinko PJ: Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos. 2002 Apr;30(4):457-63.","parent_key":"BE0001069"} {"ref-id":"A4867","pubmed-id":18216144,"citation":"Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK: Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol. 2008 Apr;294(4):F867-73. doi: 10.1152/ajprenal.00528.2007. Epub 2008 Jan 23.","parent_key":"BE0001066"} {"ref-id":"A4867","pubmed-id":18216144,"citation":"Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK: Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol. 2008 Apr;294(4):F867-73. doi: 10.1152/ajprenal.00528.2007. Epub 2008 Jan 23.","parent_key":"BE0003645"} {"ref-id":"A186026","pubmed-id":28528287,"citation":"Antunes NJ, van Dijkman SC, Lanchote VL, Wichert-Ana L, Coelho EB, Alexandre Junior V, Takayanagui OM, Tozatto E, van Hasselt JGC, Della Pasqua O: Population pharmacokinetics of oxcarbazepine and its metabolite 10-hydroxycarbazepine in healthy subjects. Eur J Pharm Sci. 2017 Nov 15;109S:S116-S123. doi: 10.1016/j.ejps.2017.05.034. Epub 2017 May 17.","parent_key":"BE0001032"} {"ref-id":"A186023","pubmed-id":21692796,"citation":"Zhang C, Zuo Z, Kwan P, Baum L: In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia. 2011 Oct;52(10):1894-904. doi: 10.1111/j.1528-1167.2011.03140.x. Epub 2011 Jun 21.","parent_key":"BE0001032"} {"ref-id":"A190480","pubmed-id":20216549,"citation":"Hartz AM, Mahringer A, Miller DS, Bauer B: 17-beta-Estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab. 2010 Oct;30(10):1742-55. doi: 10.1038/jcbfm.2010.36. Epub 2010 Mar 10.","parent_key":"BE0001067"} {"ref-id":"A190495","pubmed-id":12174911,"citation":"Zampieri L, Bianchi P, Ruff P, Arbuthnot P: Differential modulation by estradiol of P-glycoprotein drug resistance protein expression in cultured MCF7 and T47D breast cancer cells. Anticancer Res. 2002 Jul-Aug;22(4):2253-9.","parent_key":"BE0001032"} {"ref-id":"A26726","pubmed-id":16925584,"citation":"Mutoh K, Tsukahara S, Mitsuhashi J, Katayama K, Sugimoto Y: Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Sci. 2006 Nov;97(11):1198-204. Epub 2006 Aug 22.","parent_key":"BE0001032"} {"ref-id":"A190498","pubmed-id":31540689,"citation":"Kanado Y, Tsurudome Y, Omata Y, Yasukochi S, Kusunose N, Akamine T, Matsunaga N, Koyanagi S, Ohdo S: Estradiol regulation of P-glycoprotein expression in mouse kidney and human tubular epithelial cells, implication for renal clearance of drugs. Biochem Biophys Res Commun. 2019 Nov 12;519(3):613-619. doi: 10.1016/j.bbrc.2019.09.021. Epub 2019 Sep 17.","parent_key":"BE0001032"} {"ref-id":"A39160","pubmed-id":24697979,"citation":"Frost C, Shenker A, Gandhi MD, Pursley J, Barrett YC, Wang J, Zhang D, Byon W, Boyd RA, LaCreta F: Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban. Br J Clin Pharmacol. 2014 Oct;78(4):877-85. doi: 10.1111/bcp.12393.","parent_key":"BE0001032"} {"ref-id":"A15842","pubmed-id":20071452,"citation":"Karlsson JE, Heddle C, Rozkov A, Rotticci-Mulder J, Tuvesson O, Hilgendorf C, Andersson TB: High-activity p-glycoprotein, multidrug resistance protein 2, and breast cancer resistance protein membrane vesicles prepared from transiently transfected human embryonic kidney 293-epstein-barr virus nuclear antigen cells. Drug Metab Dispos. 2010 Apr;38(4):705-14. doi: 10.1124/dmd.109.028886. Epub 2010 Jan 13.","parent_key":"BE0001067"} {"ref-id":"A16401","pubmed-id":18841445,"citation":"Shukla S, Zaher H, Hartz A, Bauer B, Ware JA, Ambudkar SV: Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice. Pharm Res. 2009 Feb;26(2):480-7. doi: 10.1007/s11095-008-9735-8. Epub 2008 Oct 9.","parent_key":"BE0001067"} {"ref-id":"A16161","pubmed-id":11964599,"citation":"Wandel C, Kim R, Wood M, Wood A: Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002 Apr;96(4):913-20.","parent_key":"BE0001032"} {"ref-id":"A191254","pubmed-id":17986257,"citation":"Regev R, Katzir H, Yeheskely-Hayon D, Eytan GD: Modulation of P-glycoprotein-mediated multidrug resistance by acceleration of passive drug permeation across the plasma membrane. FEBS J. 2007 Dec;274(23):6204-14. doi: 10.1111/j.1742-4658.2007.06140.x. Epub 2007 Nov 6.","parent_key":"BE0001032"} {"ref-id":"A15874","pubmed-id":7982498,"citation":"Lecureur V, Fardel O, Guillouzo A: The antiprogestatin drug RU 486 potentiates doxorubicin cytotoxicity in multidrug resistant cells through inhibition of P-glycoprotein function. FEBS Lett. 1994 Nov 28;355(2):187-91.","parent_key":"BE0001032"} {"ref-id":"A16162","pubmed-id":8647944,"citation":"Schinkel AH, Wagenaar E, Mol CA, van Deemter L: P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest. 1996 Jun 1;97(11):2517-24.","parent_key":"BE0001032"} {"ref-id":"A182429","pubmed-id":26467765,"citation":"Takeuchi R, Shinozaki K, Nakanishi T, Tamai I: Local Drug-Drug Interaction of Donepezil with Cilostazol at Breast Cancer Resistance Protein (ABCG2) Increases Drug Accumulation in Heart. Drug Metab Dispos. 2016 Jan;44(1):68-74. doi: 10.1124/dmd.115.066654. Epub 2015 Oct 14.","parent_key":"BE0001067"} {"ref-id":"A185069","pubmed-id":24663015,"citation":"Horita Y, Doi N: Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein. Antimicrob Agents Chemother. 2014 Jun;58(6):3168-76. doi: 10.1128/AAC.02278-13. Epub 2014 Mar 24.","parent_key":"BE0001032"} {"ref-id":"A203207","pubmed-id":26682943,"citation":"Te Brake LH, Russel FG, van den Heuvel JJ, de Knegt GJ, de Steenwinkel JE, Burger DM, Aarnoutse RE, Koenderink JB: Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis (Edinb). 2016 Jan;96:150-7. doi: 10.1016/j.tube.2015.08.004. Epub 2015 Oct 9.","parent_key":"BE0001032"} {"ref-id":"A203207","pubmed-id":26682943,"citation":"Te Brake LH, Russel FG, van den Heuvel JJ, de Knegt GJ, de Steenwinkel JE, Burger DM, Aarnoutse RE, Koenderink JB: Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis (Edinb). 2016 Jan;96:150-7. doi: 10.1016/j.tube.2015.08.004. Epub 2015 Oct 9.","parent_key":"BE0001067"} {"ref-id":"A203207","pubmed-id":26682943,"citation":"Te Brake LH, Russel FG, van den Heuvel JJ, de Knegt GJ, de Steenwinkel JE, Burger DM, Aarnoutse RE, Koenderink JB: Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis (Edinb). 2016 Jan;96:150-7. doi: 10.1016/j.tube.2015.08.004. Epub 2015 Oct 9.","parent_key":"BE0000785"} {"ref-id":"A16490","pubmed-id":19760661,"citation":"Gui C, Hagenbuch B: Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1. Protein Sci. 2009 Nov;18(11):2298-306. doi: 10.1002/pro.240.","parent_key":"BE0001004"} {"ref-id":"A40139","pubmed-id":21552528,"citation":"Ding PR, Tiwari AK, Ohnuma S, Lee JW, An X, Dai CL, Lu QS, Singh S, Yang DH, Talele TT, Ambudkar SV, Chen ZS: The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLoS One. 2011 Apr 28;6(4):e19329. doi: 10.1371/journal.pone.0019329.","parent_key":"BE0001032"} {"ref-id":"A40141","pubmed-id":22578167,"citation":"Chen JJ, Sun YL, Tiwari AK, Xiao ZJ, Sodani K, Yang DH, Vispute SG, Jiang WQ, Chen SD, Chen ZS: PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C10) transporter. Cancer Sci. 2012 Aug;103(8):1531-7. doi: 10.1111/j.1349-7006.2012.02328.x. Epub 2012 Jul 6.","parent_key":"BE0001032"} {"ref-id":"A40142","pubmed-id":23805103,"citation":"Tiwari AK, Chen ZS: Repurposing phosphodiesterase-5 inhibitors as chemoadjuvants. Front Pharmacol. 2013 Jun 25;4:82. doi: 10.3389/fphar.2013.00082. eCollection 2013.","parent_key":"BE0001032"} {"ref-id":"A176822","pubmed-id":9862768,"citation":"Collett A, Higgs NB, Sims E, Rowland M, Warhurst G: Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J Pharmacol Exp Ther. 1999 Jan;288(1):171-8.","parent_key":"BE0001032"} {"ref-id":"A176825","pubmed-id":30118850,"citation":"Dou L, Mai Y, Madla CM, Orlu M, Basit AW: P-glycoprotein expression in the gastrointestinal tract of male and female rats is influenced differently by food. Eur J Pharm Sci. 2018 Oct 15;123:569-575. doi: 10.1016/j.ejps.2018.08.014. Epub 2018 Aug 15.","parent_key":"BE0001032"} {"ref-id":"A189189","pubmed-id":19034961,"citation":"Torres AM: Renal elimination of organic anions in cholestasis. World J Gastroenterol. 2008 Nov 21;14(43):6616-21. doi: 10.3748/wjg.14.6616.","parent_key":"BE0003645"} {"ref-id":"A189192","pubmed-id":15717059,"citation":"Kusuhara H, Sugiyama Y: Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx. 2005 Jan;2(1):73-85. doi: 10.1602/neurorx.2.1.73.","parent_key":"BE0003645"} {"ref-id":"A15913","pubmed-id":10463589,"citation":"Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR, Wood AJ: P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 1999 Aug 15;59(16):3944-8.","parent_key":"BE0001032"} {"ref-id":"A15915","pubmed-id":18827354,"citation":"Quezada CA, Garrido WX, Gonzalez-Oyarzun MA, Rauch MC, Salas MR, San Martin RE, Claude AA, Yanez AJ, Slebe JC, Carcamo JG: Effect of tacrolimus on activity and expression of P-glycoprotein and ATP-binding cassette transporter A5 (ABCA5) proteins in hematoencephalic barrier cells. Biol Pharm Bull. 2008 Oct;31(10):1911-6.","parent_key":"BE0001032"} {"ref-id":"A16174","pubmed-id":10350482,"citation":"Dey S, Hafkemeyer P, Pastan I, Gottesman MM: A single amino acid residue contributes to distinct mechanisms of inhibition of the human multidrug transporter by stereoisomers of the dopamine receptor antagonist flupentixol. Biochemistry. 1999 May 18;38(20):6630-9.","parent_key":"BE0001032"} {"ref-id":"A16175","pubmed-id":10724034,"citation":"Hafkemeyer P, Licht T, Pastan I, Gottesman MM: Chemoprotection of hematopoietic cells by a mutant P-glycoprotein resistant to a potent chemosensitizer of multidrug-resistant cancers. Hum Gene Ther. 2000 Mar 1;11(4):555-65.","parent_key":"BE0001032"} {"ref-id":"A16176","pubmed-id":11911848,"citation":"Yang JM, Vassil A, Hait WN: Involvement of phosphatidylinositol-3-kinase in membrane ruffling induced by P-glycoprotein substrates in multidrug-resistant carcinoma cells. Biochem Pharmacol. 2002 Mar 1;63(5):959-66.","parent_key":"BE0001032"} {"ref-id":"A16177","pubmed-id":1968358,"citation":"Ford JM, Bruggemann EP, Pastan I, Gottesman MM, Hait WN: Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res. 1990 Mar 15;50(6):1748-56.","parent_key":"BE0001032"} {"ref-id":"A16178","pubmed-id":1988108,"citation":"Ford JM, Yang JM, Hait WN: Effect of buthionine sulfoximine on toxicity of verapamil and doxorubicin to multidrug resistant cells and to mice. Cancer Res. 1991 Jan 1;51(1):67-72.","parent_key":"BE0001032"} {"ref-id":"A15916","pubmed-id":12235265,"citation":"Wacher VJ, Silverman JA, Wong S, Tran-Tau P, Chan AO, Chai A, Yu XQ, O'Mahony D, Ramtoola Z: Sirolimus oral absorption in rats is increased by ketoconazole but is not affected by D-alpha-tocopheryl poly(ethylene glycol 1000) succinate. J Pharmacol Exp Ther. 2002 Oct;303(1):308-13.","parent_key":"BE0001032"} {"ref-id":"A15917","pubmed-id":1381629,"citation":"Arceci RJ, Stieglitz K, Bierer BE: Immunosuppressants FK506 and rapamycin function as reversal agents of the multidrug resistance phenotype. Blood. 1992 Sep 15;80(6):1528-36.","parent_key":"BE0001032"} {"ref-id":"A16271","pubmed-id":1961729,"citation":"Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ: Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629-33.","parent_key":"BE0003644"} {"ref-id":"A16272","pubmed-id":8738419,"citation":"Platte HD, Honscha W, Schuh K, Petzinger E: Functional characterization of the hepatic sodium-dependent taurocholate transporter stably transfected into an immortalized liver-derived cell line and V79 fibroblasts. Eur J Cell Biol. 1996 May;70(1):54-60.","parent_key":"BE0003644"} {"ref-id":"A16462","pubmed-id":8652636,"citation":"Horz JA, Honscha W, Petzinger E: Bumetanide is not transported by the Ntcp or by the oatp: evidence for a third organic anion transporter in rat liver cells. Biochim Biophys Acta. 1996 Apr 19;1300(2):114-8.","parent_key":"BE0003642"} {"ref-id":"A15845","pubmed-id":19541926,"citation":"Dahan A, Amidon GL: Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G371-7. doi: 10.1152/ajpgi.00102.2009. Epub 2009 Jun 18.","parent_key":"BE0001032"} {"ref-id":"A16126","pubmed-id":11504828,"citation":"Smith BJ, Doran AC, McLean S, Tingley FD 3rd, O'Neill BT, Kajiji SM: P-glycoprotein efflux at the blood-brain barrier mediates differences in brain disposition and pharmacodynamics between two structurally related neurokinin-1 receptor antagonists. J Pharmacol Exp Ther. 2001 Sep;298(3):1252-9.","parent_key":"BE0001032"} {"ref-id":"A15966","pubmed-id":11408531,"citation":"van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ: Comparison of \"type I\" and \"type II\" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 Jul;298(1):110-5.","parent_key":"BE0003642"} {"ref-id":"A18009","pubmed-id":21327909,"citation":"He J, Qiu Z, Li N, Yu Y, Lu Y, Han D, Li T, Zhao D, Sun W, Fang F, Zheng J, Fan H, Chen X: Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur J Clin Pharmacol. 2011 Jul;67(7):701-7. doi: 10.1007/s00228-011-0994-7. Epub 2011 Feb 17.","parent_key":"BE0001004"} {"ref-id":"A181135","pubmed-id":21635257,"citation":"Tan SY, Kan E, Lim WY, Chay G, Law JH, Soo GW, Bukhari NI, Segarra I: Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J Pharm Pharmacol. 2011 Jul;63(7):918-25. doi: 10.1111/j.2042-7158.2011.01296.x. Epub 2011 May 19.","parent_key":"BE0001032"} {"ref-id":"A181138","pubmed-id":20306185,"citation":"Kim KA, Park JY: Effect of metronidazole on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy male volunteers. Eur J Clin Pharmacol. 2010 Jul;66(7):721-5. doi: 10.1007/s00228-010-0797-2. Epub 2010 Mar 20.","parent_key":"BE0001032"} {"ref-id":"A181141","pubmed-id":15855244,"citation":"Page RL 2nd, Klem PM, Rogers C: Potential elevation of tacrolimus trough concentrations with concomitant metronidazole therapy. Ann Pharmacother. 2005 Jun;39(6):1109-13. doi: 10.1345/aph.1E399. Epub 2005 Apr 26.","parent_key":"BE0001032"} {"ref-id":"A16031","pubmed-id":11907186,"citation":"Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H: Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther. 2002 Apr;301(1):293-8.","parent_key":"BE0000879"} {"ref-id":"A16434","pubmed-id":10873595,"citation":"Tamai I, Nezu J, Uchino H, Sai Y, Oku A, Shimane M, Tsuji A: Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun. 2000 Jun 24;273(1):251-60.","parent_key":"BE0001042"} {"ref-id":"A16434","pubmed-id":10873595,"citation":"Tamai I, Nezu J, Uchino H, Sai Y, Oku A, Shimane M, Tsuji A: Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun. 2000 Jun 24;273(1):251-60.","parent_key":"BE0001004"} {"ref-id":"A177418","pubmed-id":28223391,"citation":"Parvez MM, Shin HJ, Jung JA, Shin JG: Evaluation of para-Aminosalicylic Acid as a Substrate of Multiple Solute Carrier Uptake Transporters and Possible Drug Interactions with Nonsteroidal Anti-inflammatory Drugs In Vitro. Antimicrob Agents Chemother. 2017 Apr 24;61(5). pii: AAC.02392-16. doi: 10.1128/AAC.02392-16. Print 2017 May.","parent_key":"BE0001066"} {"ref-id":"A177424","pubmed-id":25669934,"citation":"Li MP, Tang J, Zhang ZL, Chen XP: Induction of both P-glycoprotein and specific cytochrome P450 by aspirin eventually does not alter the antithrombotic effect of clopidogrel. Clin Pharmacol Ther. 2015 Apr;97(4):324. doi: 10.1002/cpt.32. Epub 2014 Dec 15.","parent_key":"BE0001032"} {"ref-id":"A177427","pubmed-id":24566733,"citation":"Oh J, Shin D, Lim KS, Lee S, Jung KH, Chu K, Hong KS, Shin KH, Cho JY, Yoon SH, Ji SC, Yu KS, Lee H, Jang IJ: Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity. Clin Pharmacol Ther. 2014 Jun;95(6):608-16. doi: 10.1038/clpt.2014.49. Epub 2014 Feb 24.","parent_key":"BE0001032"} {"ref-id":"A177430","pubmed-id":24107783,"citation":"Kugai M, Uchiyama K, Tsuji T, Yoriki H, Fukui A, Qin Y, Higashimura Y, Mizushima K, Yoshida N, Katada K, Kamada K, Handa O, Takagi T, Konishi H, Yagi N, Yoshikawa T, Shirasaka Y, Tamai I, Naito Y, Itoh Y: MDR1 is related to intestinal epithelial injury induced by acetylsalicylic acid. Cell Physiol Biochem. 2013;32(4):942-50. doi: 10.1159/000354497. Epub 2013 Oct 1.","parent_key":"BE0001032"} {"ref-id":"A177433","pubmed-id":11205285,"citation":"Flescher E, Rotem R, Kwon P, Azare J, Jaspers I, Cohen D: Aspirin enhances multidrug resistance gene 1 expression in human Molt-4 T lymphoma cells. Anticancer Res. 2000 Nov-Dec;20(6B):4441-4.","parent_key":"BE0001032"} {"ref-id":"A177418","pubmed-id":28223391,"citation":"Parvez MM, Shin HJ, Jung JA, Shin JG: Evaluation of para-Aminosalicylic Acid as a Substrate of Multiple Solute Carrier Uptake Transporters and Possible Drug Interactions with Nonsteroidal Anti-inflammatory Drugs In Vitro. Antimicrob Agents Chemother. 2017 Apr 24;61(5). pii: AAC.02392-16. doi: 10.1128/AAC.02392-16. Print 2017 May.","parent_key":"BE0003645"} {"ref-id":"A177421","pubmed-id":24692216,"citation":"Wang C, Wang C, Liu Q, Meng Q, Cang J, Sun H, Peng J, Ma X, Huo X, Liu K: Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab Dispos. 2014 Jun;42(6):996-1007. doi: 10.1124/dmd.113.055194. Epub 2014 Apr 1.","parent_key":"BE0003645"} {"ref-id":"A16187","pubmed-id":10421612,"citation":"Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB: OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999 Aug;27(8):866-71.","parent_key":"BE0001032"} {"ref-id":"A15837","pubmed-id":15359574,"citation":"Petri N, Tannergren C, Rungstad D, Lennernas H: Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004 Aug;21(8):1398-404.","parent_key":"BE0001032"} {"ref-id":"A16187","pubmed-id":10421612,"citation":"Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB: OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999 Aug;27(8):866-71.","parent_key":"BE0001004"} {"ref-id":"A17893","pubmed-id":16014768,"citation":"Shimizu M, Fuse K, Okudaira K, Nishigaki R, Maeda K, Kusuhara H, Sugiyama Y: Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab Dispos. 2005 Oct;33(10):1477-81. Epub 2005 Jul 13.","parent_key":"BE0003659"} {"ref-id":"A188754","pubmed-id":28414144,"citation":"Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I: Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J Pharm Sci. 2017 Sep;106(9):2312-2325. doi: 10.1016/j.xphs.2017.04.004. Epub 2017 Apr 13.","parent_key":"BE0001042"} {"ref-id":"A188754","pubmed-id":28414144,"citation":"Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I: Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J Pharm Sci. 2017 Sep;106(9):2312-2325. doi: 10.1016/j.xphs.2017.04.004. Epub 2017 Apr 13.","parent_key":"BE0003642"} {"ref-id":"A16744","pubmed-id":16049127,"citation":"Lindenmaier H, Becker M, Haefeli WE, Weiss J: Interaction of progestins with the human multidrug resistance-associated protein 2 (MRP2). Drug Metab Dispos. 2005 Nov;33(11):1576-9. Epub 2005 Jul 27.","parent_key":"BE0001069"} {"ref-id":"A188060","pubmed-id":15548387,"citation":"Frohlich M, Albermann N, Sauer A, Walter-Sack I, Haefeli WE, Weiss J: In vitro and ex vivo evidence for modulation of P-glycoprotein activity by progestins. Biochem Pharmacol. 2004 Dec 15;68(12):2409-16. doi: 10.1016/j.bcp.2004.08.026.","parent_key":"BE0001069"} {"ref-id":"A16744","pubmed-id":16049127,"citation":"Lindenmaier H, Becker M, Haefeli WE, Weiss J: Interaction of progestins with the human multidrug resistance-associated protein 2 (MRP2). Drug Metab Dispos. 2005 Nov;33(11):1576-9. Epub 2005 Jul 27.","parent_key":"BE0001032"} {"ref-id":"A16439","pubmed-id":11913542,"citation":"Oka A, Oda M, Saitoh H, Nakayama A, Takada M, Aungst BJ: Secretory transport of methylprednisolone possibly mediated by P-glycoprotein in Caco-2 cells. Biol Pharm Bull. 2002 Mar;25(3):393-6.","parent_key":"BE0001032"} {"ref-id":"A188805","pubmed-id":19883743,"citation":"Tomita M, Watanabe A, Fujinaga I, Yamakawa T, Hayashi M: Nonlinear absorption of methylprednisolone by absorptive and secretory transporters. Int J Pharm. 2010 Mar 15;387(1-2):1-6. doi: 10.1016/j.ijpharm.2009.10.042. Epub 2009 Oct 31.","parent_key":"BE0001032"} {"ref-id":"A16013","pubmed-id":20222053,"citation":"Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Boger RH, Haefeli WE, Benndorf RA: Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010 Mar;31(2-3):150-61. doi: 10.1002/bdd.699.","parent_key":"BE0001032"} {"ref-id":"A16013","pubmed-id":20222053,"citation":"Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Boger RH, Haefeli WE, Benndorf RA: Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010 Mar;31(2-3):150-61. doi: 10.1002/bdd.699.","parent_key":"BE0001067"} {"ref-id":"A15946","pubmed-id":1356264,"citation":"Ambudkar SV, Lelong IH, Zhang J, Cardarelli CO, Gottesman MM, Pastan I: Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8472-6.","parent_key":"BE0001032"} {"ref-id":"A16453","pubmed-id":7585598,"citation":"Breuninger LM, Paul S, Gaughan K, Miki T, Chan A, Aaronson SA, Kruh GD: Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 1995 Nov 15;55(22):5342-7.","parent_key":"BE0000785"} {"ref-id":"A15870","pubmed-id":11231118,"citation":"Katoh M, Nakajima M, Yamazaki H, Yokoi T: Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci. 2001 Feb;12(4):505-13.","parent_key":"BE0001032"} {"ref-id":"A16131","pubmed-id":7632160,"citation":"Hu YP, Robert J: Azelastine and flezelastine as reversing agents of multidrug resistance: pharmacological and molecular studies. Biochem Pharmacol. 