{"ref-id":"A39126","pubmed-id":11910269,"citation":"Begre S, von Bardeleben U, Ladewig D, Jaquet-Rochat S, Cosendai-Savary L, Golay KP, Kosel M, Baumann P, Eap CB: Paroxetine increases steady-state concentrations of (R)-methadone in CYP2D6 extensive but not poor metabolizers. J Clin Psychopharmacol. 2002 Apr;22(2):211-5.","parent_key":"BE0002433"} {"ref-id":"A181307","pubmed-id":9064483,"citation":"Delaporte E, Renton KW: Cytochrome P4501A1 and cytochrome P4501A2 are downregulated at both transcriptional and post-transcriptional levels by conditions resulting in interferon-alpha/beta induction. Life Sci. 1997;60(10):787-96. doi: 10.1016/s0024-3205(97)00006-4.","parent_key":"BE0002433"} {"ref-id":"A39127","pubmed-id":21161196,"citation":"Gupta SK, Kolz K, Cutler DL: Effects of multiple-dose pegylated interferon alfa-2b on the activity of drug-metabolizing enzymes in persons with chronic hepatitis C. Eur J Clin Pharmacol. 2011 Jun;67(6):591-9. doi: 10.1007/s00228-010-0972-5. Epub 2010 Dec 16.","parent_key":"BE0002433"} {"ref-id":"A39324","pubmed-id":22765278,"citation":"Brennan BJ, Xu ZX, Grippo JF: Effect of peginterferon alfa-2a (40KD) on cytochrome P450 isoenzyme activity. Br J Clin Pharmacol. 2013 Feb;75(2):497-506. doi: 10.1111/j.1365-2125.2012.04373.x.","parent_key":"BE0002793"} {"ref-id":"A181319","pubmed-id":1562279,"citation":"Barnett CR, Wilson J, Wolf CR, Flatt PR, Ioannides C: Hyperinsulinaemia causes a preferential increase in hepatic P4501A2 activity. Biochem Pharmacol. 1992 Mar 17;43(6):1255-61. doi: 10.1016/0006-2952(92)90500-i.","parent_key":"BE0002433"} {"ref-id":"A181322","pubmed-id":12130701,"citation":"Pass GJ, Becker W, Kluge R, Linnartz K, Plum L, Giesen K, Joost HG: Effect of hyperinsulinemia and type 2 diabetes-like hyperglycemia on expression of hepatic cytochrome p450 and glutathione s-transferase isoforms in a New Zealand obese-derived mouse backcross population. J Pharmacol Exp Ther. 2002 Aug;302(2):442-50. doi: 10.1124/jpet.102.033553.","parent_key":"BE0002433"} {"ref-id":"A39131","pubmed-id":9103535,"citation":"Donato MT, Guillen MI, Jover R, Castell JV, Gomez-Lechon MJ: Nitric oxide-mediated inhibition of cytochrome P450 by interferon-gamma in human hepatocytes. J Pharmacol Exp Ther. 1997 Apr;281(1):484-90.","parent_key":"BE0002433"} {"ref-id":"A17841","pubmed-id":10086330,"citation":"Elkahwaji J, Robin MA, Berson A, Tinel M, Letteron P, Labbe G, Beaune P, Elias D, Rougier P, Escudier B, Duvillard P, Pessayre D: Decrease in hepatic cytochrome P450 after interleukin-2 immunotherapy. Biochem Pharmacol. 1999 Apr 15;57(8):951-4.","parent_key":"BE0002638"} {"ref-id":"A17842","pubmed-id":14977871,"citation":"Sunman JA, Hawke RL, LeCluyse EL, Kashuba AD: Kupffer cell-mediated IL-2 suppression of CYP3A activity in human hepatocytes. Drug Metab Dispos. 2004 Mar;32(3):359-63.","parent_key":"BE0002638"} {"ref-id":"A17843","pubmed-id":8032542,"citation":"Faggioni R, Allavena P, Cantoni L, Carelli M, Demitri MT, Delgado R, Gatti S, Gnocchi P, Isetta AM, Paganin C, et al.: Mechanisms of interleukin-2-induced hydrothoraxy in mice: protective effect of endotoxin tolerance and dexamethasone and possible role of reactive oxygen intermediates. J Immunother Emphasis Tumor Immunol. 1994 Apr;15(3):194-201.","parent_key":"BE0002204"} {"ref-id":"A17841","pubmed-id":10086330,"citation":"Elkahwaji J, Robin MA, Berson A, Tinel M, Letteron P, Labbe G, Beaune P, Elias D, Rougier P, Escudier B, Duvillard P, Pessayre D: Decrease in hepatic cytochrome P450 after interleukin-2 immunotherapy. Biochem Pharmacol. 