1995 Jul 17;50(2):169-75.","parent_key":"BE0001032"} {"ref-id":"A184178","pubmed-id":31262903,"citation":"Kim JY, Kim KS, Kim IS, Yoon S: Histamine Receptor Antagonists, Loratadine and Azelastine, Sensitize P-gp-overexpressing Antimitotic Drug-resistant KBV20C Cells Through Different Molecular Mechanisms. Anticancer Res. 2019 Jul;39(7):3767-3775. doi: 10.21873/anticanres.13525.","parent_key":"BE0001032"} {"ref-id":"A15201","pubmed-id":21368751,"citation":"Oswald S, Nassif A, Modess C, Keiser M, Ulrich A, Runge D, Hanke U, Lutjohann D, Engel A, Weitschies W, Siegmund W: Drug interactions between the immunosuppressant tacrolimus and the cholesterol absorption inhibitor ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2011 Apr;89(4):524-8. doi: 10.1038/clpt.2011.4. Epub 2011 Mar 2.","parent_key":"BE0001032"} {"ref-id":"A15201","pubmed-id":21368751,"citation":"Oswald S, Nassif A, Modess C, Keiser M, Ulrich A, Runge D, Hanke U, Lutjohann D, Engel A, Weitschies W, Siegmund W: Drug interactions between the immunosuppressant tacrolimus and the cholesterol absorption inhibitor ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2011 Apr;89(4):524-8. doi: 10.1038/clpt.2011.4. Epub 2011 Mar 2.","parent_key":"BE0001069"} {"ref-id":"A17545","pubmed-id":19443695,"citation":"de Waart DR, Vlaming ML, Kunne C, Schinkel AH, Oude Elferink RP: Complex pharmacokinetic behavior of ezetimibe depends on abcc2, abcc3, and abcg2. Drug Metab Dispos. 2009 Aug;37(8):1698-702. doi: 10.1124/dmd.108.026146. Epub 2009 May 14.","parent_key":"BE0001069"} {"ref-id":"A15201","pubmed-id":21368751,"citation":"Oswald S, Nassif A, Modess C, Keiser M, Ulrich A, Runge D, Hanke U, Lutjohann D, Engel A, Weitschies W, Siegmund W: Drug interactions between the immunosuppressant tacrolimus and the cholesterol absorption inhibitor ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2011 Apr;89(4):524-8. doi: 10.1038/clpt.2011.4. Epub 2011 Mar 2.","parent_key":"BE0001004"} {"ref-id":"A17545","pubmed-id":19443695,"citation":"de Waart DR, Vlaming ML, Kunne C, Schinkel AH, Oude Elferink RP: Complex pharmacokinetic behavior of ezetimibe depends on abcc2, abcc3, and abcg2. Drug Metab Dispos. 2009 Aug;37(8):1698-702. doi: 10.1124/dmd.108.026146. Epub 2009 May 14.","parent_key":"BE0001067"} {"ref-id":"A15805","pubmed-id":10611165,"citation":"Lee JM, Trauner M, Soroka CJ, Stieger B, Meier PJ, Boyer JL: Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology. 2000 Jan;118(1):163-72.","parent_key":"BE0000703"} {"ref-id":"A15806","pubmed-id":10869290,"citation":"Huang L, Smit JW, Meijer DK, Vore M: Mrp2 is essential for estradiol-17beta(beta-D-glucuronide)-induced cholestasis in rats. Hepatology. 2000 Jul;32(1):66-72.","parent_key":"BE0000703"} {"ref-id":"A15805","pubmed-id":10611165,"citation":"Lee JM, Trauner M, Soroka CJ, Stieger B, Meier PJ, Boyer JL: Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology. 2000 Jan;118(1):163-72.","parent_key":"BE0003644"} {"ref-id":"A16004","pubmed-id":9571149,"citation":"Kauffmann HM, Schrenk D: Sequence analysis and functional characterization of the 5'-flanking region of the rat multidrug resistance protein 2 (mrp2) gene. Biochem Biophys Res Commun. 1998 Apr 17;245(2):325-31.","parent_key":"BE0001069"} {"ref-id":"A16009","pubmed-id":9207286,"citation":"Trauner M, Arrese M, Soroka CJ, Ananthanarayanan M, Koeppel TA, Schlosser SF, Suchy FJ, Keppler D, Boyer JL: The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology. 1997 Jul;113(1):255-64.","parent_key":"BE0001069"} {"ref-id":"A15806","pubmed-id":10869290,"citation":"Huang L, Smit JW, Meijer DK, Vore M: Mrp2 is essential for estradiol-17beta(beta-D-glucuronide)-induced cholestasis in rats. Hepatology. 2000 Jul;32(1):66-72.","parent_key":"BE0001032"} {"ref-id":"A15805","pubmed-id":10611165,"citation":"Lee JM, Trauner M, Soroka CJ, Stieger B, Meier PJ, Boyer JL: Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology. 2000 Jan;118(1):163-72.","parent_key":"BE0003642"} {"ref-id":"A189621","pubmed-id":22257476,"citation":"Conklin LS, Cuffari C, Okazaki T, Miao Y, Saatian B, Chen TE, Tse M, Brant SR, Li X: 6-Mercaptopurine transport in human lymphocytes: correlation with drug-induced cytotoxicity. J Dig Dis. 2012 Feb;13(2):82-93. doi: 10.1111/j.1751-2980.2011.00556.x.","parent_key":"BE0001032"} {"ref-id":"A15944","pubmed-id":9210482,"citation":"Fardel O, Lecureur V, Daval S, Corlu A, Guillouzo A: Up-regulation of P-glycoprotein expression in rat liver cells by acute doxorubicin treatment. Eur J Biochem. 1997 May 15;246(1):186-92.","parent_key":"BE0001032"} {"ref-id":"A15945","pubmed-id":14499271,"citation":"Kim S, Kim SS, Bang YJ, Kim SJ, Lee BJ: In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides. 2003 Jul;24(7):945-53.","parent_key":"BE0001032"} {"ref-id":"A15904","pubmed-id":9914792,"citation":"Kusunoki N, Takara K, Tanigawara Y, Yamauchi A, Ueda K, Komada F, Ku Y, Kuroda Y, Saitoh Y, Okumura K: Inhibitory effects of a cyclosporin derivative, SDZ PSC 833, on transport of doxorubicin and vinblastine via human P-glycoprotein. Jpn J Cancer Res. 1998 Nov;89(11):1220-8.","parent_key":"BE0001032"} {"ref-id":"A15947","pubmed-id":15211078,"citation":"Li YC, Fung KP, Kwok TT, Lee CY, Suen YK, Kong SK: Mitochondria-targeting drug oligomycin blocked P-glycoprotein activity and triggered apoptosis in doxorubicin-resistant HepG2 cells. Chemotherapy. 2004 Jun;50(2):55-62.","parent_key":"BE0001032"} {"ref-id":"A15948","pubmed-id":20179710,"citation":"Bray J, Sludden J, Griffin MJ, Cole M, Verrill M, Jamieson D, Boddy AV: Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer. 2010 Mar 16;102(6):1003-9. doi: 10.1038/sj.bjc.6605587. Epub 2010 Feb 23.","parent_key":"BE0001032"} {"ref-id":"A15949","pubmed-id":19255759,"citation":"Tao LY, Liang YJ, Wang F, Chen LM, Yan YY, Dai CL, Fu LW: Cediranib (recentin, AZD2171) reverses ABCB1- and ABCC1-mediated multidrug resistance by inhibition of their transport function. Cancer Chemother Pharmacol. 2009 Oct;64(5):961-9. doi: 10.1007/s00280-009-0949-1. Epub 2009 Mar 3.","parent_key":"BE0001032"} {"ref-id":"A16219","pubmed-id":12765240,"citation":"Tribull TE, Bruner RH, Bain LJ: The multidrug resistance-associated protein 1 transports methoxychlor and protects the seminiferous epithelium from injury. Toxicol Lett. 2003 Apr 30;142(1-2):61-70.","parent_key":"BE0000785"} {"ref-id":"A15949","pubmed-id":19255759,"citation":"Tao LY, Liang YJ, Wang F, Chen LM, Yan YY, Dai CL, Fu LW: Cediranib (recentin, AZD2171) reverses ABCB1- and ABCC1-mediated multidrug resistance by inhibition of their transport function. Cancer Chemother Pharmacol. 2009 Oct;64(5):961-9. doi: 10.1007/s00280-009-0949-1. Epub 2009 Mar 3.","parent_key":"BE0000785"} {"ref-id":"A16221","pubmed-id":19390592,"citation":"Zheng LS, Wang F, Li YH, Zhang X, Chen LM, Liang YJ, Dai CL, Yan YY, Tao LY, Mi YJ, Yang AK, To KK, Fu LW: Vandetanib (Zactima, ZD6474) antagonizes ABCC1- and ABCG2-mediated multidrug resistance by inhibition of their transport function. PLoS One. 2009;4(4):e5172. doi: 10.1371/journal.pone.0005172. Epub 2009 Apr 23.","parent_key":"BE0000785"} {"ref-id":"A16221","pubmed-id":19390592,"citation":"Zheng LS, Wang F, Li YH, Zhang X, Chen LM, Liang YJ, Dai CL, Yan YY, Tao LY, Mi YJ, Yang AK, To KK, Fu LW: Vandetanib (Zactima, ZD6474) antagonizes ABCC1- and ABCG2-mediated multidrug resistance by inhibition of their transport function. PLoS One. 2009;4(4):e5172. doi: 10.1371/journal.pone.0005172. Epub 2009 Apr 23.","parent_key":"BE0001067"} {"ref-id":"A18045","pubmed-id":17704753,"citation":"Folmer Y, Schneider M, Blum HE, Hafkemeyer P: Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-ABCC2 antisense constructs. Cancer Gene Ther. 2007 Nov;14(11):875-84. Epub 2007 Aug 17.","parent_key":"BE0001069"} {"ref-id":"A185180","pubmed-id":30422513,"citation":"Akbari P, Khorasani-Zadeh A: Thiazide Diuretics .","parent_key":"BE0001066"} {"ref-id":"A185204","pubmed-id":17135398,"citation":"Hasegawa M, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y: Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol. 2007 Jan;18(1):37-45. doi: 10.1681/ASN.2005090966. Epub 2006 Nov 29.","parent_key":"BE0003645"} {"ref-id":"A185180","pubmed-id":30422513,"citation":"Akbari P, Khorasani-Zadeh A: Thiazide Diuretics .","parent_key":"BE0000879"} {"ref-id":"A185204","pubmed-id":17135398,"citation":"Hasegawa M, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y: Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol. 2007 Jan;18(1):37-45. doi: 10.1681/ASN.2005090966. Epub 2006 Nov 29.","parent_key":"BE0001188"} {"ref-id":"A186859","pubmed-id":23712697,"citation":"Miyajima M, Kusuhara H, Takahashi K, Takashima T, Hosoya T, Watanabe Y, Sugiyama Y: Investigation of the effect of active efflux at the blood-brain barrier on the distribution of nonsteroidal aromatase inhibitors in the central nervous system. J Pharm Sci. 2013 Sep;102(9):3309-19. doi: 10.1002/jps.23600. Epub 2013 May 27.","parent_key":"BE0001032"} {"ref-id":"A15796","pubmed-id":11343252,"citation":"Noe J, Hagenbuch B, Meier PJ, St-Pierre MV: Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology. 2001 May;33(5):1223-31.","parent_key":"BE0000703"} {"ref-id":"A16206","pubmed-id":11159731,"citation":"Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O: The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br J Pharmacol. 2001 Feb;132(3):778-84.","parent_key":"BE0000785"} {"ref-id":"A183938","pubmed-id":22982504,"citation":"Koenen A, Kock K, Keiser M, Siegmund W, Kroemer HK, Grube M: Steroid hormones specifically modify the activity of organic anion transporting polypeptides. Eur J Pharm Sci. 2012 Nov 20;47(4):774-80. doi: 10.1016/j.ejps.2012.08.017. Epub 2012 Sep 8.","parent_key":"BE0003642"} {"ref-id":"A16206","pubmed-id":11159731,"citation":"Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O: The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br J Pharmacol. 2001 Feb;132(3):778-84.","parent_key":"BE0001069"} {"ref-id":"A16072","pubmed-id":16460798,"citation":"Gedeon C, Behravan J, Koren G, Piquette-Miller M: Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta. 2006 Nov-Dec;27(11-12):1096-102. Epub 2006 Feb 3.","parent_key":"BE0001067"} {"ref-id":"A16382","pubmed-id":20159988,"citation":"Pollex EK, Anger G, Hutson J, Koren G, Piquette-Miller M: Breast cancer resistance protein (BCRP)-mediated glyburide transport: effect of the C421A/Q141K BCRP single-nucleotide polymorphism. Drug Metab Dispos. 2010 May;38(5):740-4. doi: 10.1124/dmd.109.030791. Epub 2010 Feb 16.","parent_key":"BE0001067"} {"ref-id":"A16127","pubmed-id":11751127,"citation":"Wang EJ, Lew K, Casciano CN, Clement RP, Johnson WW: Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother. 2002 Jan;46(1):160-5.","parent_key":"BE0001032"} {"ref-id":"A16364","pubmed-id":10493507,"citation":"Maliepaard M, van Gastelen MA, de Jong LA, Pluim D, van Waardenburg RC, Ruevekamp-Helmers MC, Floot BG, Schellens JH: Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 1999 Sep 15;59(18):4559-63.","parent_key":"BE0001067"} {"ref-id":"A16365","pubmed-id":11036110,"citation":"Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH: Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst. 2000 Oct 18;92(20):1651-6.","parent_key":"BE0001067"} {"ref-id":"A16368","pubmed-id":20460504,"citation":"Carcaboso AM, Elmeliegy MA, Shen J, Juel SJ, Zhang ZM, Calabrese C, Tracey L, Waters CM, Stewart CF: Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res. 2010 Jun 1;70(11):4499-508. doi: 10.1158/0008-5472.CAN-09-4264. Epub 2010 May 11.","parent_key":"BE0001067"} {"ref-id":"A16369","pubmed-id":10777678,"citation":"Rocchi E, Khodjakov A, Volk EL, Yang CH, Litman T, Bates SE, Schneider E: The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun. 2000 Apr 29;271(1):42-6.","parent_key":"BE0001067"} {"ref-id":"A16370","pubmed-id":10912951,"citation":"Ishii M, Iwahana M, Mitsui I, Minami M, Imagawa S, Tohgo A, Ejima A: Growth inhibitory effect of a new camptothecin analog, DX-8951f, on various drug-resistant sublines including BCRP-mediated camptothecin derivative-resistant variants derived from the human lung cancer cell line PC-6. Anticancer Drugs. 2000 Jun;11(5):353-62.","parent_key":"BE0001067"} {"ref-id":"A16371","pubmed-id":10930538,"citation":"Yang CH, Schneider E, Kuo ML, Volk EL, Rocchi E, Chen YC: BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells. Biochem Pharmacol. 2000 Sep 15;60(6):831-7.","parent_key":"BE0001067"} {"ref-id":"A16368","pubmed-id":20460504,"citation":"Carcaboso AM, Elmeliegy MA, Shen J, Juel SJ, Zhang ZM, Calabrese C, Tracey L, Waters CM, Stewart CF: Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res. 2010 Jun 1;70(11):4499-508. doi: 10.1158/0008-5472.CAN-09-4264. Epub 2010 May 11.","parent_key":"BE0001032"} {"ref-id":"A6372","pubmed-id":10727523,"citation":"Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B: Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000 Apr;57(4):760-8.","parent_key":"BE0000785"} {"ref-id":"A16210","pubmed-id":10363967,"citation":"Hooijberg JH, Broxterman HJ, Kool M, Assaraf YG, Peters GJ, Noordhuis P, Scheper RJ, Borst P, Pinedo HM, Jansen G: Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999 Jun 1;59(11):2532-5.","parent_key":"BE0000785"} {"ref-id":"A16211","pubmed-id":10419897,"citation":"Legrand O, Simonin G, Beauchamp-Nicoud A, Zittoun R, Marie JP: Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. Blood. 1999 Aug 1;94(3):1046-56.","parent_key":"BE0000785"} {"ref-id":"A16212","pubmed-id":10500791,"citation":"Legrand O, Simonin G, Perrot JY, Zittoun R, Marie JP: Both Pgp and MRP1 activities using calcein-AM contribute to drug resistance in AML. Adv Exp Med Biol. 1999;457:161-75.","parent_key":"BE0000785"} {"ref-id":"A16213","pubmed-id":11118294,"citation":"Issandou M, Grand-Perret T: Multidrug resistance P-glycoprotein is not involved in cholesterol esterification. Biochem Biophys Res Commun. 2000 Dec 20;279(2):369-77.","parent_key":"BE0000785"} {"ref-id":"A15812","pubmed-id":11405287,"citation":"Gao J, Murase O, Schowen RL, Aube J, Borchardt RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001 Feb;18(2):171-6.","parent_key":"BE0000785"} {"ref-id":"A15968","pubmed-id":11408557,"citation":"Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y: Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther. 2001 Jul;298(1):316-22.","parent_key":"BE0003642"} {"ref-id":"A15969","pubmed-id":8045503,"citation":"Kullak-Ublick GA, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ: Functional characterization of the basolateral rat liver organic anion transporting polypeptide. Hepatology. 1994 Aug;20(2):411-6.","parent_key":"BE0003642"} {"ref-id":"A6153","pubmed-id":11426832,"citation":"Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001 May 11;419(2-3):113-20.","parent_key":"BE0001066"} {"ref-id":"A6153","pubmed-id":11426832,"citation":"Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001 May 11;419(2-3):113-20.","parent_key":"BE0003645"} {"ref-id":"A16315","pubmed-id":20519552,"citation":"Lai Y, Sampson KE, Balogh LM, Brayman TG, Cox SR, Adams WJ, Kumar V, Stevens JC: Preclinical and clinical evidence for the collaborative transport and renal secretion of an oxazolidinone antibiotic by organic anion transporter 3 (OAT3/SLC22A8) and multidrug and toxin extrusion protein 1 (MATE1/SLC47A1). J Pharmacol Exp Ther. 2010 Sep 1;334(3):936-44. doi: 10.1124/jpet.110.170753. Epub 2010 Jun 2.","parent_key":"BE0003645"} {"ref-id":"A16118","pubmed-id":11880368,"citation":"Ilias A, Urban Z, Seidl TL, Le Saux O, Sinko E, Boyd CD, Sarkadi B, Varadi A: Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem. 2002 May 10;277(19):16860-7. Epub 2002 Mar 5.","parent_key":"BE0001069"} {"ref-id":"A16325","pubmed-id":15618649,"citation":"Horikawa M, Kato Y, Tyson CA, Sugiyama Y: The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet. 2002;17(1):23-33.","parent_key":"BE0001069"} {"ref-id":"A16071","pubmed-id":12538836,"citation":"Zamek-Gliszczynski MJ, Xiong H, Patel NJ, Turncliff RZ, Pollack GM, Brouwer KL: Pharmacokinetics of 5 (and 6)-carboxy-2',7'-dichlorofluorescein and its diacetate promoiety in the liver. J Pharmacol Exp Ther. 2003 Feb;304(2):801-9.","parent_key":"BE0001069"} {"ref-id":"A15833","pubmed-id":15504753,"citation":"Honda Y, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Uchiumi T, Kuwano M, Ohtani H, Sawada Y: Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol. 2004 Dec;143(7):856-64. Epub 2004 Oct 25.","parent_key":"BE0001069"} {"ref-id":"A16132","pubmed-id":15060738,"citation":"Minderman H, Brooks TA, O'Loughlin KL, Ojima I, Bernacki RJ, Baer MR: Broad-spectrum modulation of ATP-binding cassette transport proteins by the taxane derivatives ortataxel (IDN-5109, BAY 59-8862) and tRA96023. Cancer Chemother Pharmacol. 2004 May;53(5):363-9. Epub 2004 Jan 27.","parent_key":"BE0001069"} {"ref-id":"A12332","pubmed-id":12023506,"citation":"Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, Yamamoto T, Sekine T, Cha SH, Niwa T, Endou H: Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther. 2002 Jun;301(3):797-802.","parent_key":"BE0000879"} {"ref-id":"A18104","pubmed-id":21272127,"citation":"Shin HJ, Takeda M, Enomoto A, Fujimura M, Miyazaki H, Anzai N, Endou H: Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology (Carlton). 2011 Feb;16(2):156-62. doi: 10.1111/j.1440-1797.2010.01368.x.","parent_key":"BE0004782"} {"ref-id":"A15862","pubmed-id":10411543,"citation":"Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, Kroemer HK: The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999 Jul;104(2):147-53. doi: 10.1172/JCI6663.","parent_key":"BE0001032"} {"ref-id":"A15863","pubmed-id":7763306,"citation":"Fardel O, Lecureur V, Loyer P, Guillouzo A: Rifampicin enhances anti-cancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol. 1995 May 11;49(9):1255-60.","parent_key":"BE0001032"} {"ref-id":"A15864","pubmed-id":16003296,"citation":"Kuypers DR, Verleden G, Naesens M, Vanrenterghem Y: Drug interaction between mycophenolate mofetil and rifampin: possible induction of uridine diphosphate-glucuronosyltransferase. Clin Pharmacol Ther. 2005 Jul;78(1):81-8.","parent_key":"BE0001032"} {"ref-id":"A15865","pubmed-id":16221754,"citation":"Gurley BJ, Barone GW, Williams DK, Carrier J, Breen P, Yates CR, Song PF, Hubbard MA, Tong Y, Cheboyina S: Effect of milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa) supplementation on digoxin pharmacokinetics in humans. Drug Metab Dispos. 2006 Jan;34(1):69-74. Epub 2005 Oct 12.","parent_key":"BE0001032"} {"ref-id":"A14231","pubmed-id":16480505,"citation":"Chen J, Raymond K: Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006 Feb 15;5:3.","parent_key":"BE0001032"} {"ref-id":"A15866","pubmed-id":16580901,"citation":"Lamba J, Strom S, Venkataramanan R, Thummel KE, Lin YS, Liu W, Cheng C, Lamba V, Watkins PB, Schuetz E: MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. Clin Pharmacol Ther. 2006 Apr;79(4):325-38. Epub 2006 Feb 20.","parent_key":"BE0001032"} {"ref-id":"A15867","pubmed-id":16620787,"citation":"Huang R, Murry DJ, Kolwankar D, Hall SD, Foster DR: Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem Pharmacol. 2006 Jun 14;71(12):1695-704. Epub 2006 Apr 18.","parent_key":"BE0001032"} {"ref-id":"A16112","pubmed-id":12085361,"citation":"Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72.","parent_key":"BE0003659"} {"ref-id":"A16348","pubmed-id":11641421,"citation":"Cui Y, Konig J, Keppler D: Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001 Nov;60(5):934-43.","parent_key":"BE0003659"} {"ref-id":"A16231","pubmed-id":10408915,"citation":"Courtois A, Payen L, Vernhet L, de Vries EG, Guillouzo A, Fardel O: Inhibition of multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells. Cancer Lett. 1999 May 3;139(1):97-104.","parent_key":"BE0000785"} {"ref-id":"A16112","pubmed-id":12085361,"citation":"Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72.","parent_key":"BE0001004"} {"ref-id":"A36968","pubmed-id":23670789,"citation":"Anderson MS, Cote J, Liu Y, Stypinski D, Auger P, Hohnstein A, Rasmussen S, Johnson-Levonas AO, Gutstein DE: Effects of Rifampin, a potent inducer of drug-metabolizing enzymes and an inhibitor of OATP1B1/3 transport, on the single dose pharmacokinetics of anacetrapib. J Clin Pharmacol. 2013 Jul;53(7):746-52. doi: 10.1002/jcph.97. Epub 2013 May 14.","parent_key":"BE0001004"} {"ref-id":"A16112","pubmed-id":12085361,"citation":"Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72.","parent_key":"BE0001042"} {"ref-id":"A16112","pubmed-id":12085361,"citation":"Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K: Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002 Jul;36(1):164-72.","parent_key":"BE0003642"} {"ref-id":"A16265","pubmed-id":10869292,"citation":"Fattinger K, Cattori V, Hagenbuch B, Meier PJ, Stieger B: Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology. 2000 Jul;32(1):82-6.","parent_key":"BE0003642"} {"ref-id":"A15975","pubmed-id":10381771,"citation":"van Montfoort JE, Stieger B, Meijer DK, Weinmann HJ, Meier PJ, Fattinger KE: Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther. 1999 Jul;290(1):153-7.","parent_key":"BE0003642"} {"ref-id":"A15960","pubmed-id":11836020,"citation":"Kauffmann HM, Pfannschmidt S, Zoller H, Benz A, Vorderstemann B, Webster JI, Schrenk D: Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology. 2002 Feb 28;171(2-3):137-46.","parent_key":"BE0001069"} {"ref-id":"A16002","pubmed-id":11073816,"citation":"Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, Eichelbaum M, Siegmund W, Schrenk D: The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 2000 Nov;157(5):1575-80.","parent_key":"BE0001069"} {"ref-id":"A16307","pubmed-id":19282394,"citation":"Duan P, You G: Novobiocin is a potent inhibitor for human organic anion transporters. Drug Metab Dispos. 2009 Jun;37(6):1203-10. doi: 10.1124/dmd.109.026880. Epub 2009 Mar 12.","parent_key":"BE0001066"} {"ref-id":"A16307","pubmed-id":19282394,"citation":"Duan P, You G: Novobiocin is a potent inhibitor for human organic anion transporters. Drug Metab Dispos. 2009 Jun;37(6):1203-10. doi: 10.1124/dmd.109.026880. Epub 2009 Mar 12.","parent_key":"BE0003645"} {"ref-id":"A16307","pubmed-id":19282394,"citation":"Duan P, You G: Novobiocin is a potent inhibitor for human organic anion transporters. Drug Metab Dispos. 2009 Jun;37(6):1203-10. doi: 10.1124/dmd.109.026880. Epub 2009 Mar 12.","parent_key":"BE0000879"} {"ref-id":"A16372","pubmed-id":14618629,"citation":"Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T, Mizuta Y, Murase K, Yoshida H, Ross DD, Kohno S: Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer. 2004 Jan 1;108(1):146-51.","parent_key":"BE0001067"} {"ref-id":"A16373","pubmed-id":20307139,"citation":"Elahian F, Kalalinia F, Behravan J: Evaluation of indomethacin and dexamethasone effects on BCRP-mediated drug resistance in MCF-7 parental and resistant cell lines. Drug Chem Toxicol. 2010 Apr;33(2):113-9. doi: 10.3109/01480540903390000.","parent_key":"BE0001067"} {"ref-id":"A16297","pubmed-id":11861777,"citation":"Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, Sugiyama Y: Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J Pharmacol Exp Ther. 2002 Mar;300(3):746-53.","parent_key":"BE0001066"} {"ref-id":"A174502","pubmed-id":24154606,"citation":"Kock K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, Stewart PW, Brouwer KL: Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos. 2014 Apr;42(4):665-74. doi: 10.1124/dmd.113.054304. Epub 2013 Oct 23.","parent_key":"BE0001188"} {"ref-id":"A16667","pubmed-id":15764714,"citation":"Perloff ES, Duan SX, Skolnik PR, Greenblatt DJ, von Moltke LL: Atazanavir: effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab Dispos. 2005 Jun;33(6):764-70. Epub 2005 Mar 11.","parent_key":"BE0001032"} {"ref-id":"A16668","pubmed-id":16044020,"citation":"Lucia MB, Golotta C, Rutella S, Rastrelli E, Savarino A, Cauda R: Atazanavir inhibits P-glycoprotein and multidrug resistance-associated protein efflux activity. J Acquir Immune Defic Syndr. 2005 Aug 15;39(5):635-7.","parent_key":"BE0001032"} {"ref-id":"A16669","pubmed-id":17510066,"citation":"Chinn LW, Gow JM, Tse MM, Becker SL, Kroetz DL: Interindividual variability in the effect of atazanavir and saquinavir on the expression of lymphocyte P-glycoprotein. J Antimicrob Chemother. 2007 Jul;60(1):61-7. Epub 2007 May 17.","parent_key":"BE0001032"} {"ref-id":"A6224","pubmed-id":19053892,"citation":"Wood R: Atazanavir: its role in HIV treatment. Expert Rev Anti Infect Ther. 2008 Dec;6(6):785-96. doi: 10.1586/14787210.6.6.785.","parent_key":"BE0001032"} {"ref-id":"A16670","pubmed-id":19918100,"citation":"Janneh O, Anwar T, Jungbauer C, Kopp S, Khoo SH, Back DJ, Chiba P: P-glycoprotein, multidrug resistance-associated proteins and human organic anion transporting polypeptide influence the intracellular accumulation of atazanavir. Antivir Ther. 2009;14(7):965-74. doi: 10.3851/IMP1399.","parent_key":"BE0001032"} {"ref-id":"A16670","pubmed-id":19918100,"citation":"Janneh O, Anwar T, Jungbauer C, Kopp S, Khoo SH, Back DJ, Chiba P: P-glycoprotein, multidrug resistance-associated proteins and human organic anion transporting polypeptide influence the intracellular accumulation of atazanavir. Antivir Ther. 2009;14(7):965-74. doi: 10.3851/IMP1399.","parent_key":"BE0000785"} {"ref-id":"A16668","pubmed-id":16044020,"citation":"Lucia MB, Golotta C, Rutella S, Rastrelli E, Savarino A, Cauda R: Atazanavir inhibits P-glycoprotein and multidrug resistance-associated protein efflux activity. J Acquir Immune Defic Syndr. 2005 Aug 15;39(5):635-7.","parent_key":"BE0000785"} {"ref-id":"A34523","pubmed-id":20102298,"citation":"Annaert P, Ye ZW, Stieger B, Augustijns P: Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010 Mar;40(3):163-76. doi: 10.3109/00498250903509375.","parent_key":"BE0001004"} {"ref-id":"A19474","pubmed-id":14531725,"citation":"Lennernas H: Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42(13):1141-60.","parent_key":"BE0001032"} {"ref-id":"A187325","pubmed-id":20797388,"citation":"Mandery K, Bujok K, Schmidt I, Keiser M, Siegmund W, Balk B, Konig J, Fromm MF, Glaeser H: Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1. Biochem Pharmacol. 2010 Dec 1;80(11):1746-53. doi: 10.1016/j.bcp.2010.08.008. Epub 2010 Aug 24.","parent_key":"BE0003642"} {"ref-id":"A19474","pubmed-id":14531725,"citation":"Lennernas H: Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42(13):1141-60.","parent_key":"BE0001004"} {"ref-id":"A16429","pubmed-id":19940267,"citation":"Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, Kim RB, Tirona RG: Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010 Feb 5;106(2):297-306. doi: 10.1161/CIRCRESAHA.109.203596. Epub 2009 Nov 25.","parent_key":"BE0001188"} {"ref-id":"A16429","pubmed-id":19940267,"citation":"Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, Kim RB, Tirona RG: Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010 Feb 5;106(2):297-306. doi: 10.1161/CIRCRESAHA.109.203596. Epub 2009 Nov 25.","parent_key":"BE0000785"} {"ref-id":"A17894","pubmed-id":17178262,"citation":"Grube M, Kock K, Oswald S, Draber K, Meissner K, Eckel L, Bohm M, Felix SB, Vogelgesang S, Jedlitschky G, Siegmund W, Warzok R, Kroemer HK: Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther. 2006 Dec;80(6):607-20.","parent_key":"BE0001042"} {"ref-id":"A16429","pubmed-id":19940267,"citation":"Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, Kim RB, Tirona RG: Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010 Feb 5;106(2):297-306. doi: 10.1161/CIRCRESAHA.109.203596. Epub 2009 Nov 25.","parent_key":"BE0001042"} {"ref-id":"A18010","pubmed-id":23121773,"citation":"Klatt S, Fromm MF, Konig J: The influence of oral antidiabetic drugs on cellular drug uptake mediated by hepatic OATP family members. Basic Clin Pharmacol Toxicol. 2013 Apr;112(4):244-50. doi: 10.1111/bcpt.12031. Epub 2012 Dec 6.","parent_key":"BE0003659"} {"ref-id":"A19474","pubmed-id":14531725,"citation":"Lennernas H: Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42(13):1141-60.","parent_key":"BE0003659"} {"ref-id":"A36139","pubmed-id":24284282,"citation":"Kim JH, Choi AR, Kim YK, Yoon S: Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition. Biochem Biophys Res Commun. 2013 Nov 22;441(3):655-60. doi: 10.1016/j.bbrc.2013.10.095. Epub 2013 Oct 26.","parent_key":"BE0001032"} {"ref-id":"A36140","pubmed-id":27069141,"citation":"Choi AR, Kim JH, Woo YH, Kim HS, Yoon S: Anti-malarial Drugs Primaquine and Chloroquine Have Different Sensitization Effects with Anti-mitotic Drugs in Resistant Cancer Cells. Anticancer Res. 2016 Apr;36(4):1641-8.","parent_key":"BE0001032"} {"ref-id":"A15973","pubmed-id":9632674,"citation":"Li L, Lee TK, Meier PJ, Ballatori N: Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem. 1998 Jun 26;273(26):16184-91.","parent_key":"BE0003642"} {"ref-id":"A16359","pubmed-id":15102949,"citation":"Zhang S, Yang X, Morris ME: Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol. 2004 May;65(5):1208-16.","parent_key":"BE0001067"} {"ref-id":"A17891","pubmed-id":16046661,"citation":"Kopplow K, Letschert K, Konig J, Walter B, Keppler D: Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol. 2005 Oct;68(4):1031-8. Epub 2005 Jul 26.","parent_key":"BE0001004"} {"ref-id":"A17891","pubmed-id":16046661,"citation":"Kopplow K, Letschert K, Konig J, Walter B, Keppler D: Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol. 2005 Oct;68(4):1031-8. Epub 2005 Jul 26.","parent_key":"BE0003659"} {"ref-id":"A17891","pubmed-id":16046661,"citation":"Kopplow K, Letschert K, Konig J, Walter B, Keppler D: Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol. 2005 Oct;68(4):1031-8. Epub 2005 Jul 26.","parent_key":"BE0001042"} {"ref-id":"A17939","pubmed-id":18397960,"citation":"Kis E, Nagy T, Jani M, Molnar E, Janossy J, Ujhellyi O, Nemet K, Heredi-Szabo K, Krajcsi P: Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: implications for drug resistance. Ann Rheum Dis. 2009 Jul;68(7):1201-7. doi: 10.1136/ard.2007.086264. Epub 2008 Apr 8.","parent_key":"BE0001067"} {"ref-id":"A1811","pubmed-id":16697742,"citation":"Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB: Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006 May;130(6):1793-806. Epub 2006 Mar 6.","parent_key":"BE0003642"} {"ref-id":"A18085","pubmed-id":23248200,"citation":"van de Steeg E, Greupink R, Schreurs M, Nooijen IH, Verhoeckx KC, Hanemaaijer R, Ripken D, Monshouwer M, Vlaming ML, DeGroot J, Verwei M, Russel FG, Huisman MT, Wortelboer HM: Drug-drug interactions between rosuvastatin and oral antidiabetic drugs occurring at the level of OATP1B1. Drug Metab Dispos. 2013 Mar;41(3):592-601. doi: 10.1124/dmd.112.049023. Epub 2012 Dec 17.","parent_key":"BE0001004"} {"ref-id":"A1811","pubmed-id":16697742,"citation":"Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB: Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006 May;130(6):1793-806. Epub 2006 Mar 6.","parent_key":"BE0003659"} {"ref-id":"A1811","pubmed-id":16697742,"citation":"Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB: Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006 May;130(6):1793-806. Epub 2006 Mar 6.","parent_key":"BE0001042"} {"ref-id":"A18086","pubmed-id":19853032,"citation":"Jemnitz K, Veres Z, Tugyi R, Vereczkey L: Biliary efflux transporters involved in the clearance of rosuvastatin in sandwich culture of primary rat hepatocytes. Toxicol In Vitro. 2010 Mar;24(2):605-10. doi: 10.1016/j.tiv.2009.10.009. Epub 2009 Oct 21.","parent_key":"BE0000703"} {"ref-id":"A181460","pubmed-id":23047648,"citation":"Elsby R, Hilgendorf C, Fenner K: Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther. 2012 Nov;92(5):584-98. doi: 10.1038/clpt.2012.163. Epub 2012 Oct 10.","parent_key":"BE0001067"} {"ref-id":"A181478","pubmed-id":19474787,"citation":"Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M: ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009 Aug;86(2):197-203. doi: 10.1038/clpt.2009.79. Epub 2009 May 27.","parent_key":"BE0001067"} {"ref-id":"A181487","pubmed-id":16198652,"citation":"Lee E, Ryan S, Birmingham B, Zalikowski J, March R, Ambrose H, Moore R, Lee C, Chen Y, Schneck D: Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther. 2005 Oct;78(4):330-41. doi: 10.1016/j.clpt.2005.06.013.","parent_key":"BE0001067"} {"ref-id":"A181490","pubmed-id":17585018,"citation":"Windass AS, Lowes S, Wang Y, Brown CD: The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007 Sep;322(3):1221-7. doi: 10.1124/jpet.107.125831. Epub 2007 Jun 21.","parent_key":"BE0003645"} {"ref-id":"A1811","pubmed-id":16697742,"citation":"Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB: Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006 May;130(6):1793-806. Epub 2006 Mar 6.","parent_key":"BE0003644"} {"ref-id":"A188508","pubmed-id":23468867,"citation":"Kapoor A, Iqbal M, Petropoulos S, Ho HL, Gibb W, Matthews SG: Effects of sertraline and fluoxetine on p-glycoprotein at barrier sites: in vivo and in vitro approaches. PLoS One. 2013;8(2):e56525. doi: 10.1371/journal.pone.0056525. Epub 2013 Feb 28.","parent_key":"BE0001032"} {"ref-id":"A14730","pubmed-id":15969931,"citation":"Sakaeda T, Iwaki K, Kakumoto M, Nishikawa M, Niwa T, Jin JS, Nakamura T, Nishiguchi K, Okamura N, Okumura K: Effect of micafungin on cytochrome P450 3A4 and multidrug resistance protein 1 activities, and its comparison with azole antifungal drugs. J Pharm Pharmacol. 2005 Jun;57(6):759-64.","parent_key":"BE0001032"} {"ref-id":"A16008","pubmed-id":12206135,"citation":"Payen L, Sparfel L, Courtois A, Vernhet L, Guillouzo A, Fardel O: The drug efflux pump MRP2: regulation of expression in physiopathological situations and by endogenous and exogenous compounds. Cell Biol Toxicol. 2002;18(4):221-33.","parent_key":"BE0001069"} {"ref-id":"A190255","pubmed-id":20028269,"citation":"Stieger B: Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev. 2010 Aug;42(3):437-45. doi: 10.3109/03602530903492004.","parent_key":"BE0000703"} {"ref-id":"A36351","pubmed-id":11459198,"citation":"van de Poll ME, Relling MV, Schuetz EG, Harrison PL, Hughes W, Flynn PM: The effect of atovaquone on etoposide pharmacokinetics in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2001 Jun;47(6):467-72.","parent_key":"BE0001032"} {"ref-id":"A191278","pubmed-id":25995342,"citation":"Zhu Y, Liu C, Armstrong C, Lou W, Sandher A, Gao AC: Antiandrogens Inhibit ABCB1 Efflux and ATPase Activity and Reverse Docetaxel Resistance in Advanced Prostate Cancer. Clin Cancer Res. 2015 Sep 15;21(18):4133-42. doi: 10.1158/1078-0432.CCR-15-0269. Epub 2015 May 20.","parent_key":"BE0001032"} {"ref-id":"A15830","pubmed-id":10571255,"citation":"Jonsson O, Behnam-Motlagh P, Persson M, Henriksson R, Grankvist K: Increase in doxorubicin cytotoxicity by carvedilol inhibition of P-glycoprotein activity. Biochem Pharmacol. 1999 Dec 1;58(11):1801-6.","parent_key":"BE0001032"} {"ref-id":"A16152","pubmed-id":10783826,"citation":"Neuhoff S, Langguth P, Dressler C, Andersson TB, Regardh CG, Spahn-Langguth H: Affinities at the verapamil binding site of MDR1-encoded P-glycoprotein: drugs and analogs, stereoisomers and metabolites. Int J Clin Pharmacol Ther. 2000 Apr;38(4):168-79.","parent_key":"BE0001032"} {"ref-id":"A16153","pubmed-id":12078998,"citation":"Hokama N, Hobara N, Sakai M, Kameya H, Ohshiro S, Sakanashi M: Influence of nicardipine and nifedipine on plasma carvedilol disposition after oral administration in rats. J Pharm Pharmacol. 2002 Jun;54(6):821-5.","parent_key":"BE0001032"} {"ref-id":"A16154","pubmed-id":12708479,"citation":"Kakumoto M, Sakaeda T, Takara K, Nakamura T, Kita T, Yagami T, Kobayashi H, Okamura N, Okumura K: Effects of carvedilol on MDR1-mediated multidrug resistance: comparison with verapamil. Cancer Sci. 2003 Jan;94(1):81-6.","parent_key":"BE0001032"} {"ref-id":"A16155","pubmed-id":14732961,"citation":"Brodde OE, Kroemer HK: Drug-drug interactions of beta-adrenoceptor blockers. Arzneimittelforschung. 2003;53(12):814-22.","parent_key":"BE0001032"} {"ref-id":"A190717","pubmed-id":26621623,"citation":"Zimmermann ES, Laureano JV, Dos Santos CN, Schmidt S, Lagishetty CV, de Castro WV, Dalla Costa T: Simultaneous Semimechanistic Population Analyses of Levofloxacin in Plasma, Lung, and Prostate To Describe the Influence of Efflux Transporters on Drug Distribution following Intravenous and Intratracheal Administration. Antimicrob Agents Chemother. 2015 Nov 30;60(2):946-54. doi: 10.1128/AAC.02317-15. Print 2016 Feb.","parent_key":"BE0001032"} {"ref-id":"A190720","pubmed-id":17274666,"citation":"Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, Tamai I: Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm. 2007 Jan-Feb;4(1):85-94. doi: 10.1021/mp060082j.","parent_key":"BE0003642"} {"ref-id":"A33372","pubmed-id":11336351,"citation":"Parasrampuria DA, Lantz MV, Benet LZ: A human lymphocyte based ex vivo assay to study the effect of drugs on P-glycoprotein (P-gp) function. Pharm Res. 2001 Jan;18(1):39-44.","parent_key":"BE0000785"} {"ref-id":"A36441","pubmed-id":10820430,"citation":"Decleves X, Regina A, Laplanche JL, Roux F, Boval B, Launay JM, Scherrmann JM: Functional expression of P-glycoprotein and multidrug resistance-associated protein (Mrp1) in primary cultures of rat astrocytes. J Neurosci Res. 2000 Jun 1;60(5):594-601. doi: 10.1002/(SICI)1097-4547(20000601)60:5<594::AID-JNR4>3.0.CO;2-6.","parent_key":"BE0000785"} {"ref-id":"A12472","pubmed-id":11834888,"citation":"Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ: Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126-34.","parent_key":"BE0001069"} {"ref-id":"A6370","pubmed-id":10917554,"citation":"Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, Borst P: Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer. 2000 Aug;83(3):375-83.","parent_key":"BE0001069"} {"ref-id":"A16203","pubmed-id":10817732,"citation":"Terashi K, Oka M, Soda H, Fukuda M, Kawabata S, Nakatomi K, Shiozawa K, Nakamura T, Tsukamoto K, Noguchi Y, Suenaga M, Tei C, Kohno S: Interactions of ofloxacin and erythromycin with the multidrug resistance protein (MRP) in MRP-overexpressing human leukemia cells. Antimicrob Agents Chemother. 2000 Jun;44(6):1697-700.","parent_key":"BE0000785"} {"ref-id":"A16147","pubmed-id":11808341,"citation":"Masuda S, Inui K: [Molecular mechanisms on drug transporters in the drug absorption and disposition]. Nihon Rinsho. 2002 Jan;60(1):65-73.","parent_key":"BE0001032"} {"ref-id":"A16148","pubmed-id":12621384,"citation":"Lilja JJ, Backman JT, Laitila J, Luurila H, Neuvonen PJ: Itraconazole increases but grapefruit juice greatly decreases plasma concentrations of celiprolol. Clin Pharmacol Ther. 2003 Mar;73(3):192-8.","parent_key":"BE0001032"} {"ref-id":"A16149","pubmed-id":16041596,"citation":"Saito M, Hirata-Koizumi M, Miyake S, Hasegawa R: Comparison of information on the pharmacokinetic interactions of Ca antagonists in the package inserts from three countries (Japan, USA and UK). Eur J Clin Pharmacol. 2005 Aug;61(7):531-6. Epub 2005 Jul 23.","parent_key":"BE0001032"} {"ref-id":"A16150","pubmed-id":16084853,"citation":"Shon JH, Yoon YR, Hong WS, Nguyen PM, Lee SS, Choi YG, Cha IJ, Shin JG: Effect of itraconazole on the pharmacokinetics and pharmacodynamics of fexofenadine in relation to the MDR1 genetic polymorphism. Clin Pharmacol Ther. 2005 Aug;78(2):191-201.","parent_key":"BE0001032"} {"ref-id":"A16672","pubmed-id":12647012,"citation":"Hu XM, Hirano T, Oka K: Arsenic trioxide induces apoptosis equally in T lymphoblastoid leukemia MOLT-4 cells and P-gp-expressing daunorubicin-resistant MOLT-4 cells. Cancer Chemother Pharmacol. 2003 Feb;51(2):119-26. Epub 2002 Nov 20.","parent_key":"BE0001032"} {"ref-id":"A16673","pubmed-id":12679007,"citation":"Wei HL, Yao XJ, Li YN, Wang P, Zhao HS, Bai DC, Peng X, Ma LF: [Arsenic trioxide inhibits P-glycoprotein expression in multidrug-resistant human leukemia K562/ADM cell line that overexpresses mdr-1 gene and enhances their chemotherapeutic sensitivity]. Zhonghua Xue Ye Xue Za Zhi. 2003 Jan;24(1):28-31.","parent_key":"BE0001032"} {"ref-id":"A16674","pubmed-id":14642128,"citation":"Wei H, Su H, Bai D, Zhao H, Ge J, Wang B, Yao X, Ma L: Arsenic trioxide inhibits p-glycoprotein expression in multidrug-resistant human leukemia cells that overexpress the MDR1 gene. Chin Med J (Engl). 