1999 Apr 15;57(8):951-4.","parent_key":"BE0003533"} {"ref-id":"A17781","pubmed-id":9661620,"citation":"Liddle C, Goodwin BJ, George J, Tapner M, Farrell GC: Separate and interactive regulation of cytochrome P450 3A4 by triiodothyronine, dexamethasone, and growth hormone in cultured hepatocytes. J Clin Endocrinol Metab. 1998 Jul;83(7):2411-6.","parent_key":"BE0002638"} {"ref-id":"A17782","pubmed-id":16291874,"citation":"Cheung C, Yu AM, Chen CS, Krausz KW, Byrd LG, Feigenbaum L, Edwards RJ, Waxman DJ, Gonzalez FJ: Growth hormone determines sexual dimorphism of hepatic cytochrome P450 3A4 expression in transgenic mice. J Pharmacol Exp Ther. 2006 Mar;316(3):1328-34. Epub 2005 Nov 16.","parent_key":"BE0002638"} {"ref-id":"A17784","pubmed-id":19366684,"citation":"Savas U, Machemer DE, Hsu MH, Gaynor P, Lasker JM, Tukey RH, Johnson EF: Opposing roles of peroxisome proliferator-activated receptor alpha and growth hormone in the regulation of CYP4A11 expression in a transgenic mouse model. J Biol Chem. 2009 Jun 12;284(24):16541-52. doi: 10.1074/jbc.M902074200. Epub 2009 Apr 14.","parent_key":"BE0000421"} {"ref-id":"A183980","pubmed-id":20368718,"citation":"Zhu HJ, Yuan SH, Fang Y, Sun XZ, Kong H, Ge WH: The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis. Pharmacogenomics J. 2011 Jun;11(3):237-46. doi: 10.1038/tpj.2010.26. Epub 2010 Apr 6.","parent_key":"BE0002362"} {"ref-id":"A183983","pubmed-id":23354298,"citation":"Zheng S, Tasnif Y, Hebert MF, Davis CL, Shitara Y, Calamia JC, Lin YS, Shen DD, Thummel KE: CYP3A5 gene variation influences cyclosporine A metabolite formation and renal cyclosporine disposition. Transplantation. 2013 Mar 27;95(6):821-7. doi: 10.1097/TP.0b013e31827e6ad9.","parent_key":"BE0002362"} {"ref-id":"A189402","pubmed-id":23922006,"citation":"Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB: PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics. 2013 Oct;23(10):563-85. doi: 10.1097/FPC.0b013e328364db84.","parent_key":"BE0002362"} {"ref-id":"A14735","pubmed-id":10490933,"citation":"Ekins S, Bravi G, Wikel JH, Wrighton SA: Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999 Oct;291(1):424-33.","parent_key":"BE0002638"} {"ref-id":"A174082","pubmed-id":25860376,"citation":"Sidharta PN, Treiber A, Dingemanse J: Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet. 2015 May;54(5):457-71. doi: 10.1007/s40262-015-0255-5.","parent_key":"BE0002638"} {"ref-id":"A33645","pubmed-id":22205779,"citation":"Amundsen R, Asberg A, Ohm IK, Christensen H: Cyclosporine A- and tacrolimus-mediated inhibition of CYP3A4 and CYP3A5 in vitro. Drug Metab Dispos. 2012 Apr;40(4):655-61. doi: 10.1124/dmd.111.043018. Epub 2011 Dec 28.","parent_key":"BE0002638"} {"ref-id":"A35772","pubmed-id":2277139,"citation":"Watkins PB: The role of cytochromes P-450 in cyclosporine metabolism. J Am Acad Dermatol. 1990 Dec;23(6 Pt 2):1301-9; discussion 1309-11. doi: 10.1016/0190-9622(90)70358-o.","parent_key":"BE0002638"} {"ref-id":"A189402","pubmed-id":23922006,"citation":"Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB: PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics. 2013 Oct;23(10):563-85. doi: 10.1097/FPC.0b013e328364db84.","parent_key":"BE0002638"} {"ref-id":"A38759","pubmed-id":17202802,"citation":"Niwa T, Yamamoto S, Saito M, Shiraga T, Takagi A: Effect of cyclosporine and tacrolimus on cytochrome p450 activities in human liver microsomes. Yakugaku Zasshi. 2007 Jan;127(1):209-16.","parent_key":"BE0003536"} {"ref-id":"A38759","pubmed-id":17202802,"citation":"Niwa T, Yamamoto S, Saito M, Shiraga T, Takagi A: Effect of cyclosporine and tacrolimus on cytochrome p450 activities in human liver microsomes. Yakugaku Zasshi. 