2003 Nov;116(11):1644-8.","parent_key":"BE0001032"} {"ref-id":"A16675","pubmed-id":15694464,"citation":"Kimura A, Ishida Y, Wada T, Yokoyama H, Mukaida N, Kondo T: MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice. Toxicol Appl Pharmacol. 2005 Feb 15;203(1):53-61.","parent_key":"BE0001032"} {"ref-id":"A16676","pubmed-id":15698479,"citation":"Cronin CJ, Mendel JE, Mukhtar S, Kim YM, Stirbl RC, Bruck J, Sternberg PW: An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet. 2005 Feb 7;6:5.","parent_key":"BE0001032"} {"ref-id":"A15804","pubmed-id":11706036,"citation":"Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA: Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002 Jan 25;277(4):2908-15. Epub 2001 Nov 12.","parent_key":"BE0000703"} {"ref-id":"A15786","pubmed-id":9738950,"citation":"Kiuchi Y, Suzuki H, Hirohashi T, Tyson CA, Sugiyama Y: cDNA cloning and inducible expression of human multidrug resistance associated protein 3 (MRP3). FEBS Lett. 1998 Aug 14;433(1-2):149-52.","parent_key":"BE0000785"} {"ref-id":"A16003","pubmed-id":11841808,"citation":"Courtois A, Payen L, Le Ferrec E, Scheffer GL, Trinquart Y, Guillouzo A, Fardel O: Differential regulation of multidrug resistance-associated protein 2 (MRP2) and cytochromes P450 2B1/2 and 3A1/2 in phenobarbital-treated hepatocytes. Biochem Pharmacol. 2002 Jan 15;63(2):333-41.","parent_key":"BE0001069"} {"ref-id":"A15804","pubmed-id":11706036,"citation":"Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA: Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002 Jan 25;277(4):2908-15. Epub 2001 Nov 12.","parent_key":"BE0001069"} {"ref-id":"A16005","pubmed-id":11861969,"citation":"Johnson DR, Habeebu SS, Klaassen CD: Increase in bile flow and biliary excretion of glutathione-derived sulfhydryls in rats by drug-metabolizing enzyme inducers is mediated by multidrug resistance protein 2. Toxicol Sci. 2002 Mar;66(1):16-26.","parent_key":"BE0001069"} {"ref-id":"A185410","pubmed-id":18940259,"citation":"Nikisch G, Eap CB, Baumann P: Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res. 2008 Nov-Dec;58(5-6):344-7. doi: 10.1016/j.phrs.2008.09.010. Epub 2008 Sep 30.","parent_key":"BE0001032"} {"ref-id":"A17271","pubmed-id":10513988,"citation":"Schmid D, Ecker G, Kopp S, Hitzler M, Chiba P: Structure-activity relationship studies of propafenone analogs based on P-glycoprotein ATPase activity measurements. Biochem Pharmacol. 1999 Nov 1;58(9):1447-56.","parent_key":"BE0001032"} {"ref-id":"A17272","pubmed-id":15900513,"citation":"Bachmakov I, Rekersbrink S, Hofmann U, Eichelbaum M, Fromm MF: Characterisation of (R/S)-propafenone and its metabolites as substrates and inhibitors of P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2005 Mar;371(3):195-201. Epub 2005 Apr 15.","parent_key":"BE0001032"} {"ref-id":"A17273","pubmed-id":16843673,"citation":"Singh P, Paul K: Studies of interactions between uracil-based hybrid molecules and P-glycoprotein--search for multidrug resistance modulators. Bioorg Med Chem. 2006 Nov 1;14(21):7183-6. Epub 2006 Jul 14.","parent_key":"BE0001032"} {"ref-id":"A17274","pubmed-id":9336306,"citation":"Woodland C, Verjee Z, Giesbrecht E, Koren G, Ito S: The digoxin-propafenone interaction: characterization of a mechanism using renal tubular cell monolayers. J Pharmacol Exp Ther. 1997 Oct;283(1):39-45.","parent_key":"BE0001032"} {"ref-id":"A17275","pubmed-id":9747179,"citation":"Tmej C, Chiba P, Huber M, Richter E, Hitzler M, Schaper KJ, Ecker G: A combined Hansch/Free-Wilson approach as predictive tool in QSAR studies on propafenone-type modulators of multidrug resistance. Arch Pharm (Weinheim). 1998 Jul-Aug;331(7-8):233-40.","parent_key":"BE0001032"} {"ref-id":"A190603","pubmed-id":29725709,"citation":"Zhang Y, Huang J, Liu Y, Guo T, Wang L: Using the lentiviral vector system to stably express chicken P-gp and BCRP in MDCK cells for screening the substrates and studying the interplay of both transporters. Arch Toxicol. 2018 Jun;92(6):2027-2042. doi: 10.1007/s00204-018-2209-9. Epub 2018 May 3.","parent_key":"BE0001032"} {"ref-id":"A190606","pubmed-id":31013627,"citation":"Zhang Y, Guo L, Huang J, Sun Y, He F, Zloh M, Wang L: Inhibitory Effect of Berberine on Broiler P-glycoprotein Expression and Function: In Situ and In Vitro Studies. Int J Mol Sci. 2019 Apr 22;20(8). pii: ijms20081966. doi: 10.3390/ijms20081966.","parent_key":"BE0001032"} {"ref-id":"A16440","pubmed-id":8953513,"citation":"Terao T, Hisanaga E, Sai Y, Tamai I, Tsuji A: Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J Pharm Pharmacol. 1996 Oct;48(10):1083-9.","parent_key":"BE0001032"} {"ref-id":"A186934","pubmed-id":31257298,"citation":"Doki K, Apati S, Sakata T, Homma M: Involvement of Renal Efflux Transporter MATE1 in Renal Excretion of Flecainide. Biol Pharm Bull. 2019;42(7):1226-1229. doi: 10.1248/bpb.b19-00031.","parent_key":"BE0001032"} {"ref-id":"A16169","pubmed-id":7908991,"citation":"Yang CP, Shen HJ, Horwitz SB: Modulation of the function of P-glycoprotein by estramustine. J Natl Cancer Inst. 1994 May 4;86(9):723-5.","parent_key":"BE0001032"} {"ref-id":"A16170","pubmed-id":12548594,"citation":"Tiersten AD, Nelsen C, Talbot S, Vahdat L, Fine R, Troxel A, Brafman L, Shriberg L, Antman K, Petrylak DP: A phase II trial of docetaxel and estramustine in patients with refractory metastatic breast carcinoma. Cancer. 2003 Feb 1;97(3):537-44.","parent_key":"BE0001032"} {"ref-id":"A16171","pubmed-id":7736407,"citation":"Smith CD, Zilfou JT, Zhang X, Hudes GR, Tew KD: Modulation of P-glycoprotein activity by estramustine is limited by binding to plasma proteins. Cancer. 1995 May 15;75(10):2597-604.","parent_key":"BE0001032"} {"ref-id":"A16172","pubmed-id":7908988,"citation":"Speicher LA, Barone LR, Chapman AE, Hudes GR, Laing N, Smith CD, Tew KD: P-glycoprotein binding and modulation of the multidrug-resistant phenotype by estramustine. J Natl Cancer Inst. 1994 May 4;86(9):688-94.","parent_key":"BE0001032"} {"ref-id":"A16160","pubmed-id":8920966,"citation":"Renaud JP, Davydov DR, Heirwegh KP, Mansuy D, Hui Bon Hoa GH: Thermodynamic studies of substrate binding and spin transitions in human cytochrome P-450 3A4 expressed in yeast microsomes. Biochem J. 1996 Nov 1;319 ( Pt 3):675-81.","parent_key":"BE0001032"} {"ref-id":"A182354","pubmed-id":26702643,"citation":"Misaka S, Knop J, Singer K, Hoier E, Keiser M, Muller F, Glaeser H, Konig J, Fromm MF: The Nonmetabolized beta-Blocker Nadolol Is a Substrate of OCT1, OCT2, MATE1, MATE2-K, and P-Glycoprotein, but Not of OATP1B1 and OATP1B3. Mol Pharm. 2016 Feb 1;13(2):512-9. doi: 10.1021/acs.molpharmaceut.5b00733. Epub 2016 Jan 19.","parent_key":"BE0001032"} {"ref-id":"A15943","pubmed-id":8937457,"citation":"Schrenk D, Michalke A, Gant TW, Brown PC, Silverman JA, Thorgeirsson SS: Multidrug resistance gene expression in rodents and rodent hepatocytes treated with mitoxantrone. Biochem Pharmacol. 1996 Nov 8;52(9):1453-60.","parent_key":"BE0001032"} {"ref-id":"A16233","pubmed-id":16434618,"citation":"Morrow CS, Peklak-Scott C, Bishwokarma B, Kute TE, Smitherman PK, Townsend AJ: Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol Pharmacol. 2006 Apr;69(4):1499-505. Epub 2006 Jan 24.","parent_key":"BE0000785"} {"ref-id":"A16234","pubmed-id":11454692,"citation":"Diah SK, Smitherman PK, Aldridge J, Volk EL, Schneider E, Townsend AJ, Morrow CS: Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins. Cancer Res. 2001 Jul 15;61(14):5461-7.","parent_key":"BE0000785"} {"ref-id":"A16233","pubmed-id":16434618,"citation":"Morrow CS, Peklak-Scott C, Bishwokarma B, Kute TE, Smitherman PK, Townsend AJ: Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol Pharmacol. 2006 Apr;69(4):1499-505. Epub 2006 Jan 24.","parent_key":"BE0001067"} {"ref-id":"A16390","pubmed-id":10806112,"citation":"Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD, Miyake K, Resau JH, Bates SE: The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci. 2000 Jun;113 ( Pt 11):2011-21.","parent_key":"BE0001067"} {"ref-id":"A16392","pubmed-id":10485464,"citation":"Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH: The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res. 1999 Sep 1;59(17):4237-41.","parent_key":"BE0001067"} {"ref-id":"A16393","pubmed-id":19782742,"citation":"Paturi DK, Kwatra D, Ananthula HK, Pal D, Mitra AK: Identification and functional characterization of breast cancer resistance protein in human bronchial epithelial cells (Calu-3). Int J Pharm. 2010 Jan 15;384(1-2):32-8. doi: 10.1016/j.ijpharm.2009.09.037. Epub 2009 Sep 25.","parent_key":"BE0001067"} {"ref-id":"A16394","pubmed-id":19548284,"citation":"Ma Y, Wink M: The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytother Res. 2010 Jan;24(1):146-9. doi: 10.1002/ptr.2860.","parent_key":"BE0001067"} {"ref-id":"A16395","pubmed-id":19572416,"citation":"Mahringer A, Delzer J, Fricker G: A fluorescence-based in vitro assay for drug interactions with breast cancer resistance protein (BCRP, ABCG2). Eur J Pharm Biopharm. 2009 Aug;72(3):605-13. doi: 10.1016/j.ejpb.2009.01.010.","parent_key":"BE0001067"} {"ref-id":"A16396","pubmed-id":19501160,"citation":"Nicolle E, Boccard J, Guilet D, Dijoux-Franca MG, Zelefac F, Macalou S, Grosselin J, Schmidt J, Carrupt PA, Di Pietro A, Boumendjel A: Breast cancer resistance protein (BCRP/ABCG2): new inhibitors and QSAR studies by a 3D linear solvation energy approach. Eur J Pharm Sci. 2009 Aug 12;38(1):39-46. doi: 10.1016/j.ejps.2009.05.012. Epub 2009 Jun 6.","parent_key":"BE0001067"} {"ref-id":"A16397","pubmed-id":19252303,"citation":"Jani M, Szabo P, Kis E, Molnar E, Glavinas H, Krajcsi P: Kinetic characterization of sulfasalazine transport by human ATP-binding cassette G2. Biol Pharm Bull. 2009 Mar;32(3):497-9.","parent_key":"BE0001067"} {"ref-id":"A16398","pubmed-id":19172464,"citation":"Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A: Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res. 2009 Jan;34(1):1-9. doi: 10.1080/02713680802518251.","parent_key":"BE0001067"} {"ref-id":"A16399","pubmed-id":10070941,"citation":"Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA: Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst. 1999 Mar 3;91(5):429-33.","parent_key":"BE0001067"} {"ref-id":"A16400","pubmed-id":10606239,"citation":"Brangi M, Litman T, Ciotti M, Nishiyama K, Kohlhagen G, Takimoto C, Robey R, Pommier Y, Fojo T, Bates SE: Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res. 1999 Dec 1;59(23):5938-46.","parent_key":"BE0001067"} {"ref-id":"A16438","pubmed-id":9756763,"citation":"Cormet-Boyaka E, Huneau JF, Mordrelle A, Boyaka PN, Carbon C, Rubinstein E, Tome D: Secretion of sparfloxacin from the human intestinal Caco-2 cell line is altered by P-glycoprotein inhibitors. Antimicrob Agents Chemother. 1998 Oct;42(10):2607-11.","parent_key":"BE0001032"} {"ref-id":"A16144","pubmed-id":15258108,"citation":"Egashira K, Ohtani H, Itoh S, Koyabu N, Tsujimoto M, Murakami H, Sawada Y: Inhibitory effects of pomelo on the metabolism of tacrolimus and the activities of CYP3A4 and P-glycoprotein. Drug Metab Dispos. 2004 Aug;32(8):828-33.","parent_key":"BE0001032"} {"ref-id":"A2124","pubmed-id":18486039,"citation":"Authors unspecified: Clarithromycin. Tuberculosis (Edinb). 2008 Mar;88(2):92-5. doi: 10.1016/S1472-9792(08)70005-2.","parent_key":"BE0001032"} {"ref-id":"A16145","pubmed-id":15175422,"citation":"Dey S, Gunda S, Mitra AK: Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther. 2004 Oct;311(1):246-55. Epub 2004 Jun 2.","parent_key":"BE0001032"} {"ref-id":"A191257","pubmed-id":12904601,"citation":"Hanko E, Tommarello S, Watchko JF, Hansen TW: Administration of drugs known to inhibit P-glycoprotein increases brain bilirubin and alters the regional distribution of bilirubin in rat brain. Pediatr Res. 2003 Oct;54(4):441-5. doi: 10.1203/01.PDR.0000085169.87948.B6. Epub 2003 Aug 6.","parent_key":"BE0001032"} {"ref-id":"A186862","pubmed-id":27747906,"citation":"Gervasini G, Jara C, Olier C, Romero N, Martinez R, Carrillo JA: Polymorphisms in ABCB1 and CYP19A1 genes affect anastrozole plasma concentrations and clinical outcomes in postmenopausal breast cancer patients. Br J Clin Pharmacol. 2017 Mar;83(3):562-571. doi: 10.1111/bcp.13130. Epub 2016 Oct 18.","parent_key":"BE0001032"} {"ref-id":"A183854","pubmed-id":28730856,"citation":"Chen N, Cui D, Wang Q, Wen Z, Finkelman RD, Welty D: In vitro drug-drug interactions of budesonide: inhibition and induction of transporters and cytochrome P450 enzymes. Xenobiotica. 2018 Jun;48(6):637-646. doi: 10.1080/00498254.2017.1344911. Epub 2017 Jul 21.","parent_key":"BE0001032"} {"ref-id":"A185768","pubmed-id":24240480,"citation":"Kim KA, Joo HJ, Lee HM, Park JY: Influence of ABCB1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of quetiapine in healthy volunteers. Pharmacogenet Genomics. 2014 Jan;24(1):35-42. doi: 10.1097/FPC.0000000000000020.","parent_key":"BE0001032"} {"ref-id":"A16138","pubmed-id":11504826,"citation":"Jang SH, Wientjes MG, Au JL: Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J Pharmacol Exp Ther. 2001 Sep;298(3):1236-42.","parent_key":"BE0001032"} {"ref-id":"A16139","pubmed-id":9531522,"citation":"Walle UK, Walle T: Taxol transport by human intestinal epithelial Caco-2 cells. Drug Metab Dispos. 1998 Apr;26(4):343-6.","parent_key":"BE0001032"} {"ref-id":"A16140","pubmed-id":19903471,"citation":"Kwak JO, Lee SH, Lee GS, Kim MS, Ahn YG, Lee JH, Kim SW, Kim KH, Lee MG: Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. Eur J Pharmacol. 2010 Feb 10;627(1-3):92-8. doi: 10.1016/j.ejphar.2009.11.008. Epub 2009 Nov 10.","parent_key":"BE0001032"} {"ref-id":"A18100","pubmed-id":16210916,"citation":"Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A: Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther. 2005 Aug;4(8):815-8.","parent_key":"BE0003659"} {"ref-id":"A18102","pubmed-id":12417570,"citation":"Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, Bernhardt G, Graeff C, Farber L, Gschaidmeier H, Buschauer A, Fricker G: Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest. 2002 Nov;110(9):1309-18.","parent_key":"BE0001069"} {"ref-id":"A15827","pubmed-id":9732409,"citation":"Kim AE, Dintaman JM, Waddell DS, Silverman JA: Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther. 1998 Sep;286(3):1439-45.","parent_key":"BE0001032"} {"ref-id":"A15831","pubmed-id":10583025,"citation":"Eagling VA, Profit L, Back DJ: Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grapefruit juice components. Br J Clin Pharmacol. 1999 Oct;48(4):543-52.","parent_key":"BE0001032"} {"ref-id":"A16379","pubmed-id":16284458,"citation":"Janneh O, Owen A, Chandler B, Hartkoorn RC, Hart CA, Bray PG, Ward SA, Back DJ, Khoo SH: Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. AIDS. 2005 Dec 2;19(18):2097-102.","parent_key":"BE0001067"} {"ref-id":"A16451","pubmed-id":12384350,"citation":"Williams GC, Liu A, Knipp G, Sinko PJ: Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother. 2002 Nov;46(11):3456-62.","parent_key":"BE0000785"} {"ref-id":"A16451","pubmed-id":12384350,"citation":"Williams GC, Liu A, Knipp G, Sinko PJ: Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother. 2002 Nov;46(11):3456-62.","parent_key":"BE0001069"} {"ref-id":"A8936","pubmed-id":12702717,"citation":"Zelcer N, Huisman MT, Reid G, Wielinga P, Breedveld P, Kuil A, Knipscheer P, Schellens JH, Schinkel AH, Borst P: Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J Biol Chem. 2003 Jun 27;278(26):23538-44. Epub 2003 Apr 17.","parent_key":"BE0001069"} {"ref-id":"A184985","pubmed-id":26585058,"citation":"Pottier G, Marie S, Goutal S, Auvity S, Peyronneau MA, Stute S, Boisgard R, Dolle F, Buvat I, Caille F, Tournier N: Imaging the Impact of the P-Glycoprotein (ABCB1) Function on the Brain Kinetics of Metoclopramide. J Nucl Med. 2016 Feb;57(2):309-14. doi: 10.2967/jnumed.115.164350. Epub 2015 Nov 19.","parent_key":"BE0001032"} {"ref-id":"A184988","pubmed-id":29853808,"citation":"Caille F, Goutal S, Marie S, Auvity S, Cisternino S, Kuhnast B, Pottier G, Tournier N: Positron Emission Tomography Imaging Reveals an Importance of Saturable Liver Uptake Transport for the Pharmacokinetics of Metoclopramide. Contrast Media Mol Imaging. 2018 May 8;2018:7310146. doi: 10.1155/2018/7310146. eCollection 2018.","parent_key":"BE0001032"} {"ref-id":"A184991","pubmed-id":30903694,"citation":"Bauer M, Tournier N, Langer O: Imaging P-Glycoprotein Function at the Blood-Brain Barrier as a Determinant of the Variability in Response to Central Nervous System Drugs. Clin Pharmacol Ther. 2019 May;105(5):1061-1064. doi: 10.1002/cpt.1402. Epub 2019 Mar 23.","parent_key":"BE0001032"} {"ref-id":"A15875","pubmed-id":8845310,"citation":"Schuetz JD, Silverman JA, Thottassery JV, Furuya KN, Schuetz EG: Divergent regulation of the class II P-glycoprotein gene in primary cultures of hepatocytes versus H35 hepatoma by glucocorticoids. Cell Growth Differ. 1995 Oct;6(10):1321-32.","parent_key":"BE0001032"} {"ref-id":"A15803","pubmed-id":11557128,"citation":"Fardel O, Payen L, Courtois A, Vernhet L, Lecureur V: Regulation of biliary drug efflux pump expression by hormones and xenobiotics. Toxicology. 2001 Oct 5;167(1):37-46.","parent_key":"BE0000703"} {"ref-id":"A16010","pubmed-id":9929003,"citation":"Demeule M, Jodoin J, Beaulieu E, Brossard M, Beliveau R: Dexamethasone modulation of multidrug transporters in normal tissues. FEBS Lett. 1999 Jan 15;442(2-3):208-14.","parent_key":"BE0001069"} {"ref-id":"A16575","pubmed-id":8309790,"citation":"Ullrich KJ, Rumrich G, David C, Fritzsch G: Bisubstrates: substances that interact with renal contraluminal organic anion and organic cation transport systems. I. Amines, piperidines, piperazines, azepines, pyridines, quinolines, imidazoles, thiazoles, guanidines and hydrazines. Pflugers Arch. 1993 Nov;425(3-4):280-99.","parent_key":"BE0001066"} {"ref-id":"A191197","pubmed-id":24602126,"citation":"Schrickx JA, Fink-Gremmels J: Inhibition of P-glycoprotein by psychotherapeutic drugs in a canine cell model. J Vet Pharmacol Ther. 2014 Oct;37(5):515-7. doi: 10.1111/jvp.12111. Epub 2014 Mar 7.","parent_key":"BE0001032"} {"ref-id":"A15823","pubmed-id":7945455,"citation":"Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, Scherman D: Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol. 1994 Oct 7;48(7):1528-30.","parent_key":"BE0001032"} {"ref-id":"A16442","pubmed-id":10665657,"citation":"Shirakawa K, Takara K, Tanigawara Y, Aoyama N, Kasuga M, Komada F, Sakaeda T, Okumura K: Interaction of docetaxel (\"Taxotere\") with human P-glycoprotein. Jpn J Cancer Res. 1999 Dec;90(12):1380-6.","parent_key":"BE0001032"} {"ref-id":"A18103","pubmed-id":18509327,"citation":"Baker SD, Verweij J, Cusatis GA, van Schaik RH, Marsh S, Orwick SJ, Franke RM, Hu S, Schuetz EG, Lamba V, Messersmith WA, Wolff AC, Carducci MA, Sparreboom A: Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther. 2009 Feb;85(2):155-63. doi: 10.1038/clpt.2008.95. Epub 2008 May 28.","parent_key":"BE0003659"} {"ref-id":"A18102","pubmed-id":12417570,"citation":"Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, Bernhardt G, Graeff C, Farber L, Gschaidmeier H, Buschauer A, Fricker G: Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest. 2002 Nov;110(9):1309-18.","parent_key":"BE0001067"} {"ref-id":"A37244","pubmed-id":22098950,"citation":"Nakanishi T, Ross DD: Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer. 2012 Feb;31(2):73-99. doi: 10.5732/cjc.011.10320. Epub 2011 Nov 18.","parent_key":"BE0001067"} {"ref-id":"A18102","pubmed-id":12417570,"citation":"Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, Bernhardt G, Graeff C, Farber L, Gschaidmeier H, Buschauer A, Fricker G: Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest. 2002 Nov;110(9):1309-18.","parent_key":"BE0000785"} {"ref-id":"A16202","pubmed-id":18829547,"citation":"Dai CL, Tiwari AK, Wu CP, Su XD, Wang SR, Liu DG, Ashby CR Jr, Huang Y, Robey RW, Liang YJ, Chen LM, Shi CJ, Ambudkar SV, Chen ZS, Fu LW: Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008 Oct 1;68(19):7905-14. doi: 10.1158/0008-5472.CAN-08-0499.","parent_key":"BE0001032"} {"ref-id":"A15001","pubmed-id":20590741,"citation":"Scheen AJ: Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab. 2010 Aug;12(8):648-58. doi: 10.1111/j.1463-1326.2010.01212.x.","parent_key":"BE0001032"} {"ref-id":"A15003","pubmed-id":18190324,"citation":"Nagappan V, Deresinski S: Reviews of anti-infective agents: posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis. 2007 Dec 15;45(12):1610-7. doi: 10.1086/523576.","parent_key":"BE0001032"} {"ref-id":"A191209","pubmed-id":30259783,"citation":"Shumaker AC, Bullard HM, Churpek J, Knoebel RW: Posaconazole-digoxin drug-drug interaction mediated by inhibition of P-glycoprotein. J Oncol Pharm Pract. 2019 Oct;25(7):1758-1761. doi: 10.1177/1078155218801055. Epub 2018 Sep 27.","parent_key":"BE0001032"} {"ref-id":"A191478","pubmed-id":23494984,"citation":"Molto J, Xinarianos G, Miranda C, Pushpakom S, Cedeno S, Clotet B, Owen A, Valle M: Simultaneous pharmacogenetics-based population pharmacokinetic analysis of darunavir and ritonavir in HIV-infected patients. Clin Pharmacokinet. 2013 Jul;52(7):543-53. doi: 10.1007/s40262-013-0057-6.","parent_key":"BE0001004"} {"ref-id":"A191481","pubmed-id":23707228,"citation":"Tempestilli M, Gentilotti E, Tommasi C, Nicastri E, Martini F, De Nardo P, Narciso P, Pucillo LP: Determination of P-glycoprotein surface expression and functional ability after in vitro treatment with darunavir or raltegravir in lymphocytes of healthy donors. Int Immunopharmacol. 2013 Aug;16(4):492-7. doi: 10.1016/j.intimp.2013.05.003. Epub 2013 May 23.","parent_key":"BE0001032"} {"ref-id":"A191484","pubmed-id":20817741,"citation":"Konig SK, Herzog M, Theile D, Zembruski N, Haefeli WE, Weiss J: Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J Antimicrob Chemother. 2010 Nov;65(11):2319-28. doi: 10.1093/jac/dkq324. Epub 2010 Sep 3.","parent_key":"BE0001032"} {"ref-id":"A191487","pubmed-id":23836171,"citation":"Chan GN, Patel R, Cummins CL, Bendayan R: Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells. Antimicrob Agents Chemother. 2013 Sep;57(9):4481-8. doi: 10.1128/AAC.00486-13. Epub 2013 Jul 8.","parent_key":"BE0001032"} {"ref-id":"A16200","pubmed-id":18971320,"citation":"Shukla S, Robey RW, Bates SE, Ambudkar SV: Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos. 2009 Feb;37(2):359-65. doi: 10.1124/dmd.108.024612. Epub 2008 Oct 29.","parent_key":"BE0001032"} {"ref-id":"A191206","pubmed-id":21351087,"citation":"Tang SC, Lagas JS, Lankheet NA, Poller B, Hillebrand MJ, Rosing H, Beijnen JH, Schinkel AH: Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer. 2012 Jan 1;130(1):223-33. doi: 10.1002/ijc.26000. Epub 2011 Apr 7.","parent_key":"BE0001032"} {"ref-id":"A16200","pubmed-id":18971320,"citation":"Shukla S, Robey RW, Bates SE, Ambudkar SV: Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos. 2009 Feb;37(2):359-65. doi: 10.1124/dmd.108.024612. Epub 2008 Oct 29.","parent_key":"BE0001067"} {"ref-id":"A15922","pubmed-id":11180019,"citation":"Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K: St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther. 2000 Dec;68(6):598-604.","parent_key":"BE0001032"} {"ref-id":"A17276","pubmed-id":17344354,"citation":"Ci L, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y: Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol Pharmacol. 2007 Jun;71(6):1591-7. Epub 2007 Mar 7.","parent_key":"BE0001188"} {"ref-id":"A16128","pubmed-id":10901697,"citation":"Wandel C, Kim RB, Guengerich FP, Wood AJ: Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos. 2000 Aug;28(8):895-8.","parent_key":"BE0001032"} {"ref-id":"A185177","pubmed-id":18411403,"citation":"Bui PH, Quesada A, Handforth A, Hankinson O: The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil. Drug Metab Dispos. 2008 Jul;36(7):1291-9. doi: 10.1124/dmd.107.020115. Epub 2008 Apr 14.","parent_key":"BE0001032"} {"ref-id":"A27309","pubmed-id":21341745,"citation":"Broccatelli F, Carosati E, Neri A, Frosini M, Goracci L, Oprea TI, Cruciani G: A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields. J Med Chem. 2011 Mar 24;54(6):1740-51. doi: 10.1021/jm101421d. Epub 2011 Feb 22.","parent_key":"BE0001032"} {"ref-id":"A37367","pubmed-id":24759273,"citation":"Silva R, Carmo H, Vilas-Boas V, Barbosa DJ, Palmeira A, Sousa E, Carvalho F, Bastos Mde L, Remiao F: Colchicine effect on P-glycoprotein expression and activity: in silico and in vitro studies. Chem Biol Interact. 2014 Jul 25;218:50-62. doi: 10.1016/j.cbi.2014.04.009. Epub 2014 Apr 20.","parent_key":"BE0001032"} {"ref-id":"A183851","pubmed-id":8858954,"citation":"Drion N, Lemaire M, Lefauconnier JM, Scherrmann JM: Role of P-glycoprotein in the blood-brain transport of colchicine and vinblastine. J Neurochem. 1996 Oct;67(4):1688-93. doi: 10.1046/j.1471-4159.1996.67041688.x.","parent_key":"BE0001032"} {"ref-id":"A183857","pubmed-id":16978677,"citation":"Decleves X, Niel E, Debray M, Scherrmann JM: Is P-glycoprotein (ABCB1) a phase 0 or a phase 3 colchicine transporter depending on colchicine exposure conditions? Toxicol Appl Pharmacol. 2006 Dec 1;217(2):153-60. doi: 10.1016/j.taap.2006.08.004. Epub 2006 Aug 10.","parent_key":"BE0001032"} {"ref-id":"A16437","pubmed-id":11284449,"citation":"Pauli-Magnus C, Murdter T, Godel A, Mettang T, Eichelbaum M, Klotz U, Fromm MF: P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedebergs Arch Pharmacol. 2001 Mar;363(3):337-43.","parent_key":"BE0001032"} {"ref-id":"A15733","pubmed-id":10411577,"citation":"Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, Endou H: The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999 Aug;290(2):672-7.","parent_key":"BE0003645"} {"ref-id":"A16304","pubmed-id":15618660,"citation":"Uwai Y, Saito H, Inui K: Rat renal organic anion transporter rOAT1 mediates transport of urinary-excreted cephalosporins, but not of biliary-excreted cefoperazone. Drug Metab Pharmacokinet. 2002;17(2):125-9.","parent_key":"BE0003645"} {"ref-id":"A20309","pubmed-id":18021343,"citation":"Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS: Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther. 2007 Dec;32(6):641-9.","parent_key":"BE0001032"} {"ref-id":"A15791","pubmed-id":11509573,"citation":"Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, Lamba J, Kim RB, Ramachandran V, Komoroski BJ, Venkataramanan R, Cai H, Sinal CJ, Gonzalez FJ, Schuetz JD: Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem. 2001 Oct 19;276(42):39411-8. doi: 10.1074/jbc.M106340200. Epub 2001 Aug 16.","parent_key":"BE0000703"} {"ref-id":"A15792","pubmed-id":10607905,"citation":"Green RM, Hoda F, Ward KL: Molecular cloning and characterization of the murine bile salt export pump. Gene. 2000 Jan 4;241(1):117-23.","parent_key":"BE0000703"} {"ref-id":"A15793","pubmed-id":15297262,"citation":"Mita S, Suzuki H, Akita H, Stieger B, Meier PJ, Hofmann AF, Sugiyama Y: Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump. Am J Physiol Gastrointest Liver Physiol. 2005 Jan;288(1):G159-67. Epub 2004 Aug 5.","parent_key":"BE0000703"} {"ref-id":"A15939","pubmed-id":11438506,"citation":"Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Pojer C, Zenz R, Lammert F, Stieger B, Meier PJ, Zatloukal K, Denk H, Trauner M: Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology. 2001 Jul;121(1):170-83.","parent_key":"BE0003642"} {"ref-id":"A15967","pubmed-id":7557095,"citation":"Kullak-Ublick GA, Hagenbuch B, Stieger B, Schteingart CD, Hofmann AF, Wolkoff AW, Meier PJ: Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology. 1995 Oct;109(4):1274-82.","parent_key":"BE0003642"} {"ref-id":"A15980","pubmed-id":12842829,"citation":"Hata S, Wang P, Eftychiou N, Ananthanarayanan M, Batta A, Salen G, Pang KS, Wolkoff AW: Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am J Physiol Gastrointest Liver Physiol. 2003 Nov;285(5):G829-39. Epub 2003 Jul 3.","parent_key":"BE0003642"} {"ref-id":"A15939","pubmed-id":11438506,"citation":"Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Pojer C, Zenz R, Lammert F, Stieger B, Meier PJ, Zatloukal K, Denk H, Trauner M: Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology. 2001 Jul;121(1):170-83.","parent_key":"BE0001069"} {"ref-id":"A16273","pubmed-id":8166278,"citation":"Boyer JL, Ng OC, Ananthanarayanan M, Hofmann AF, Schteingart CD, Hagenbuch B, Stieger B, Meier PJ: Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS-7 cells. Am J Physiol. 1994 Mar;266(3 Pt 1):G382-7.","parent_key":"BE0003644"} {"ref-id":"A15793","pubmed-id":15297262,"citation":"Mita S, Suzuki H, Akita H, Stieger B, Meier PJ, Hofmann AF, Sugiyama Y: Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump. Am J Physiol Gastrointest Liver Physiol. 2005 Jan;288(1):G159-67. Epub 2004 Aug 5.","parent_key":"BE0003644"} {"ref-id":"A34547","pubmed-id":21524191,"citation":"Picard N, Levoir L, Lamoureux F, Yee SW, Giacomini KM, Marquet P: Interaction of sirolimus and everolimus with hepatic and intestinal organic anion-transporting polypeptide transporters. Xenobiotica. 2011 Sep;41(9):752-7. doi: 10.3109/00498254.2011.573882. Epub 2011 Apr 27.","parent_key":"BE0001004"} {"ref-id":"A34547","pubmed-id":21524191,"citation":"Picard N, Levoir L, Lamoureux F, Yee SW, Giacomini KM, Marquet P: Interaction of sirolimus and everolimus with hepatic and intestinal organic anion-transporting polypeptide transporters. Xenobiotica. 2011 Sep;41(9):752-7. doi: 10.3109/00498254.2011.573882. Epub 2011 Apr 27.","parent_key":"BE0003659"} {"ref-id":"A34547","pubmed-id":21524191,"citation":"Picard N, Levoir L, Lamoureux F, Yee SW, Giacomini KM, Marquet P: Interaction of sirolimus and everolimus with hepatic and intestinal organic anion-transporting polypeptide transporters. Xenobiotica. 2011 Sep;41(9):752-7. doi: 10.3109/00498254.2011.573882. Epub 2011 Apr 27.","parent_key":"BE0003642"} {"ref-id":"A16190","pubmed-id":12700464,"citation":"Vishnuvardhan D, Moltke LL, Richert C, Greenblatt DJ: Lopinavir: acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. AIDS. 2003 May 2;17(7):1092-4.","parent_key":"BE0001032"} {"ref-id":"A34523","pubmed-id":20102298,"citation":"Annaert P, Ye ZW, Stieger B, Augustijns P: Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010 Mar;40(3):163-76. doi: 10.3109/00498250903509375.","parent_key":"BE0003659"} {"ref-id":"A36984","pubmed-id":29277663,"citation":"Wen S, Wang C, Duan Y, Huo X, Meng Q, Liu Z, Yang S, Zhu Y, Sun H, Ma X, Yang S, Liu K: OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int J Pharm. 2018 Feb 15;537(1-2):172-182. doi: 10.1016/j.ijpharm.2017.12.037. Epub 2017 Dec 23.","parent_key":"BE0001066"} {"ref-id":"A183071","pubmed-id":26429523,"citation":"Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, Gillies MC, Zhou F: Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2. J Pharm Sci. 2016 Feb;105(2):884-890. doi: 10.1002/jps.24663. Epub 2016 Jan 12.","parent_key":"BE0003642"} {"ref-id":"A16181","pubmed-id":8960067,"citation":"Castro AF, Altenberg GA: Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. Biochem Pharmacol. 1997 Jan 10;53(1):89-93.","parent_key":"BE0001032"} {"ref-id":"A16182","pubmed-id":8980395,"citation":"Versantvoort CH, Rhodes T, Twentyman PR: Acceleration of MRP-associated efflux of rhodamine 123 by genistein and related compounds. Br J Cancer. 1996 Dec;74(12):1949-54.","parent_key":"BE0001032"} {"ref-id":"A16207","pubmed-id":12373300,"citation":"Pec MK, Aguirre A, Fernandez JJ, Souto ML, Dorta JF, Villar J: Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates. Int J Mol Med. 2002 Nov;10(5):605-8.","parent_key":"BE0000785"} {"ref-id":"A15962","pubmed-id":12532374,"citation":"Nguyen H, Zhang S, Morris ME: Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci. 2003 Feb;92(2):250-7.","parent_key":"BE0000785"} {"ref-id":"A16182","pubmed-id":8980395,"citation":"Versantvoort CH, Rhodes T, Twentyman PR: Acceleration of MRP-associated efflux of rhodamine 123 by genistein and related compounds. Br J Cancer. 1996 Dec;74(12):1949-54.","parent_key":"BE0000785"} {"ref-id":"A16320","pubmed-id":11967025,"citation":"Deguchi T, Ohtsuki S, Otagiri M, Takanaga H, Asaba H, Mori S, Terasaki T: Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 2002 May;61(5):1760-8.","parent_key":"BE0003645"} {"ref-id":"A19659","pubmed-id":28082903,"citation":"Miyata H, Takada T, Toyoda Y, Matsuo H, Ichida K, Suzuki H: Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Front Pharmacol. 2016 Dec 27;7:518. doi: 10.3389/fphar.2016.00518. eCollection 2016.","parent_key":"BE0001067"} {"ref-id":"A187012","pubmed-id":25147980,"citation":"Cho E, Montgomery RB, Mostaghel EA: Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014 Nov;155(11):4124-32. doi: 10.1210/en.2014-1337. Epub 2014 Aug 22.","parent_key":"BE0001042"} {"ref-id":"A187012","pubmed-id":25147980,"citation":"Cho E, Montgomery RB, Mostaghel EA: Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014 Nov;155(11):4124-32. doi: 10.1210/en.2014-1337. Epub 2014 Aug 22.","parent_key":"BE0001004"} {"ref-id":"A187012","pubmed-id":25147980,"citation":"Cho E, Montgomery RB, Mostaghel EA: Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014 Nov;155(11):4124-32. doi: 10.1210/en.2014-1337. Epub 2014 Aug 22.","parent_key":"BE0003642"} {"ref-id":"A187012","pubmed-id":25147980,"citation":"Cho E, Montgomery RB, Mostaghel EA: Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014 Nov;155(11):4124-32. doi: 10.1210/en.2014-1337. Epub 2014 Aug 22.","parent_key":"BE0000785"} {"ref-id":"A187012","pubmed-id":25147980,"citation":"Cho E, Montgomery RB, Mostaghel EA: Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014 Nov;155(11):4124-32. doi: 10.1210/en.2014-1337. Epub 2014 Aug 22.","parent_key":"BE0001067"} {"ref-id":"A187012","pubmed-id":25147980,"citation":"Cho E, Montgomery RB, Mostaghel EA: Minireview: SLCO and ABC transporters: a role for steroid transport in prostate cancer progression. Endocrinology. 2014 Nov;155(11):4124-32. doi: 10.1210/en.2014-1337. Epub 2014 Aug 22.","parent_key":"BE0001188"} {"ref-id":"A16180","pubmed-id":8624264,"citation":"Budworth J, Davies R, Malkhandi J, Gant TW, Ferry DR, Gescher A: Comparison of staurosporine and four analogues: their effects on growth, rhodamine 123 retention and binding to P-glycoprotein in multidrug-resistant MCF-7/Adr cells. Br J Cancer. 1996 May;73(9):1063-8.","parent_key":"BE0001032"} {"ref-id":"A15961","pubmed-id":11306701,"citation":"Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, Cole SP: Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Mol Pharmacol. 2001 May;59(5):1171-80.","parent_key":"BE0000785"} {"ref-id":"A15794","pubmed-id":12235261,"citation":"Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81.","parent_key":"BE0000703"} {"ref-id":"A15939","pubmed-id":11438506,"citation":"Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Pojer C, Zenz R, Lammert F, Stieger B, Meier PJ, Zatloukal K, Denk H, Trauner M: Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology. 2001 Jul;121(1):170-83.","parent_key":"BE0001032"} {"ref-id":"A15794","pubmed-id":12235261,"citation":"Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81.","parent_key":"BE0000785"} {"ref-id":"A15985","pubmed-id":8278353,"citation":"Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ: Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):133-7.","parent_key":"BE0003642"} {"ref-id":"A15794","pubmed-id":12235261,"citation":"Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81.","parent_key":"BE0001004"} {"ref-id":"A16018","pubmed-id":10644574,"citation":"Konig J, Cui Y, Nies AT, Keppler D: A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000 Jan;278(1):G156-64.","parent_key":"BE0001004"} {"ref-id":"A15980","pubmed-id":12842829,"citation":"Hata S, Wang P, Eftychiou N, Ananthanarayanan M, Batta A, Salen G, Pang KS, Wolkoff AW: Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am J Physiol Gastrointest Liver Physiol. 2003 Nov;285(5):G829-39. Epub 2003 Jul 3.","parent_key":"BE0003644"} {"ref-id":"A16124","pubmed-id":12106615,"citation":"Bode KA, Donner MG, Leier I, Keppler D: Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate. Biochem Pharmacol. 2002 Jul 1;64(1):151-8.","parent_key":"BE0000703"} {"ref-id":"A16124","pubmed-id":12106615,"citation":"Bode KA, Donner MG, Leier I, Keppler D: Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate. Biochem Pharmacol. 2002 Jul 1;64(1):151-8.","parent_key":"BE0001069"} {"ref-id":"A37756","pubmed-id":27458210,"citation":"Gupta A, Harris JJ, Lin J, Bulgarelli JP, Birmingham BK, Grimm SW: Fusidic Acid Inhibits Hepatic Transporters and Metabolic Enzymes: Potential Cause of Clinical Drug-Drug Interaction Observed with Statin Coadministration. Antimicrob Agents Chemother. 2016 Sep 23;60(10):5986-94. doi: 10.1128/AAC.01335-16. Print 2016 Oct.","parent_key":"BE0001067"} {"ref-id":"A37756","pubmed-id":27458210,"citation":"Gupta A, Harris JJ, Lin J, Bulgarelli JP, Birmingham BK, Grimm SW: Fusidic Acid Inhibits Hepatic Transporters and Metabolic Enzymes: Potential Cause of Clinical Drug-Drug Interaction Observed with Statin Coadministration. Antimicrob Agents Chemother. 2016 Sep 23;60(10):5986-94. doi: 10.1128/AAC.01335-16. Print 2016 Oct.","parent_key":"BE0001004"} {"ref-id":"A16447","pubmed-id":15618625,"citation":"Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M: Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem. 2004 Dec;68(12):2541-6.","parent_key":"BE0001032"} {"ref-id":"A16186","pubmed-id":9821810,"citation":"Takanaga H, Ohnishi A, Matsuo H, Sawada Y: Inhibition of vinblastine efflux mediated by P-glycoprotein by grapefruit juice components in caco-2 cells. Biol Pharm Bull. 1998 Oct;21(10):1062-6.","parent_key":"BE0001032"} {"ref-id":"A16184","pubmed-id":14980703,"citation":"Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ: Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med. 2004 Mar 1;36(5):592-604.","parent_key":"BE0001032"} {"ref-id":"A33386","pubmed-id":25685543,"citation":"Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM: P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J Adv Res. 2015 Jan;6(1):45-62. doi: 10.1016/j.jare.2014.11.008. Epub 2014 Dec 1.","parent_key":"BE0001032"} {"ref-id":"A16481","pubmed-id":12960118,"citation":"Nakanishi T, Karp JE, Tan M, Doyle LA, Peters T, Yang W, Wei D, Ross DD: Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients. Clin Cancer Res. 2003 Aug 15;9(9):3320-8.","parent_key":"BE0001067"} {"ref-id":"A16452","pubmed-id":12944313,"citation":"Saengkhae C, Loetchutinat C, Garnier-Suillerot A: Kinetic analysis of rhodamines efflux mediated by the multidrug resistance protein (MRP1). Biophys J. 2003 Sep;85(3):2006-14.","parent_key":"BE0000785"} {"ref-id":"A16452","pubmed-id":12944313,"citation":"Saengkhae C, Loetchutinat C, Garnier-Suillerot A: Kinetic analysis of rhodamines efflux mediated by the multidrug resistance protein (MRP1). Biophys J. 2003 Sep;85(3):2006-14.","parent_key":"BE0001032"} {"ref-id":"A16336","pubmed-id":9918561,"citation":"Akhteruzzaman S, Kato Y, Hisaka A, Sugiyama Y: Primary active transport of peptidic endothelin antagonists by rat hepatic canalicular membrane. J Pharmacol Exp Ther. 1999 Feb;288(2):575-81.","parent_key":"BE0001069"} {"ref-id":"A16405","pubmed-id":12650826,"citation":"Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, Enomoto A, Huang XL, Narikawa S, Anzai N, Piyachaturawat P, Endou H: Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003 Mar 28;465(1-2):1-7.","parent_key":"BE0001066"} {"ref-id":"A16405","pubmed-id":12650826,"citation":"Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, Enomoto A, Huang XL, Narikawa S, Anzai N, Piyachaturawat P, Endou H: Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003 Mar 28;465(1-2):1-7.","parent_key":"BE0003645"} {"ref-id":"A16405","pubmed-id":12650826,"citation":"Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, Enomoto A, Huang XL, Narikawa S, Anzai N, Piyachaturawat P, Endou H: Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003 Mar 28;465(1-2):1-7.","parent_key":"BE0000879"} {"ref-id":"A15960","pubmed-id":11836020,"citation":"Kauffmann HM, Pfannschmidt S, Zoller H, Benz A, Vorderstemann B, Webster JI, Schrenk D: Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology. 2002 Feb 28;171(2-3):137-46.","parent_key":"BE0000785"} {"ref-id":"A16007","pubmed-id":10660112,"citation":"Bock KW, Eckle T, Ouzzine M, Fournel-Gigleux S: Coordinate induction by antioxidants of UDP-glucuronosyltransferase UGT1A6 and the apical conjugate export pump MRP2 (multidrug resistance protein 2) in Caco-2 cells. Biochem Pharmacol. 2000 Mar 1;59(5):467-70.","parent_key":"BE0001069"} {"ref-id":"A16183","pubmed-id":9105411,"citation":"Shapiro AB, Ling V: Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol. 1997 Feb 21;53(4):587-96.","parent_key":"BE0001032"} {"ref-id":"A15832","pubmed-id":15240100,"citation":"Choi CH, Kim JH, Kim SH: Reversal of P-glycoprotein-mediated MDR by 5,7,3',4',5'-pentamethoxyflavone and SAR. Biochem Biophys Res Commun. 