2007 Jan;127(1):209-16.","parent_key":"BE0002363"} {"ref-id":"A214703","pubmed-id":26052213,"citation":"Yilmaz B, Kemal Y, Teker F: Be careful before prescribing warfarin and octreotide together: a new drug-drug interaction report. Hippokratia. 2014 Oct-Dec;18(4):377.","parent_key":"BE0002638"} {"ref-id":"A39128","pubmed-id":12171873,"citation":"Islam M, Frye RF, Richards TJ, Sbeitan I, Donnelly SS, Glue P, Agarwala SS, Kirkwood JM: Differential effect of IFNalpha-2b on the cytochrome P450 enzyme system: a potential basis of IFN toxicity and its modulation by other drugs. Clin Cancer Res. 2002 Aug;8(8):2480-7.","parent_key":"BE0002433"} {"ref-id":"A39129","pubmed-id":16507380,"citation":"Wong SF, Jakowatz JG, Taheri R: Potential drug-drug interaction between interferon alfa-2b and gemfibrozil in a patient with malignant melanoma. Clin Ther. 2005 Dec;27(12):1942-8. doi: 10.1016/j.clinthera.2005.12.002.","parent_key":"BE0002433"} {"ref-id":"A17744","pubmed-id":15656696,"citation":"Patel IH, Zhang X, Nieforth K, Salgo M, Buss N: Pharmacokinetics, pharmacodynamics and drug interaction potential of enfuvirtide. Clin Pharmacokinet. 2005;44(2):175-86.","parent_key":"BE0003536"} {"ref-id":"A17744","pubmed-id":15656696,"citation":"Patel IH, Zhang X, Nieforth K, Salgo M, Buss N: Pharmacokinetics, pharmacodynamics and drug interaction potential of enfuvirtide. Clin Pharmacokinet. 2005;44(2):175-86.","parent_key":"BE0003533"} {"ref-id":"A15157","pubmed-id":15763544,"citation":"Caro AA, Cederbaum AI: Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine. Biochem Pharmacol. 2005 Apr 1;69(7):1081-93.","parent_key":"BE0003533"} {"ref-id":"A15158","pubmed-id":20238404,"citation":"Cederbaum AI: Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol. 2010 Mar 21;16(11):1366-76.","parent_key":"BE0003533"} {"ref-id":"A21427","pubmed-id":15333708,"citation":"Rodriguez-Melendez R, Griffin JB, Zempleni J: Biotin supplementation increases expression of the cytochrome P450 1B1 gene in Jurkat cells, increasing the occurrence of single-stranded DNA breaks. J Nutr. 2004 Sep;134(9):2222-8.","parent_key":"BE0001111"} {"ref-id":"A15033","pubmed-id":1663062,"citation":"Lovaas E, Carlin G: Spermine: an anti-oxidant and anti-inflammatory agent. Free Radic Biol Med. 1991;11(5):455-61.","parent_key":"BE0002204"} {"ref-id":"A15680","pubmed-id":16207822,"citation":"Xu Y, Hashizume T, Shuhart MC, Davis CL, Nelson WL, Sakaki T, Kalhorn TF, Watkins PB, Schuetz EG, Thummel KE: Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1alpha,25-dihydroxyvitamin D(3): implications for drug-induced osteomalacia. Mol Pharmacol. 2006 Jan;69(1):56-65. Epub 2005 Oct 5.","parent_key":"BE0002638"} {"ref-id":"A15031","pubmed-id":21361328,"citation":"Kalimuthu P, Leimkuhler S, Bernhardt PV: Xanthine dehydrogenase electrocatalysis: autocatalysis and novel activity. J Phys Chem B. 2011 Mar 24;115(11):2655-62. doi: 10.1021/jp111809f. Epub 2011 Mar 1.","parent_key":"BE0002204"} {"ref-id":"A15032","pubmed-id":19450565,"citation":"Al-Gonaiah M, Smith RA, Stone TW: Xanthine oxidase-induced neuronal death via the oxidation of NADH: prevention by micromolar EDTA. Brain Res. 2009 Jul 14;1280:33-42. doi: 10.1016/j.brainres.2009.05.024. Epub 2009 May 18.","parent_key":"BE0002204"} {"ref-id":"A15052","pubmed-id":10687026,"citation":"Mantle D, Preedy VR: Free radicals as mediators of alcohol toxicity. Adverse Drug React Toxicol Rev. 1999 