2004 Jul 30;320(3):672-9.","parent_key":"BE0001032"} {"ref-id":"A15795","pubmed-id":12399219,"citation":"Wolters H, Elzinga BM, Baller JF, Boverhof R, Schwarz M, Stieger B, Verkade HJ, Kuipers F: Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. J Hepatol. 2002 Nov;37(5):556-63.","parent_key":"BE0000703"} {"ref-id":"A15797","pubmed-id":12518026,"citation":"Mendoza ME, Monte MJ, Serrano MA, Pastor-Anglada M, Stieger B, Meier PJ, Medarde M, Marin JJ: Physiological characteristics of allo-cholic acid. J Lipid Res. 2003 Jan;44(1):84-92.","parent_key":"BE0000703"} {"ref-id":"A15799","pubmed-id":9545351,"citation":"Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ: The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998 Apr 17;273(16):10046-50.","parent_key":"BE0000703"} {"ref-id":"A15801","pubmed-id":11248200,"citation":"Akita H, Suzuki H, Ito K, Kinoshita S, Sato N, Takikawa H, Sugiyama Y: Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta. 2001 Mar 9;1511(1):7-16.","parent_key":"BE0000703"} {"ref-id":"A15802","pubmed-id":10692506,"citation":"Madon J, Hagenbuch B, Landmann L, Meier PJ, Stieger B: Transport function and hepatocellular localization of mrp6 in rat liver. Mol Pharmacol. 2000 Mar;57(3):634-41.","parent_key":"BE0000703"} {"ref-id":"A15794","pubmed-id":12235261,"citation":"Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81.","parent_key":"BE0003642"} {"ref-id":"A15795","pubmed-id":12399219,"citation":"Wolters H, Elzinga BM, Baller JF, Boverhof R, Schwarz M, Stieger B, Verkade HJ, Kuipers F: Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. J Hepatol. 2002 Nov;37(5):556-63.","parent_key":"BE0003642"} {"ref-id":"A15977","pubmed-id":8621133,"citation":"Kullak-Ublick GA, Beuers U, Paumgartner G: Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology. 1996 May;23(5):1053-60.","parent_key":"BE0003642"} {"ref-id":"A15797","pubmed-id":12518026,"citation":"Mendoza ME, Monte MJ, Serrano MA, Pastor-Anglada M, Stieger B, Meier PJ, Medarde M, Marin JJ: Physiological characteristics of allo-cholic acid. J Lipid Res. 2003 Jan;44(1):84-92.","parent_key":"BE0003642"} {"ref-id":"A15982","pubmed-id":9334206,"citation":"Satlin LM, Amin V, Wolkoff AW: Organic anion transporting polypeptide mediates organic anion/HCO3- exchange. J Biol Chem. 1997 Oct 17;272(42):26340-5.","parent_key":"BE0003642"} {"ref-id":"A15794","pubmed-id":12235261,"citation":"Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81.","parent_key":"BE0001069"} {"ref-id":"A16173","pubmed-id":7912687,"citation":"Mazzanti R, Fantappie O, Kamimoto Y, Gatmaitan Z, Gentilini P, Arias IM: Bile acid inhibition of P-glycoprotein-mediated transport in multidrug-resistant cells and rat liver canalicular membrane vesicles. Hepatology. 1994 Jul;20(1 Pt 1):170-6.","parent_key":"BE0001032"} {"ref-id":"A15797","pubmed-id":12518026,"citation":"Mendoza ME, Monte MJ, Serrano MA, Pastor-Anglada M, Stieger B, Meier PJ, Medarde M, Marin JJ: Physiological characteristics of allo-cholic acid. J Lipid Res. 2003 Jan;44(1):84-92.","parent_key":"BE0003644"} {"ref-id":"A16129","pubmed-id":11027568,"citation":"Wang E, Casciano CN, Clement RP, Johnson WW: Cholesterol interaction with the daunorubicin binding site of P-glycoprotein. Biochem Biophys Res Commun. 2000 Oct 5;276(3):909-16.","parent_key":"BE0001032"} {"ref-id":"A2749","pubmed-id":22971242,"citation":"De Ferrari GM, Dusi V: Drug safety evaluation of dronedarone in atrial fibrillation. Expert Opin Drug Saf. 2012 Nov;11(6):1023-45. doi: 10.1517/14740338.2012.722994. Epub 2012 Sep 13.","parent_key":"BE0001032"} {"ref-id":"A15659","pubmed-id":20074258,"citation":"Schafer JA, Kjesbo NK, Gleason PP: Dronedarone: current evidence and future questions. Cardiovasc Ther. 2010 Spring;28(1):38-47. doi: 10.1111/j.1755-5922.2009.00112.x.","parent_key":"BE0001032"} {"ref-id":"A15660","pubmed-id":20810928,"citation":"Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA: Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87. doi: 10.1182/blood-2010-07-294330. Epub 2010 Sep 1.","parent_key":"BE0001032"} {"ref-id":"A15660","pubmed-id":20810928,"citation":"Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA: Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87. doi: 10.1182/blood-2010-07-294330. Epub 2010 Sep 1.","parent_key":"BE0001067"} {"ref-id":"A2790","pubmed-id":16273216,"citation":"Meschini S, Marra M, Condello M, Calcabrini A, Federici E, Dupuis ML, Cianfriglia M, Arancia G: Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells. Int J Oncol. 2005 Dec;27(6):1597-603.","parent_key":"BE0001032"} {"ref-id":"A14641","pubmed-id":17268526,"citation":"Medeiros BC, Landau HJ, Morrow M, Lockerbie RO, Pitts T, Eckhardt SG: The farnesyl transferase inhibitor, tipifarnib, is a potent inhibitor of the MDR1 gene product, P-glycoprotein, and demonstrates significant cytotoxic synergism against human leukemia cell lines. Leukemia. 2007 Apr;21(4):739-46. Epub 2007 Feb 1.","parent_key":"BE0001032"} {"ref-id":"A191293","pubmed-id":19707379,"citation":"Karp JE, Lancet JE: Tipifarnib in the treatment of newly diagnosed acute myelogenous leukemia. Biologics. 2008 Sep;2(3):491-500. doi: 10.2147/btt.s3485.","parent_key":"BE0001032"} {"ref-id":"A3300","pubmed-id":26384788,"citation":"Singh A, Ruan Y, Tippett T, Narendran A: Targeted inhibition of MEK1 by cobimetinib leads to differentiation and apoptosis in neuroblastoma cells. J Exp Clin Cancer Res. 2015 Sep 18;34:104. doi: 10.1186/s13046-015-0222-x.","parent_key":"BE0001004"} {"ref-id":"A3300","pubmed-id":26384788,"citation":"Singh A, Ruan Y, Tippett T, Narendran A: Targeted inhibition of MEK1 by cobimetinib leads to differentiation and apoptosis in neuroblastoma cells. J Exp Clin Cancer Res. 2015 Sep 18;34:104. doi: 10.1186/s13046-015-0222-x.","parent_key":"BE0003659"} {"ref-id":"A18402","pubmed-id":25243894,"citation":"Choo EF, Ly J, Chan J, Shahidi-Latham SK, Messick K, Plise E, Quiason CM, Yang L: Role of P-glycoprotein on the brain penetration and brain pharmacodynamic activity of the MEK inhibitor cobimetinib. Mol Pharm. 2014 Nov 3;11(11):4199-207. doi: 10.1021/mp500435s. Epub 2014 Oct 3.","parent_key":"BE0001067"} {"ref-id":"A39234","pubmed-id":22484209,"citation":"Jovelet C, Benard J, Forestier F, Farinotti R, Bidart JM, Gil S: Inhibition of P-glycoprotein functionality by vandetanib may reverse cancer cell resistance to doxorubicin. Eur J Pharm Sci. 2012 Aug 15;46(5):484-91. doi: 10.1016/j.ejps.2012.03.012. Epub 2012 Mar 30.","parent_key":"BE0001032"} {"ref-id":"A17929","pubmed-id":23553423,"citation":"Kiang TK, Wilby KJ, Ensom MH: Telaprevir: clinical pharmacokinetics, pharmacodynamics, and drug-drug interactions. Clin Pharmacokinet. 2013 Jul;52(7):487-510. doi: 10.1007/s40262-013-0053-x.","parent_key":"BE0001032"} {"ref-id":"A17937","pubmed-id":22714819,"citation":"Beckett RD, Rodeffer KM, Snodgrass R: Abiraterone for the treatment of metastatic castrate-resistant prostate cancer. Ann Pharmacother. 2012 Jul-Aug;46(7-8):1016-24. doi: 10.1345/aph.1Q758. Epub 2012 Jun 19.","parent_key":"BE0000785"} {"ref-id":"A33200","pubmed-id":27106175,"citation":"Benoist GE, Hendriks RJ, Mulders PF, Gerritsen WR, Somford DM, Schalken JA, van Oort IM, Burger DM, van Erp NP: Pharmacokinetic Aspects of the Two Novel Oral Drugs Used for Metastatic Castration-Resistant Prostate Cancer: Abiraterone Acetate and Enzalutamide. Clin Pharmacokinet. 2016 Nov;55(11):1369-1380. doi: 10.1007/s40262-016-0403-6.","parent_key":"BE0000785"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0001067"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0001004"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0001042"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0003659"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0001032"} {"ref-id":"A16415","pubmed-id":19944114,"citation":"Daily A, Monks NR, Leggas M, Moscow JA: Abrogation of microcystin cytotoxicity by MAP kinase inhibitors and N-acetyl cysteine is confounded by OATPIB1 uptake activity inhibition. Toxicon. 2010 Apr 1;55(4):827-37. doi: 10.1016/j.toxicon.2009.11.019. Epub 2009 Nov 24.","parent_key":"BE0001004"} {"ref-id":"A17879","pubmed-id":12606766,"citation":"Aslamkhan AG, Han YH, Yang XP, Zalups RK, Pritchard JB: Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells. Mol Pharmacol. 2003 Mar;63(3):590-6.","parent_key":"BE0001066"} {"ref-id":"A15698","pubmed-id":19228751,"citation":"Woo S, Gardner ER, Chen X, Ockers SB, Baum CE, Sissung TM, Price DK, Frye R, Piekarz RL, Bates SE, Figg WD: Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res. 2009 Feb 15;15(4):1496-503. doi: 10.1158/1078-0432.CCR-08-1215.","parent_key":"BE0001032"} {"ref-id":"A15698","pubmed-id":19228751,"citation":"Woo S, Gardner ER, Chen X, Ockers SB, Baum CE, Sissung TM, Price DK, Frye R, Piekarz RL, Bates SE, Figg WD: Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res. 2009 Feb 15;15(4):1496-503. doi: 10.1158/1078-0432.CCR-08-1215.","parent_key":"BE0003659"} {"ref-id":"A15699","pubmed-id":16518089,"citation":"Matsubara Y, Kanazawa T, Kojima Y, Abe Y, Kobayashi K, Kanbe H, Harada H, Momose Y, Terakado S, Adachi Y, Midgley I: [Pharmacokinetics and disposition of silodosin (KMD-3213)]. Yakugaku Zasshi. 2006 Mar;126 Spec no.:237-45.","parent_key":"BE0001032"} {"ref-id":"A4048","pubmed-id":23821332,"citation":"Kuter DJ: The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol. 2013 Jul;98(1):10-23. doi: 10.1007/s12185-013-1382-0. Epub 2013 Jul 3.","parent_key":"BE0001004"} {"ref-id":"A36566","pubmed-id":18628935,"citation":"Greer ND: Doripenem (Doribax): the newest addition to the carbapenems. Proc (Bayl Univ Med Cent). 2008 Jul;21(3):337-41.","parent_key":"BE0003645"} {"ref-id":"A17911","pubmed-id":20679500,"citation":"Shoaf SE, Ohzone Y, Ninomiya S, Furukawa M, Bricmont P, Kashiyama E, Mallikaarjun S: In vitro P-glycoprotein interactions and steady-state pharmacokinetic interactions between tolvaptan and digoxin in healthy subjects. J Clin Pharmacol. 2011 May;51(5):761-9. doi: 10.1177/0091270010376193. Epub 2010 Aug 2.","parent_key":"BE0001032"} {"ref-id":"A17303","pubmed-id":20584229,"citation":"Walenga JM, Adiguzel C: Drug and dietary interactions of the new and emerging oral anticoagulants. Int J Clin Pract. 2010 Jun;64(7):956-67. doi: 10.1111/j.1742-1241.2009.02286.x.","parent_key":"BE0001032"} {"ref-id":"A17304","pubmed-id":19525681,"citation":"Chen T, Lam S: Rivaroxaban: an oral direct factor Xa inhibitor for the prevention of thromboembolism. Cardiol Rev. 2009 Jul-Aug;17(4):192-7. doi: 10.1097/CRD.0b013e3181aa2154.","parent_key":"BE0001032"} {"ref-id":"A33667","pubmed-id":23305158,"citation":"Mueck W, Kubitza D, Becka M: Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013 Sep;76(3):455-66. doi: 10.1111/bcp.12075.","parent_key":"BE0001067"} {"ref-id":"A181778","pubmed-id":28385546,"citation":"Noguchi S, Nishimura T, Mukaida S, Benet LZ, Nakashima E, Tomi M: Cellular Uptake of Levocetirizine by Organic Anion Transporter 4. J Pharm Sci. 2017 Sep;106(9):2895-2898. doi: 10.1016/j.xphs.2017.03.026. Epub 2017 Apr 4.","parent_key":"BE0000879"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0001032"} {"ref-id":"A15711","pubmed-id":20690781,"citation":"Scheen AJ: Dipeptidylpeptidase-4 inhibitors (gliptins): focus on drug-drug interactions. Clin Pharmacokinet. 2010 Sep;49(9):573-88. doi: 10.2165/11532980-000000000-00000.","parent_key":"BE0000785"} {"ref-id":"A4029","pubmed-id":22686547,"citation":"Golightly LK, Drayna CC, McDermott MT: Comparative clinical pharmacokinetics of dipeptidyl peptidase-4 inhibitors. Clin Pharmacokinet. 2012 Aug 1;51(8):501-14. doi: 10.2165/11632930-000000000-00000.","parent_key":"BE0003645"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0001032"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0001004"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0003659"} {"ref-id":"A15663","pubmed-id":21142266,"citation":"Kakuda TN, Scholler-Gyure M, Hoetelmans RM: Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet. 2011 Jan;50(1):25-39. doi: 10.2165/11534740-000000000-00000.","parent_key":"BE0001032"} {"ref-id":"A15664","pubmed-id":19725591,"citation":"Scholler-Gyure M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM: Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet. 2009;48(9):561-74. doi: 10.2165/10895940-000000000-00000.","parent_key":"BE0001032"} {"ref-id":"A203369","pubmed-id":23463743,"citation":"Mansour H, Chahine EB, Karaoui LR, El-Lababidi RM: Cethromycin: a new ketolide antibiotic. Ann Pharmacother. 2013 Mar;47(3):368-79. doi: 10.1345/aph.1R435. Epub 2013 Mar 5.","parent_key":"BE0001032"} {"ref-id":"A191236","pubmed-id":28587082,"citation":"Dewanjee S, Dua TK, Bhattacharjee N, Das A, Gangopadhyay M, Khanra R, Joardar S, Riaz M, Feo V, Zia-Ul-Haq M: Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules. 2017 May 25;22(6). pii: molecules22060871. doi: 10.3390/molecules22060871.","parent_key":"BE0001032"} {"ref-id":"A191287","pubmed-id":11606389,"citation":"Wang E, Casciano CN, Clement RP, Johnson WW: The farnesyl protein transferase inhibitor SCH66336 is a potent inhibitor of MDR1 product P-glycoprotein. Cancer Res. 2001 Oct 15;61(20):7525-9.","parent_key":"BE0001032"} {"ref-id":"A191290","pubmed-id":14671431,"citation":"Wang EJ, Johnson WW: The farnesyl protein transferase inhibitor lonafarnib (SCH66336) is an inhibitor of multidrug resistance proteins 1 and 2. Chemotherapy. 2003 Dec;49(6):303-8. doi: 10.1159/000074531.","parent_key":"BE0001032"} {"ref-id":"A6884","pubmed-id":23548165,"citation":"Deng Y, Sychterz C, Suttle AB, Dar MM, Bershas D, Negash K, Qian Y, Chen EP, Gorycki PD, Ho MY: Bioavailability, metabolism and disposition of oral pazopanib in patients with advanced cancer. Xenobiotica. 2013 May;43(5):443-53. doi: 10.3109/00498254.2012.734642. Epub 2012 Nov 16.","parent_key":"BE0001032"} {"ref-id":"A6884","pubmed-id":23548165,"citation":"Deng Y, Sychterz C, Suttle AB, Dar MM, Bershas D, Negash K, Qian Y, Chen EP, Gorycki PD, Ho MY: Bioavailability, metabolism and disposition of oral pazopanib in patients with advanced cancer. Xenobiotica. 2013 May;43(5):443-53. doi: 10.3109/00498254.2012.734642. Epub 2012 Nov 16.","parent_key":"BE0001067"} {"ref-id":"A6885","pubmed-id":23072642,"citation":"Deeks ED: Pazopanib: in advanced soft tissue sarcoma. Drugs. 2012 Nov 12;72(16):2129-40. doi: 10.2165/11209950-000000000-00000.","parent_key":"BE0001004"} {"ref-id":"A18401","pubmed-id":26504410,"citation":"Bailey H, Stenehjem DD, Sharma S: Panobinostat for the treatment of multiple myeloma: the evidence to date. J Blood Med. 2015 Oct 8;6:269-76. doi: 10.2147/JBM.S69140. eCollection 2015.","parent_key":"BE0001032"} {"ref-id":"A38657","pubmed-id":23785225,"citation":"Budovich A, Zargarova O, Nogid A: Role of apixaban (eliquis) in the treatment and prevention of thromboembolic disease. P T. 2013 Apr;38(4):206-31.","parent_key":"BE0001032"} {"ref-id":"A187304","pubmed-id":30266733,"citation":"Heyes N, Kapoor P, Kerr ID: Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab Dispos. 2018 Dec;46(12):1886-1899. doi: 10.1124/dmd.118.083030. Epub 2018 Sep 28.","parent_key":"BE0001067"} {"ref-id":"A17945","pubmed-id":22170007,"citation":"Brennan M, Williams JA, Chen Y, Tortorici M, Pithavala Y, Liu YC: Meta-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol. 2012 May;68(5):645-55. doi: 10.1007/s00228-011-1171-8. Epub 2011 Dec 15.","parent_key":"BE0001032"} {"ref-id":"A17946","pubmed-id":23677771,"citation":"Chen Y, Tortorici MA, Garrett M, Hee B, Klamerus KJ, Pithavala YK: Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013 Sep;52(9):713-25. doi: 10.1007/s40262-013-0068-3.","parent_key":"BE0001032"} {"ref-id":"A17945","pubmed-id":22170007,"citation":"Brennan M, Williams JA, Chen Y, Tortorici M, Pithavala Y, Liu YC: Meta-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol. 2012 May;68(5):645-55. doi: 10.1007/s00228-011-1171-8. Epub 2011 Dec 15.","parent_key":"BE0001004"} {"ref-id":"A6914","pubmed-id":26179012,"citation":"Miceli MH, Kauffman CA: Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin Infect Dis. 2015 Nov 15;61(10):1558-65. doi: 10.1093/cid/civ571. Epub 2015 Jul 15.","parent_key":"BE0001032"} {"ref-id":"A19392","pubmed-id":24553380,"citation":"Kassahun K, McIntosh I, Koeplinger K, Sun L, Talaty JE, Miller DL, Dixon R, Zajic S, Stoch SA: Disposition and metabolism of the cathepsin K inhibitor odanacatib in humans. Drug Metab Dispos. 2014 May;42(5):818-27. doi: 10.1124/dmd.113.056580. Epub 2014 Feb 19.","parent_key":"BE0001032"} {"ref-id":"A17305","pubmed-id":21327511,"citation":"Galanis T, Thomson L, Palladino M, Merli GJ: New oral anticoagulants. J Thromb Thrombolysis. 2011 Apr;31(3):310-20. doi: 10.1007/s11239-011-0559-8.","parent_key":"BE0001032"} {"ref-id":"A6979","pubmed-id":23292752,"citation":"Scaglione F: New oral anticoagulants: comparative pharmacology with vitamin K antagonists. Clin Pharmacokinet. 2013 Feb;52(2):69-82. doi: 10.1007/s40262-012-0030-9.","parent_key":"BE0001032"} {"ref-id":"A17903","pubmed-id":22390261,"citation":"Chancellor MB, Staskin DR, Kay GG, Sandage BW, Oefelein MG, Tsao JW: Blood-brain barrier permeation and efflux exclusion of anticholinergics used in the treatment of overactive bladder. Drugs Aging. 2012 Apr 1;29(4):259-73. doi: 10.2165/11597530-000000000-00000.","parent_key":"BE0001032"} {"ref-id":"A192999","pubmed-id":29221992,"citation":"Nurbaeti SN, Olivier JC, Adier C, Marchand S, Couet W, Brillault J: Active Mediated Transport of Chloramphenicol and Thiamphenicol in a Calu-3 Lung Epithelial Cell Model. J Pharm Sci. 2018 Apr;107(4):1178-1184. doi: 10.1016/j.xphs.2017.11.021. Epub 2017 Dec 5.","parent_key":"BE0001032"} {"ref-id":"A179746","pubmed-id":25103957,"citation":"Robertson SM, Luo X, Dubey N, Li C, Chavan AB, Gilmartin GS, Higgins M, Mahnke L: Clinical drug-drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P-glycoprotein. J Clin Pharmacol. 2015 Jan;55(1):56-62. doi: 10.1002/jcph.377. Epub 2014 Aug 27.","parent_key":"BE0001032"} {"ref-id":"A179755","pubmed-id":26968005,"citation":"McColley SA: A safety evaluation of ivacaftor for the treatment of cystic fibrosis. Expert Opin Drug Saf. 2016 May;15(5):709-15. doi: 10.1517/14740338.2016.1165666. Epub 2016 Apr 7.","parent_key":"BE0001032"} {"ref-id":"A7370","pubmed-id":23662017,"citation":"Sandhiya S, Melvin G, Kumar SS, Dkhar SA: The dawn of hedgehog inhibitors: Vismodegib. J Pharmacol Pharmacother. 2013 Jan;4(1):4-7. doi: 10.4103/0976-500X.107628.","parent_key":"BE0001032"} {"ref-id":"A17889","pubmed-id":9765319,"citation":"Ishizuka H, Konno K, Naganuma H, Nishimura K, Kouzuki H, Suzuki H, Stieger B, Meier PJ, Sugiyama Y: Transport of temocaprilat into rat hepatocytes: role of organic anion transporting polypeptide. J Pharmacol Exp Ther. 1998 Oct;287(1):37-42.","parent_key":"BE0003642"} {"ref-id":"A17881","pubmed-id":12679137,"citation":"Enomoto A, Takeda M, Taki K, Takayama F, Noshiro R, Niwa T, Endou H: Interactions of human organic anion as well as cation transporters with indoxyl sulfate. Eur J Pharmacol. 2003 Apr 11;466(1-2):13-20.","parent_key":"BE0003645"} {"ref-id":"A17880","pubmed-id":15870380,"citation":"Whitley AC, Sweet DH, Walle T: The dietary polyphenol ellagic acid is a potent inhibitor of hOAT1. Drug Metab Dispos. 2005 Aug;33(8):1097-100. Epub 2005 May 3.","parent_key":"BE0001066"} {"ref-id":"A17880","pubmed-id":15870380,"citation":"Whitley AC, Sweet DH, Walle T: The dietary polyphenol ellagic acid is a potent inhibitor of hOAT1. Drug Metab Dispos. 2005 Aug;33(8):1097-100. Epub 2005 May 3.","parent_key":"BE0000879"} {"ref-id":"A17890","pubmed-id":11901224,"citation":"Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJ: Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol. 2002 Apr;61(4):853-60.","parent_key":"BE0001004"} {"ref-id":"A182015","pubmed-id":28130659,"citation":"Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8.","parent_key":"BE0001004"} {"ref-id":"A182015","pubmed-id":28130659,"citation":"Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8.","parent_key":"BE0003659"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0001042"} {"ref-id":"A182015","pubmed-id":28130659,"citation":"Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8.","parent_key":"BE0001042"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0003644"} {"ref-id":"A182015","pubmed-id":28130659,"citation":"Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8.","parent_key":"BE0003644"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0001067"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0001032"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0001069"} {"ref-id":"A17892","pubmed-id":11677211,"citation":"Ismair MG, Stieger B, Cattori V, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA: Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver. Gastroenterology. 2001 Nov;121(5):1185-90.","parent_key":"BE0003659"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0001032"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0001067"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0001004"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0003659"} {"ref-id":"A7418","pubmed-id":23686600,"citation":"Timm A, Kolesar JM: Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7. doi: 10.2146/ajhp120261.","parent_key":"BE0001032"} {"ref-id":"A192876","pubmed-id":28273090,"citation":"Lee DH, Seubert S, Huhn K, Brecht L, Rotger C, Waschbisch A, Schlachetzki J, Klausmeyer A, Melms A, Wiese S, Winkler J, Linker RA: Fingolimod effects in neuroinflammation: Regulation of astroglial glutamate transporters? PLoS One. 2017 Mar 8;12(3):e0171552. doi: 10.1371/journal.pone.0171552. eCollection 2017.","parent_key":"BE0000884"} {"ref-id":"A192876","pubmed-id":28273090,"citation":"Lee DH, Seubert S, Huhn K, Brecht L, Rotger C, Waschbisch A, Schlachetzki J, Klausmeyer A, Melms A, Wiese S, Winkler J, Linker RA: Fingolimod effects in neuroinflammation: Regulation of astroglial glutamate transporters? PLoS One. 2017 Mar 8;12(3):e0171552. doi: 10.1371/journal.pone.0171552. eCollection 2017.","parent_key":"BE0001115"} {"ref-id":"A192882","pubmed-id":24876766,"citation":"di Nuzzo L, Orlando R, Nasca C, Nicoletti F: Molecular pharmacodynamics of new oral drugs used in the treatment of multiple sclerosis. Drug Des Devel Ther. 2014 May 19;8:555-68. doi: 10.2147/DDDT.S52428. eCollection 2014.","parent_key":"BE0001032"} {"ref-id":"A192885","pubmed-id":24868599,"citation":"Xing Y, Wang ZH, Ma DH, Han Y: FTY720 enhances chemosensitivity of colon cancer cells to doxorubicin and etoposide via the modulation of P-glycoprotein and multidrug resistance protein 1. J Dig Dis. 2014 May;15(5):246-59. doi: 10.1111/1751-2980.12131.","parent_key":"BE0001032"} {"ref-id":"A192879","pubmed-id":12618517,"citation":"Honig SM, Fu S, Mao X, Yopp A, Gunn MD, Randolph GJ, Bromberg JS: FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J Clin Invest. 2003 Mar;111(5):627-37. doi: 10.1172/JCI16200.","parent_key":"BE0000785"} {"ref-id":"A192885","pubmed-id":24868599,"citation":"Xing Y, Wang ZH, Ma DH, Han Y: FTY720 enhances chemosensitivity of colon cancer cells to doxorubicin and etoposide via the modulation of P-glycoprotein and multidrug resistance protein 1. J Dig Dis. 2014 May;15(5):246-59. doi: 10.1111/1751-2980.12131.","parent_key":"BE0000785"} {"ref-id":"A7441","pubmed-id":23140245,"citation":"Kiser JJ, Flexner C: Direct-acting antiviral agents for hepatitis C virus infection. Annu Rev Pharmacol Toxicol. 2013;53:427-49. doi: 10.1146/annurev-pharmtox-011112-140254. Epub 2012 Nov 5.","parent_key":"BE0001032"} {"ref-id":"A7445","pubmed-id":22610025,"citation":"Crawford T, Huesgen E, Danziger L: Fidaxomicin: a novel macrocyclic antibiotic for the treatment of Clostridium difficile infection. Am J Health Syst Pharm. 2012 Jun 1;69(11):933-43. doi: 10.2146/ajhp110371.","parent_key":"BE0001032"} {"ref-id":"A17942","pubmed-id":22454535,"citation":"Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF: Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012 Jul;342(1):33-40. doi: 10.1124/jpet.112.192195. Epub 2012 Mar 27.","parent_key":"BE0000785"} {"ref-id":"A17942","pubmed-id":22454535,"citation":"Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF: Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012 Jul;342(1):33-40. doi: 10.1124/jpet.112.192195. Epub 2012 Mar 27.","parent_key":"BE0001067"} {"ref-id":"A37229","pubmed-id":25899783,"citation":"Funck-Brentano E, Alvarez JC, Longvert C, Abe E, Beauchet A, Funck-Brentano C, Saiag P: Plasma vemurafenib concentrations in advanced BRAFV600mut melanoma patients: impact on tumour response and tolerance. Ann Oncol. 2015 Jul;26(7):1470-5. doi: 10.1093/annonc/mdv189. Epub 2015 Apr 21.","parent_key":"BE0001067"} {"ref-id":"A37050","pubmed-id":22568694,"citation":"Graefe-Mody U, Retlich S, Friedrich C: Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin Pharmacokinet. 2012 Jul 1;51(7):411-27. doi: 10.2165/11630900-000000000-00000.","parent_key":"BE0001032"} {"ref-id":"A17943","pubmed-id":22771883,"citation":"Nassif A, Jia J, Keiser M, Oswald S, Modess C, Nagel S, Weitschies W, Hosten N, Siegmund W, Kuhn JP: Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid-enhanced MR imaging. Radiology. 2012 Sep;264(3):741-50. doi: 10.1148/radiol.12112061. Epub 2012 Jul 6.","parent_key":"BE0001004"} {"ref-id":"A17943","pubmed-id":22771883,"citation":"Nassif A, Jia J, Keiser M, Oswald S, Modess C, Nagel S, Weitschies W, Hosten N, Siegmund W, Kuhn JP: Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid-enhanced MR imaging. Radiology. 2012 Sep;264(3):741-50. doi: 10.1148/radiol.12112061. Epub 2012 Jul 6.","parent_key":"BE0003659"} {"ref-id":"A7461","pubmed-id":22504332,"citation":"Van Beers BE, Pastor CM, Hussain HK: Primovist, Eovist: what to expect? J Hepatol. 2012 Aug;57(2):421-9. doi: 10.1016/j.jhep.2012.01.031. Epub 2012 Apr 12.","parent_key":"BE0001069"} {"ref-id":"A7461","pubmed-id":22504332,"citation":"Van Beers BE, Pastor CM, Hussain HK: Primovist, Eovist: what to expect? J Hepatol. 2012 Aug;57(2):421-9. doi: 10.1016/j.jhep.2012.01.031. Epub 2012 Apr 12.","parent_key":"BE0001188"} {"ref-id":"A17950","pubmed-id":23560393,"citation":"Takusagawa S, Ushigome F, Nemoto H, Takahashi Y, Li Q, Kerbusch V, Miyashita A, Iwatsubo T, Usui T: Intestinal absorption mechanism of mirabegron, a potent and selective beta(3)-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Mol Pharm. 2013 May 6;10(5):1783-94. doi: 10.1021/mp300582s. Epub 2013 Apr 24.","parent_key":"BE0001032"} {"ref-id":"A17950","pubmed-id":23560393,"citation":"Takusagawa S, Ushigome F, Nemoto H, Takahashi Y, Li Q, Kerbusch V, Miyashita A, Iwatsubo T, Usui T: Intestinal absorption mechanism of mirabegron, a potent and selective beta(3)-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Mol Pharm. 2013 May 6;10(5):1783-94. doi: 10.1021/mp300582s. Epub 2013 Apr 24.","parent_key":"BE0003642"} {"ref-id":"A36336","pubmed-id":26254357,"citation":"Hotta K, Ueyama J, Tatsumi Y, Tsukiyama I, Sugiura Y, Saito H, Matsuura K, Hasegawa T: Lack of Contribution of Multidrug Resistance-associated Protein and Organic Anion-transporting Polypeptide to Pharmacokinetics of Regorafenib, a Novel Multi-Kinase Inhibitor, in Rats. Anticancer Res. 2015 Sep;35(9):4681-9.","parent_key":"BE0001032"} {"ref-id":"A17978","pubmed-id":18694910,"citation":"Hughes SC, Shardlow PC, Hollis FJ, Scott RJ, Motivaras DS, Allen A, Rousell VM: Metabolism and disposition of fluticasone furoate, an enhanced-affinity glucocorticoid, in humans. Drug Metab Dispos. 2008 Nov;36(11):2337-44. doi: 10.1124/dmd.108.022137. Epub 2008 Aug 11.","parent_key":"BE0001032"} {"ref-id":"A177002","pubmed-id":27862160,"citation":"Mamidi RNVS, Dallas S, Sensenhauser C, Lim HK, Scheers E, Verboven P, Cuyckens F, Leclercq L, Evans DC, Kelley MF, Johnson MD, Snoeys J: In vitro and physiologically-based pharmacokinetic based assessment of drug-drug interaction potential of canagliflozin. Br J Clin Pharmacol. 2017 May;83(5):1082-1096. doi: 10.1111/bcp.13186. Epub 2016 Dec 20.","parent_key":"BE0001032"} {"ref-id":"A34458","pubmed-id":25407255,"citation":"Devineni D, Vaccaro N, Murphy J, Curtin C, Mamidi RN, Weiner S, Wang SS, Ariyawansa J, Stieltjes H, Wajs E, Di Prospero NA, Rothenberg P: Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Int J Clin Pharmacol Ther. 2015 Feb;53(2):115-28. doi: 10.5414/CP202158.","parent_key":"BE0001032"} {"ref-id":"A17986","pubmed-id":23249624,"citation":"Mittapalli RK, Vaidhyanathan S, Dudek AZ, Elmquist WF: Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther. 2013 Mar;344(3):655-64. doi: 10.1124/jpet.112.201475. Epub 2012 Dec 17.","parent_key":"BE0001032"} {"ref-id":"A17986","pubmed-id":23249624,"citation":"Mittapalli RK, Vaidhyanathan S, Dudek AZ, Elmquist WF: Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther. 2013 Mar;344(3):655-64. doi: 10.1124/jpet.112.201475. Epub 2012 Dec 17.","parent_key":"BE0001067"} {"ref-id":"A7752","pubmed-id":22789987,"citation":"Adams JL, Greener BN, Kashuba AD: Pharmacology of HIV integrase inhibitors. Curr Opin HIV AIDS. 2012 Sep;7(5):390-400. doi: 10.1097/COH.0b013e328356e91c.","parent_key":"BE0001032"} {"ref-id":"A7528","pubmed-id":25395817,"citation":"Khaybullina D, Patel A, Zerilli T: Riociguat (adempas): a novel agent for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. P T. 2014 Nov;39(11):749-58.","parent_key":"BE0001067"} {"ref-id":"A18136","pubmed-id":24280292,"citation":"Tischer S, Fontana RJ: Drug-drug interactions with oral anti-HCV agents and idiosyncratic hepatotoxicity in the liver transplant setting. J Hepatol. 2014 Apr;60(4):872-84. doi: 10.1016/j.jhep.2013.11.013. Epub 2013 Nov 23.","parent_key":"BE0001032"} {"ref-id":"A18137","pubmed-id":25770114,"citation":"Burgess S, Partovi N, Yoshida EM, Erb SR, Azalgara VM, Hussaini T: Drug Interactions With Direct-Acting Antivirals for Hepatitis C: Implications for HIV and Transplant Patients. Ann Pharmacother. 2015 Jun;49(6):674-87. doi: 10.1177/1060028015576180. Epub 2015 Mar 13.","parent_key":"BE0001032"} {"ref-id":"A204059","pubmed-id":25264342,"citation":"Tsukimoto M, Ohashi R, Torimoto N, Togo Y, Suzuki T, Maeda T, Kagawa Y: Effects of the inhibition of intestinal P-glycoprotein on aliskiren pharmacokinetics in cynomolgus monkeys. Biopharm Drug Dispos. 2015 Jan;36(1):15-33. doi: 10.1002/bdd.1920. Epub 2014 Oct 31.","parent_key":"BE0001032"} {"ref-id":"A7664","pubmed-id":25760671,"citation":"Jin F, Robeson M, Zhou H, Moyer C, Wilbert S, Murray B, Ramanathan S: Clinical drug interaction profile of idelalisib in healthy subjects. J Clin Pharmacol. 2015 Aug;55(8):909-19. doi: 10.1002/jcph.495. Epub 2015 May 6.","parent_key":"BE0001032"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0000785"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0001067"} {"ref-id":"A7683","pubmed-id":22850510,"citation":"Lepist EI, Phan TK, Roy A, Tong L, Maclennan K, Murray B, Ray AS: Cobicistat boosts the intestinal absorption of transport substrates, including HIV protease inhibitors and GS-7340, in vitro. Antimicrob Agents Chemother. 2012 Oct;56(10):5409-13. doi: 10.1128/AAC.01089-12. Epub 2012 Jul 30.","parent_key":"BE0001032"} {"ref-id":"A7683","pubmed-id":22850510,"citation":"Lepist EI, Phan TK, Roy A, Tong L, Maclennan K, Murray B, Ray AS: Cobicistat boosts the intestinal absorption of transport substrates, including HIV protease inhibitors and GS-7340, in vitro. Antimicrob Agents Chemother. 2012 Oct;56(10):5409-13. doi: 10.1128/AAC.01089-12. Epub 2012 Jul 30.","parent_key":"BE0001067"} {"ref-id":"A176798","pubmed-id":28203301,"citation":"Rocca A, Schirone A, Maltoni R, Bravaccini S, Cecconetto L, Farolfi A, Bronte G, Andreis D: Progress with palbociclib in breast cancer: latest evidence and clinical considerations. Ther Adv Med Oncol. 2017 Feb;9(2):83-105. doi: 10.1177/1758834016677961. Epub 2016 Nov 21.","parent_key":"BE0001032"} {"ref-id":"A176798","pubmed-id":28203301,"citation":"Rocca A, Schirone A, Maltoni R, Bravaccini S, Cecconetto L, Farolfi A, Bronte G, Andreis D: Progress with palbociclib in breast cancer: latest evidence and clinical considerations. Ther Adv Med Oncol. 2017 Feb;9(2):83-105. doi: 10.1177/1758834016677961. Epub 2016 Nov 21.","parent_key":"BE0001067"} {"ref-id":"A18364","pubmed-id":24459178,"citation":"Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, Okudaira N, Izumi T: Edoxaban transport via P-glycoprotein is a key factor for the drug's disposition. Drug Metab Dispos. 2014 Apr;42(4):520-8. doi: 10.1124/dmd.113.054866. Epub 2014 Jan 23.","parent_key":"BE0001032"} {"ref-id":"A7713","pubmed-id":24004659,"citation":"Feldman GJ, Edin A: The combination of umeclidinium bromide and vilanterol in the management of chronic obstructive pulmonary disease: current evidence and future prospects. Ther Adv Respir Dis. 2013 Dec;7(6):311-9. doi: 10.1177/1753465813499789. Epub 2013 Sep 3.","parent_key":"BE0001032"} {"ref-id":"A185123","pubmed-id":31016670,"citation":"Wind S, Schmid U, Freiwald M, Marzin K, Lotz R, Ebner T, Stopfer P, Dallinger C: Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin Pharmacokinet. 2019 Sep;58(9):1131-1147. doi: 10.1007/s40262-019-00766-0.","parent_key":"BE0001032"} {"ref-id":"A185123","pubmed-id":31016670,"citation":"Wind S, Schmid U, Freiwald M, Marzin K, Lotz R, Ebner T, Stopfer P, Dallinger C: Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin Pharmacokinet. 2019 Sep;58(9):1131-1147. doi: 10.1007/s40262-019-00766-0.","parent_key":"BE0001067"} {"ref-id":"A32605","pubmed-id":15358539,"citation":"Uchiyama-Kokubu N, Naito M, Nakajima M, Tsuruo T: Transport of somatostatin and substance P by human P-glycoprotein. FEBS Lett. 2004 Sep 10;574(1-3):55-61. doi: 10.1016/j.febslet.2004.07.084.","parent_key":"BE0001032"} {"ref-id":"A190771","pubmed-id":25942657,"citation":"Bernal J, Guadano-Ferraz A, Morte B: Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 2015 Jul;11(7):406-17. doi: 10.1038/nrendo.2015.66. Epub 2015 May 5.","parent_key":"BE0003644"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0001032"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0001004"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0003659"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0001067"} {"ref-id":"A18524","pubmed-id":21163547,"citation":"de Graaf W, Hausler S, Heger M, van Ginhoven TM, van Cappellen G, Bennink RJ, Kullak-Ublick GA, Hesselmann R, van Gulik TM, Stieger B: Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J Hepatol. 2011 Apr;54(4):738-45. doi: 10.1016/j.jhep.2010.07.047. Epub 2010 Oct 1.","parent_key":"BE0001004"} {"ref-id":"A18524","pubmed-id":21163547,"citation":"de Graaf W, Hausler S, Heger M, van Ginhoven TM, van Cappellen G, Bennink RJ, Kullak-Ublick GA, Hesselmann R, van Gulik TM, Stieger B: Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J Hepatol. 2011 Apr;54(4):738-45. doi: 10.1016/j.jhep.2010.07.047. Epub 2010 Oct 1.","parent_key":"BE0003659"} {"ref-id":"A18525","pubmed-id":9472628,"citation":"Hendrikse NH, Franssen EJ, van der Graaf WT, Meijer C, Piers DA, Vaalburg W, de Vries EG: 99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer. 1998;77(3):353-8.","parent_key":"BE0001032"} {"ref-id":"A18525","pubmed-id":9472628,"citation":"Hendrikse NH, Franssen EJ, van der Graaf WT, Meijer C, Piers DA, Vaalburg W, de Vries EG: 99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer. 1998;77(3):353-8.","parent_key":"BE0000785"} {"ref-id":"A19749","pubmed-id":25648999,"citation":"Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3.","parent_key":"BE0001004"} {"ref-id":"A19749","pubmed-id":25648999,"citation":"Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3.","parent_key":"BE0001032"} {"ref-id":"A188943","pubmed-id":30645721,"citation":"Johnson R, Dludla P, Mabhida S, Benjeddou M, Louw J, February F: Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev. 2019 May;24(3):343-357. doi: 10.1007/s10741-018-09765-y.","parent_key":"BE0001032"} {"ref-id":"A191227","pubmed-id":1352973,"citation":"Hollt V, Kouba M, Dietel M, Vogt G: Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochem Pharmacol. 1992 Jun 23;43(12):2601-8. doi: 10.1016/0006-2952(92)90149-d.","parent_key":"BE0001032"} {"ref-id":"A191230","pubmed-id":15585608,"citation":"Zhou XF, Zhang L, Tseng E, Scott-Ramsay E, Schentag JJ, Coburn RA, Morris ME: New 4-aryl-1,4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors. Drug Metab Dispos. 2005 Mar;33(3):321-8. doi: 10.1124/dmd.104.002089. Epub 2004 Dec 7.","parent_key":"BE0001032"} {"ref-id":"A192654","pubmed-id":18796331,"citation":"Khdair A, Handa H, Mao G, Panyam J: Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur J Pharm Biopharm. 2009 Feb;71(2):214-22. doi: 10.1016/j.ejpb.2008.08.017. Epub 2008 Aug 29.","parent_key":"BE0001032"} {"ref-id":"A7879","pubmed-id":25491493,"citation":"Davenport JM, Covington P, Bonifacio L, McIntyre G, Venitz J: Effect of uptake transporters OAT3 and OATP1B1 and efflux transporter MRP2 on the pharmacokinetics of eluxadoline. J Clin Pharmacol. 2015 May;55(5):534-42. doi: 10.1002/jcph.442. Epub 2015 Jan 14.","parent_key":"BE0001004"} {"ref-id":"A7879","pubmed-id":25491493,"citation":"Davenport JM, Covington P, Bonifacio L, McIntyre G, Venitz J: Effect of uptake transporters OAT3 and OATP1B1 and efflux transporter MRP2 on the pharmacokinetics of eluxadoline. J Clin Pharmacol. 2015 May;55(5):534-42. doi: 10.1002/jcph.442. Epub 2015 Jan 14.","parent_key":"BE0001069"} {"ref-id":"A7879","pubmed-id":25491493,"citation":"Davenport JM, Covington P, Bonifacio L, McIntyre G, Venitz J: Effect of uptake transporters OAT3 and OATP1B1 and efflux transporter MRP2 on the pharmacokinetics of eluxadoline. J Clin Pharmacol. 2015 May;55(5):534-42. doi: 10.1002/jcph.442. Epub 2015 Jan 14.","parent_key":"BE0003645"} {"ref-id":"A37194","pubmed-id":30087555,"citation":"Choi Y, Lee S, Jang IJ, Yu KS: Pharmacokinetic interaction between fimasartan and atorvastatin in healthy male volunteers. Drug Des Devel Ther. 2018 Jul 24;12:2301-2309. doi: 10.2147/DDDT.S165171. eCollection 2018.","parent_key":"BE0001004"} {"ref-id":"A37194","pubmed-id":30087555,"citation":"Choi Y, Lee S, Jang IJ, Yu KS: Pharmacokinetic interaction between fimasartan and atorvastatin in healthy male volunteers. Drug Des Devel Ther. 2018 Jul 24;12:2301-2309. doi: 10.2147/DDDT.S165171. eCollection 2018.","parent_key":"BE0001067"} {"ref-id":"A190921","pubmed-id":16500056,"citation":"Shen Q, Lin Y, Handa T, Doi M, Sugie M, Wakayama K, Okada N, Fujita T, Yamamoto A: Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies. Int J Pharm. 2006 Apr 26;313(1-2):49-56. doi: 10.1016/j.ijpharm.2006.01.020. Epub 2006 Feb 24.","parent_key":"BE0001032"} {"ref-id":"A190924","pubmed-id":15389668,"citation":"Wang SW, Monagle J, McNulty C, Putnam D, Chen H: Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process. J Pharm Sci. 2004 Nov;93(11):2755-67. doi: 10.1002/jps.20183.","parent_key":"BE0001032"} {"ref-id":"A190927","pubmed-id":17896100,"citation":"Werle M: Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res. 2008 Mar;25(3):500-11. doi: 10.1007/s11095-007-9347-8. Epub 2007 Sep 26.","parent_key":"BE0001032"} {"ref-id":"A7902","pubmed-id":26466607,"citation":"Mills J, Vardeny O: The Role of Neprilysin Inhibitors in Cardiovascular Disease. Curr Heart Fail Rep. 2015 Dec;12(6):389-94. doi: 10.1007/s11897-015-0270-8.","parent_key":"BE0001004"} {"ref-id":"A7902","pubmed-id":26466607,"citation":"Mills J, Vardeny O: The Role of Neprilysin Inhibitors in Cardiovascular Disease. Curr Heart Fail Rep. 2015 Dec;12(6):389-94. doi: 10.1007/s11897-015-0270-8.","parent_key":"BE0003659"} {"ref-id":"A18455","pubmed-id":27401997,"citation":"Keating GM: Ombitasvir/Paritaprevir/Ritonavir: A Review in Chronic HCV Genotype 4 Infection. Drugs. 2016 Aug;76(12):1203-11. doi: 10.1007/s40265-016-0612-1.","parent_key":"BE0001032"} {"ref-id":"A40094","pubmed-id":29649076,"citation":"Begley R, Das M, Zhong L, Ling J, Kearney BP, Custodio JM: Pharmacokinetics of Tenofovir Alafenamide When Coadministered With Other HIV Antiretrovirals. J Acquir Immune Defic Syndr. 2018 Aug 1;78(4):465-472. doi: 10.1097/QAI.0000000000001699.","parent_key":"BE0001032"} {"ref-id":"A40097","pubmed-id":27216057,"citation":"Custodio JM, Fordyce M, Garner W, Vimal M, Ling KH, Kearney BP, Ramanathan S: Pharmacokinetics and Safety of Tenofovir Alafenamide in HIV-Uninfected Subjects with Severe Renal Impairment. Antimicrob Agents Chemother. 2016 Aug 22;60(9):5135-40. doi: 10.1128/AAC.00005-16. Print 2016 Sep.","parent_key":"BE0001032"} {"ref-id":"A40098","pubmed-id":25870059,"citation":"Murakami E, Wang T, Park Y, Hao J, Lepist EI, Babusis D, Ray AS: Implications of efficient hepatic delivery by tenofovir alafenamide (GS-7340) for hepatitis B virus therapy. Antimicrob Agents Chemother. 2015;59(6):3563-9. doi: 10.1128/AAC.00128-15. Epub 2015 Apr 13.","parent_key":"BE0001032"} {"ref-id":"A178060","pubmed-id":27438578,"citation":"Aloy B, Tazi I, Bagnis CI, Gauthier M, Janus N, Launay-Vacher V, Deray G, Tourret J: Is Tenofovir Alafenamide Safer than Tenofovir Disoproxil Fumarate for the Kidneys? AIDS Rev. 2016 Oct-Dec;18(4):184-192.","parent_key":"BE0001032"} {"ref-id":"A178060","pubmed-id":27438578,"citation":"Aloy B, Tazi I, Bagnis CI, Gauthier M, Janus N, Launay-Vacher V, Deray G, Tourret J: Is Tenofovir Alafenamide Safer than Tenofovir Disoproxil Fumarate for the Kidneys? AIDS Rev. 2016 Oct-Dec;18(4):184-192.","parent_key":"BE0001188"} {"ref-id":"A178060","pubmed-id":27438578,"citation":"Aloy B, Tazi I, Bagnis CI, Gauthier M, Janus N, Launay-Vacher V, Deray G, Tourret J: Is Tenofovir Alafenamide Safer than Tenofovir Disoproxil Fumarate for the Kidneys? AIDS Rev. 2016 Oct-Dec;18(4):184-192.","parent_key":"BE0001066"} {"ref-id":"A178060","pubmed-id":27438578,"citation":"Aloy B, Tazi I, Bagnis CI, Gauthier M, Janus N, Launay-Vacher V, Deray G, Tourret J: Is Tenofovir Alafenamide Safer than Tenofovir Disoproxil Fumarate for the Kidneys? AIDS Rev. 2016 Oct-Dec;18(4):184-192.","parent_key":"BE0003645"} {"ref-id":"A178231","pubmed-id":30460547,"citation":"Deeks ED: Bictegravir/Emtricitabine/Tenofovir Alafenamide: A Review in HIV-1 Infection. Drugs. 2018 Nov;78(17):1817-1828. doi: 10.1007/s40265-018-1010-7.","parent_key":"BE0001067"} {"ref-id":"A178249","pubmed-id":29158666,"citation":"Ogawa E, Furusyo N, Nguyen MH: Tenofovir alafenamide in the treatment of chronic hepatitis B: design, development, and place in therapy. Drug Des Devel Ther. 2017 Nov 6;11:3197-3204. doi: 10.2147/DDDT.S126742. eCollection 2017.","parent_key":"BE0001004"} {"ref-id":"A178249","pubmed-id":29158666,"citation":"Ogawa E, Furusyo N, Nguyen MH: Tenofovir alafenamide in the treatment of chronic hepatitis B: design, development, and place in therapy. Drug Des Devel Ther. 2017 Nov 6;11:3197-3204. doi: 10.2147/DDDT.S126742. eCollection 2017.","parent_key":"BE0003659"} {"ref-id":"A36926","pubmed-id":12646011,"citation":"Johnson BM, Charman WN, Porter CJ: An in vitro examination of the impact of polyethylene glycol 400, Pluronic P85, and vitamin E d-alpha-tocopheryl polyethylene glycol 1000 succinate on P-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS PharmSci. 2002;4(4):E40. doi: 10.1208/ps040440.","parent_key":"BE0001032"} {"ref-id":"A32451","pubmed-id":26981194,"citation":"Schmolz L, Birringer M, Lorkowski S, Wallert M: Complexity of vitamin E metabolism. World J Biol Chem. 2016 Feb 26;7(1):14-43. doi: 10.4331/wjbc.v7.i1.14.","parent_key":"BE0001032"} {"ref-id":"A191224","pubmed-id":12766968,"citation":"Park SW, Lomri N, Simeoni LA, Fruehauf JP, Mechetner E: Analysis of P-glycoprotein-mediated membrane transport in human peripheral blood lymphocytes using the UIC2 shift assay. Cytometry A. 2003 Jun;53(2):67-78. doi: 10.1002/cyto.a.10039.","parent_key":"BE0001032"} {"ref-id":"A191260","pubmed-id":20444629,"citation":"Riccioni R, Dupuis ML, Bernabei M, Petrucci E, Pasquini L, Mariani G, Cianfriglia M, Testa U: The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor. Blood Cells Mol Dis. 2010 Jun 15;45(1):86-92. doi: 10.1016/j.bcmd.2010.03.008. Epub 2010 May 4.","parent_key":"BE0001032"} {"ref-id":"A191263","pubmed-id":21573958,"citation":"Kim WK, Kim JH, Yoon K, Kim S, Ro J, Kang HS, Yoon S: Salinomycin, a p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest. Invest New Drugs. 2012 Aug;30(4):1311-8. doi: 10.1007/s10637-011-9685-6. Epub 2011 May 15.","parent_key":"BE0001032"} {"ref-id":"A18568","pubmed-id":26953185,"citation":"Agarwal SK, Hu B, Chien D, Wong SL, Salem AH: Evaluation of Rifampin's Transporter Inhibitory and CYP3A Inductive Effects on the Pharmacokinetics of Venetoclax, a Bcl-2 Inhibitor: Results of a Single- and Multiple-dose Study. J Clin Pharmacol. 2016 Mar 7. doi: 10.1002/jcph.730.","parent_key":"BE0001032"} {"ref-id":"A40023","pubmed-id":26927160,"citation":"Weiss J, Gajek T, Kohler BC, Haefeli WE: Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions. Pharmaceutics. 2016 Feb 24;8(1). pii: pharmaceutics8010005. doi: 10.3390/pharmaceutics8010005.","parent_key":"BE0001004"} {"ref-id":"A34607","pubmed-id":25670521,"citation":"Eley T, Han YH, Huang SP, He B, Li W, Bedford W, Stonier M, Gardiner D, Sims K, Rodrigues AD, Bertz RJ: Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin Pharmacol Ther. 2015 Feb;97(2):159-66. doi: 10.1002/cpt.4. Epub 2014 Dec 20.","parent_key":"BE0001004"} {"ref-id":"A34607","pubmed-id":25670521,"citation":"Eley T, Han YH, Huang SP, He B, Li W, Bedford W, Stonier M, Gardiner D, Sims K, Rodrigues AD, Bertz RJ: Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin Pharmacol Ther. 2015 Feb;97(2):159-66. doi: 10.1002/cpt.4. Epub 2014 Dec 20.","parent_key":"BE0003659"} {"ref-id":"A34607","pubmed-id":25670521,"citation":"Eley T, Han YH, Huang SP, He B, Li W, Bedford W, Stonier M, Gardiner D, Sims K, Rodrigues AD, Bertz RJ: Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin Pharmacol Ther. 2015 Feb;97(2):159-66. doi: 10.1002/cpt.4. Epub 2014 Dec 20.","parent_key":"BE0001042"} {"ref-id":"A40100","pubmed-id":26519191,"citation":"Mogalian E, German P, Kearney BP, Yang CY, Brainard D, McNally J, Moorehead L, Mathias A: Use of Multiple Probes to Assess Transporter- and Cytochrome P450-Mediated Drug-Drug Interaction Potential of the Pangenotypic HCV NS5A Inhibitor Velpatasvir. Clin Pharmacokinet. 2016 May;55(5):605-13. doi: 10.1007/s40262-015-0334-7.","parent_key":"BE0001032"} {"ref-id":"A40101","pubmed-id":28680834,"citation":"Geddawy A, Ibrahim YF, Elbahie NM, Ibrahim MA: Direct Acting Anti-hepatitis C Virus Drugs: Clinical Pharmacology and Future Direction. J Transl Int Med. 2017 Mar 31;5(1):8-17. doi: 10.1515/jtim-2017-0007. eCollection 2017 Mar.","parent_key":"BE0001032"} {"ref-id":"A16435","pubmed-id":20019365,"citation":"Kraft ME, Glaeser H, Mandery K, Konig J, Auge D, Fromm MF, Schlotzer-Schrehardt U, Welge-Lussen U, Kruse FE, Zolk O: The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost. Invest Ophthalmol Vis Sci. 2010 May;51(5):2504-11. doi: 10.1167/iovs.09-4290. Epub 2009 Dec 17.","parent_key":"BE0001042"} {"ref-id":"A191272","pubmed-id":27834897,"citation":"Lopes-Rodrigues V, Sousa E, Vasconcelos MH: Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives. Pharmaceuticals (Basel). 2016 Nov 10;9(4). pii: ph9040071. doi: 10.3390/ph9040071.","parent_key":"BE0001032"} {"ref-id":"A191275","pubmed-id":9651124,"citation":"Romiti N, Tongiani R, Cervelli F, Chieli E: Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes. Life Sci. 1998;62(25):2349-58. doi: 10.1016/s0024-3205(98)00216-1.","parent_key":"BE0001032"} {"ref-id":"A191281","pubmed-id":17050652,"citation":"Zhang W, Tan TM, Lim LY: Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab Dispos. 2007 Jan;35(1):110-5. doi: 10.1124/dmd.106.011072. Epub 2006 Oct 18.","parent_key":"BE0001032"} {"ref-id":"A193407","pubmed-id":28921565,"citation":"de Gooijer MC, Zhang P, Weijer R, Buil LCM, Beijnen JH, van Tellingen O: The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int J Cancer. 2018 Jan 15;142(2):381-391. doi: 10.1002/ijc.31052. Epub 2017 Oct 4.","parent_key":"BE0001032"} {"ref-id":"A193407","pubmed-id":28921565,"citation":"de Gooijer MC, Zhang P, Weijer R, Buil LCM, Beijnen JH, van Tellingen O: The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int J Cancer. 2018 Jan 15;142(2):381-391. doi: 10.1002/ijc.31052. Epub 2017 Oct 4.","parent_key":"BE0001067"} {"ref-id":"A193410","pubmed-id":28283692,"citation":"Dymond AW, Elks C, Martin P, Carlile DJ, Mariani G, Lovick S, Huang Y, Lorch U, Brown H, So K: Pharmacokinetics and pharmacogenetics of the MEK1/2 inhibitor, selumetinib, in Asian and Western healthy subjects: a pooled analysis. Eur J Clin Pharmacol. 2017 Jun;73(6):717-726. doi: 10.1007/s00228-017-2217-3. Epub 2017 Mar 10.","parent_key":"BE0001067"} {"ref-id":"A179665","pubmed-id":30694595,"citation":"Garg V, Shen J, Li C, Agarwal S, Gebre A, Robertson S, Huang J, Han L, Jiang L, Stephan K, Wang LT, Lekstrom-Himes J: Pharmacokinetic and Drug-Drug Interaction Profiles of the Combination of Tezacaftor/Ivacaftor. Clin Transl Sci. 2019 May;12(3):267-275. doi: 10.1111/cts.12610. Epub 2019 Jan 29.","parent_key":"BE0001032"} {"ref-id":"A31708","pubmed-id":16595711,"citation":"Hirano M, Maeda K, Shitara Y, Sugiyama Y: Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos. 2006 Jul;34(7):1229-36. doi: 10.1124/dmd.106.009290. Epub 2006 Apr 4.","parent_key":"BE0003642"} {"ref-id":"A31708","pubmed-id":16595711,"citation":"Hirano M, Maeda K, Shitara Y, Sugiyama Y: Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos. 2006 Jul;34(7):1229-36. doi: 10.1124/dmd.106.009290. Epub 2006 Apr 4.","parent_key":"BE0001004"} {"ref-id":"A31708","pubmed-id":16595711,"citation":"Hirano M, Maeda K, Shitara Y, Sugiyama Y: Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos. 2006 Jul;34(7):1229-36. doi: 10.1124/dmd.106.009290. Epub 2006 Apr 4.","parent_key":"BE0003659"} {"ref-id":"A31708","pubmed-id":16595711,"citation":"Hirano M, Maeda K, Shitara Y, Sugiyama Y: Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos. 2006 Jul;34(7):1229-36. doi: 10.1124/dmd.106.009290. Epub 2006 Apr 4.","parent_key":"BE0001042"} {"ref-id":"A184067","pubmed-id":23700273,"citation":"Dungo R, Deeks ED: Istradefylline: first global approval. Drugs. 2013 Jun;73(8):875-82. doi: 10.1007/s40265-013-0066-7.","parent_key":"BE0001032"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0001004"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0001066"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0003645"} {"ref-id":"A191302","pubmed-id":30659422,"citation":"Deeks ED: Sarecycline: First Global Approval. Drugs. 2019 Feb;79(3):325-329. doi: 10.1007/s40265-019-1053-4.","parent_key":"BE0001032"} {"ref-id":"A27287","pubmed-id":26170684,"citation":"Chan NC, Bhagirath V, Eikelboom JW: Profile of betrixaban and its potential in the prevention and treatment of venous thromboembolism. Vasc Health Risk Manag. 2015 Jun 26;11:343-51. doi: 10.2147/VHRM.S63060. eCollection 2015.","parent_key":"BE0001032"} {"ref-id":"A181081","pubmed-id":30891606,"citation":"Chan G, Houle R, Lin M, Yabut J, Cox K, Wu J, Chu X: Role of transporters in the disposition of a novel beta-lactamase inhibitor: relebactam (MK-7655). J Antimicrob Chemother. 2019 Jul 1;74(7):1894-1903. doi: 10.1093/jac/dkz101.","parent_key":"BE0003645"} {"ref-id":"A181081","pubmed-id":30891606,"citation":"Chan G, Houle R, Lin M, Yabut J, Cox K, Wu J, Chu X: Role of transporters in the disposition of a novel beta-lactamase inhibitor: relebactam (MK-7655). J Antimicrob Chemother. 2019 Jul 1;74(7):1894-1903. doi: 10.1093/jac/dkz101.","parent_key":"BE0000879"} {"ref-id":"A173623","pubmed-id":12130727,"citation":"Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF: Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002 Aug;302(2):645-50. doi: 10.1124/jpet.102.034728.","parent_key":"BE0001032"} {"ref-id":"A192720","pubmed-id":28783871,"citation":"Tran JQ, Hartung JP, Olson AD, Mendzelevski B, Timony GA, Boehm MF, Peach RJ, Gujrathi S, Frohna PA: Cardiac Safety of Ozanimod, a Novel Sphingosine-1-Phosphate Receptor Modulator: Results of a Thorough QT/QTc Study. Clin Pharmacol Drug Dev. 2018 Mar;7(3):263-276. doi: 10.1002/cpdd.383. Epub 2017 Aug 7.","parent_key":"BE0001032"} {"ref-id":"A191233","pubmed-id":19647170,"citation":"Luurtsema G, Schuit RC, Klok RP, Verbeek J, Leysen JE, Lammertsma AA, Windhorst AD: Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats. Nucl Med Biol. 2009 Aug;36(6):643-9. doi: 10.1016/j.nucmedbio.2009.03.004.","parent_key":"BE0001032"} {"ref-id":"A39931","pubmed-id":29109021,"citation":"Huo X, Liu K: Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci. 2018 Jan 15;112:8-19. doi: 10.1016/j.ejps.2017.11.001. Epub 2017 Nov 8.","parent_key":"BE0003645"} {"ref-id":"A190366","pubmed-id":25868794,"citation":"Zhang P, de Gooijer MC, Buil LC, Beijnen JH, Li G, van Tellingen O: ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-Inhibitors. Int J Cancer. 2015 Oct 15;137(8):2007-18. doi: 10.1002/ijc.29566. Epub 2015 Apr 24.","parent_key":"BE0001032"} {"ref-id":"A190366","pubmed-id":25868794,"citation":"Zhang P, de Gooijer MC, Buil LC, Beijnen JH, Li G, van Tellingen O: ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-Inhibitors. Int J Cancer. 2015 Oct 15;137(8):2007-18. doi: 10.1002/ijc.29566. Epub 2015 Apr 24.","parent_key":"BE0001067"} {"ref-id":"A189051","pubmed-id":31571095,"citation":"Shore N, Zurth C, Fricke R, Gieschen H, Graudenz K, Koskinen M, Ploeger B, Moss J, Prien O, Borghesi G, Petrenciuc O, Tammela TL, Kuss I, Verholen F, Smith MR, Fizazi K: Evaluation of Clinically Relevant Drug-Drug Interactions and Population Pharmacokinetics of Darolutamide in Patients with Nonmetastatic Castration-Resistant Prostate Cancer: Results of Pre-Specified and Post Hoc Analyses of the Phase III ARAMIS Trial. Target Oncol. 2019 Oct;14(5):527-539. doi: 10.1007/s11523-019-00674-0.","parent_key":"BE0001067"} {"ref-id":"A189144","pubmed-id":31571146,"citation":"Zurth C, Koskinen M, Fricke R, Prien O, Korjamo T, Graudenz K, Denner K, Bairlein M, von Buhler CJ, Wilkinson G, Gieschen H: Drug-Drug Interaction Potential of Darolutamide: In Vitro and Clinical Studies. Eur J Drug Metab Pharmacokinet. 2019 Dec;44(6):747-759. doi: 10.1007/s13318-019-00577-5.","parent_key":"BE0001067"} {"ref-id":"A189051","pubmed-id":31571095,"citation":"Shore N, Zurth C, Fricke R, Gieschen H, Graudenz K, Koskinen M, Ploeger B, Moss J, Prien O, Borghesi G, Petrenciuc O, Tammela TL, Kuss I, Verholen F, Smith MR, Fizazi K: Evaluation of Clinically Relevant Drug-Drug Interactions and Population Pharmacokinetics of Darolutamide in Patients with Nonmetastatic Castration-Resistant Prostate Cancer: Results of Pre-Specified and Post Hoc Analyses of the Phase III ARAMIS Trial. Target Oncol. 2019 Oct;14(5):527-539. doi: 10.1007/s11523-019-00674-0.","parent_key":"BE0001032"} {"ref-id":"A189144","pubmed-id":31571146,"citation":"Zurth C, Koskinen M, Fricke R, Prien O, Korjamo T, Graudenz K, Denner K, Bairlein M, von Buhler CJ, Wilkinson G, Gieschen H: Drug-Drug Interaction Potential of Darolutamide: In Vitro and Clinical Studies. Eur J Drug Metab Pharmacokinet. 2019 Dec;44(6):747-759. doi: 10.1007/s13318-019-00577-5.","parent_key":"BE0001032"} {"ref-id":"A189144","pubmed-id":31571146,"citation":"Zurth C, Koskinen M, Fricke R, Prien O, Korjamo T, Graudenz K, Denner K, Bairlein M, von Buhler CJ, Wilkinson G, Gieschen H: Drug-Drug Interaction Potential of Darolutamide: In Vitro and Clinical Studies. Eur J Drug Metab Pharmacokinet. 2019 Dec;44(6):747-759. doi: 10.1007/s13318-019-00577-5.","parent_key":"BE0001004"} {"ref-id":"A189144","pubmed-id":31571146,"citation":"Zurth C, Koskinen M, Fricke R, Prien O, Korjamo T, Graudenz K, Denner K, Bairlein M, von Buhler CJ, Wilkinson G, Gieschen H: Drug-Drug Interaction Potential of Darolutamide: In Vitro and Clinical Studies. Eur J Drug Metab Pharmacokinet. 2019 Dec;44(6):747-759. doi: 10.1007/s13318-019-00577-5.","parent_key":"BE0003659"} {"ref-id":"A191266","pubmed-id":7690715,"citation":"Ueda K, Shimabuku AM, Konishi H, Fujii Y, Takebe S, Nishi K, Yoshida M, Beppu T, Komano T: Functional expression of human P-glycoprotein in Schizosaccharomyces pombe. FEBS Lett. 1993 Sep 20;330(3):279-82. doi: 10.1016/0014-5793(93)80888-2.","parent_key":"BE0001032"} {"ref-id":"A191269","pubmed-id":8604982,"citation":"Goda K, Krasznai Z, Gaspar R, Lankelma J, Westerhoff HV, Damjanovich S, Szabo G Jr: Reversal of multidrug resistance by valinomycin is overcome by CCCP. Biochem Biophys Res Commun. 1996 Feb 15;219(2):306-10. doi: 10.1006/bbrc.1996.0228.","parent_key":"BE0001032"} {"ref-id":"A33384","pubmed-id":29145976,"citation":"Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G: Not only P-glycoprotein: Amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat. 2017 May;32:23-46. doi: 10.1016/j.drup.2017.10.003. Epub 2017 Oct 16.","parent_key":"BE0001032"} {"ref-id":"A33387","pubmed-id":7772017,"citation":"Sharom FJ, Yu X, Chu JW, Doige CA: Characterization of the ATPase activity of P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochem J. 1995 Jun 1;308 ( Pt 2):381-90.","parent_key":"BE0001032"} {"ref-id":"A33395","pubmed-id":7636539,"citation":"Wilson WH, Jamis-Dow C, Bryant G, Balis FM, Klecker RW, Bates SE, Chabner BA, Steinberg SM, Kohler DR, Wittes RE: Phase I and pharmacokinetic study of the multidrug resistance modulator dexverapamil with EPOCH chemotherapy. J Clin Oncol. 1995 Aug;13(8):1985-94. doi: 10.1200/JCO.1995.13.8.1985.","parent_key":"BE0001032"} {"ref-id":"A39711","pubmed-id":24023511,"citation":"Amin ML: P-glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights. 2013 Aug 19;7:27-34. doi: 10.4137/DTI.S12519.","parent_key":"BE0001032"} {"ref-id":"A191308","pubmed-id":20662321,"citation":"Ji BS, Li M, He L: Interaction of CJZ3, a lomerizine derivative, with ATPase activity of human P-glycoprotein in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Pharmazie. 2010 Jul;65(7):515-9.","parent_key":"BE0001032"} {"ref-id":"A33400","pubmed-id":11379779,"citation":"Shiraki N, Hamada A, Ohmura T, Tokunaga J, Oyama N, Nakano M: Increase in doxorubicin cytotoxicity by inhibition of P-glycoprotein activity with lomerizine. Biol Pharm Bull. 2001 May;24(5):555-7.","parent_key":"BE0001032"} {"ref-id":"A33401","pubmed-id":14666379,"citation":"Fu L, Liang Y, Deng L, Ding Y, Chen L, Ye Y, Yang X, Pan Q: Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother Pharmacol. 2004 Apr;53(4):349-56. doi: 10.1007/s00280-003-0742-5. Epub 2003 Dec 10.","parent_key":"BE0001032"} {"ref-id":"A191311","pubmed-id":24856768,"citation":"Sun YF, Wink M: Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells. Phytomedicine. 2014 Jul-Aug;21(8-9):1110-9. doi: 10.1016/j.phymed.2014.04.029. Epub 2014 May 22.","parent_key":"BE0001032"} {"ref-id":"A33406","pubmed-id":27648351,"citation":"Chung FS, Santiago JS, Jesus MF, Trinidad CV, See MF: Disrupting P-glycoprotein function in clinical settings: what can we learn from the fundamental aspects of this transporter? Am J Cancer Res. 2016 Aug 1;6(8):1583-98. eCollection 2016.","parent_key":"BE0001032"} {"ref-id":"A37648","pubmed-id":20216335,"citation":"Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE, Altman RB: Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011 Mar;21(3):152-61. doi: 10.1097/FPC.0b013e3283385a1c.","parent_key":"BE0001032"} {"ref-id":"A33380","pubmed-id":16012790,"citation":"Chi KN, Chia SK, Dixon R, Newman MJ, Wacher VJ, Sikic B, Gelmon KA: A phase I pharmacokinetic study of the P-glycoprotein inhibitor, ONT-093, in combination with paclitaxel in patients with advanced cancer. Invest New Drugs. 2005 Aug;23(4):311-5. doi: 10.1007/s10637-005-1439-x.","parent_key":"BE0001032"} {"ref-id":"A40099","pubmed-id":15673751,"citation":"Droste JA, Verweij-van Wissen CP, Kearney BP, Buffels R, Vanhorssen PJ, Hekster YA, Burger DM: Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. Antimicrob Agents Chemother. 2005 Feb;49(2):680-4. doi: 10.1128/AAC.49.2.680-684.2005.","parent_key":"BE0001032"} {"ref-id":"A33997","pubmed-id":28340145,"citation":"Webster L, Henningfield J, Buchhalter AR, Siddhanti S, Lu L, Odinecs A, Di Fonzo CJ, Eldon MA: Human Abuse Potential of the New Opioid Analgesic Molecule NKTR-181 Compared with Oxycodone. Pain Med. 2018 Feb 1;19(2):307-318. doi: 10.1093/pm/pnw344.","parent_key":"BE0001032"} {"ref-id":"A188979","pubmed-id":30351177,"citation":"Nagai Y, Oitate M, Shiozawa H, Ando O: Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica. 2019 Sep;49(9):1086-1096. doi: 10.1080/00498254.2018.1531158. Epub 2019 Jan 4.","parent_key":"BE0001032"} {"ref-id":"A189327","pubmed-id":31117741,"citation":"Wu CP, Lusvarghi S, Wang JC, Hsiao SH, Huang YH, Hung TH, Ambudkar SV: Avapritinib: A Selective Inhibitor of KIT and PDGFRalpha that Reverses ABCB1 and ABCG2-Mediated Multidrug Resistance in Cancer Cell Lines. Mol Pharm. 2019 Jul 1;16(7):3040-3052. doi: 10.1021/acs.molpharmaceut.9b00274. Epub 2019 Jun 4.","parent_key":"BE0001032"} {"ref-id":"A189327","pubmed-id":31117741,"citation":"Wu CP, Lusvarghi S, Wang JC, Hsiao SH, Huang YH, Hung TH, Ambudkar SV: Avapritinib: A Selective Inhibitor of KIT and PDGFRalpha that Reverses ABCB1 and ABCG2-Mediated Multidrug Resistance in Cancer Cell Lines. Mol Pharm. 2019 Jul 1;16(7):3040-3052. doi: 10.1021/acs.molpharmaceut.9b00274. Epub 2019 Jun 4.","parent_key":"BE0001067"}