Nov;18(4):235-52.","parent_key":"BE0003539"} {"ref-id":"A15053","pubmed-id":19801639,"citation":"Li H, Kundu TK, Zweier JL: Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite. J Biol Chem. 2009 Dec 4;284(49):33850-8. doi: 10.1074/jbc.M109.019125. Epub 2009 Sep 28.","parent_key":"BE0003539"} {"ref-id":"A176161","pubmed-id":18850180,"citation":"Brigelius-Flohe R: Adverse effects of vitamin E by induction of drug metabolism. Genes Nutr. 2007 Dec;2(3):249-56. doi: 10.1007/s12263-007-0055-0. Epub 2007 Oct 16.","parent_key":"BE0002638"} {"ref-id":"A17918","pubmed-id":19637937,"citation":"Tangjarukij C, Navasumrit P, Zelikoff JT, Ruchirawat M: The effects of pyridoxine deficiency and supplementation on hematological profiles, lymphocyte function, and hepatic cytochrome P450 in B6C3F1 mice. J Immunotoxicol. 2009 Sep;6(3):147-60. doi: 10.1080/15476910903083866.","parent_key":"BE0003543"} {"ref-id":"A14709","pubmed-id":20619365,"citation":"Schuster I: Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta. 2011 Jan;1814(1):186-99. doi: 10.1016/j.bbapap.2010.06.022. Epub 2010 Jul 7.","parent_key":"BE0002638"} {"ref-id":"A16525","pubmed-id":15353333,"citation":"Ohyama Y, Yamasaki T: Eight cytochrome P450s catalyze vitamin D metabolism. Front Biosci. 2004 Sep 1;9:3007-18.","parent_key":"BE0002638"} {"ref-id":"A182651","pubmed-id":10219964,"citation":"Yamazaki H, Shimada T: Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes. Xenobiotica. 1999 Mar;29(3):231-41. doi: 10.1080/004982599238632 .","parent_key":"BE0003543"} {"ref-id":"A182651","pubmed-id":10219964,"citation":"Yamazaki H, Shimada T: Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes. Xenobiotica. 1999 Mar;29(3):231-41. doi: 10.1080/004982599238632 .","parent_key":"BE0002887"} {"ref-id":"A15034","pubmed-id":9367530,"citation":"Yee SB, Pritsos CA: Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys. 1997 Nov 15;347(2):235-41.","parent_key":"BE0002204"} {"ref-id":"A9","pubmed-id":11752352,"citation":"Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5.","parent_key":"BE0003539"} {"ref-id":"A184970","pubmed-id":15232626,"citation":"Sidorova YA, Grishanova AY: Dose- and time-dependent effects of menadione on enzymes of xenobiotic metabolism in rat liver. Bull Exp Biol Med. 2004 Mar;137(3):231-4. doi: 10.1023/b:bebm.0000031556.47763.04.","parent_key":"BE0003543"} {"ref-id":"A39079","pubmed-id":15603920,"citation":"Sidorova YA, Grishanova AY, Lyakhovich VV: Rat hepatic CYP1A1 and CYP1A2 induction by menadione. Toxicol Lett. 2005 Feb 15;155(2):253-8. doi: 10.1016/j.toxlet.2004.10.001.","parent_key":"BE0003543"} {"ref-id":"A184973","pubmed-id":27167070,"citation":"Sidorova YA, Perepechaeva ML, Pivovarova EN, Markel AL, Lyakhovich VV, Grishanova AY: Menadione Suppresses Benzo(alpha)pyrene-Induced Activation of Cytochromes P450 1A: Insights into a Possible Molecular Mechanism. PLoS One. 2016 May 11;11(5):e0155135. doi: 10.1371/journal.pone.0155135. eCollection 2016.","parent_key":"BE0003543"} {"ref-id":"A39079","pubmed-id":15603920,"citation":"Sidorova YA, Grishanova AY, Lyakhovich VV: Rat hepatic CYP1A1 and CYP1A2 induction by menadione. Toxicol Lett. 2005 Feb 15;155(2):253-8. doi: 10.1016/j.toxlet.2004.10.001.","parent_key":"BE0002433"} {"ref-id":"A39080","pubmed-id":24950217,"citation":"Katsanou ES, Kyriakopoulou K, Emmanouil C, Fokialakis N, Skaltsounis AL, Machera K: Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats. PLoS One. 2014 Jun 20;9(6):e100190. doi: 10.1371/journal.pone.0100190. eCollection 2014.","parent_key":"BE0002433"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0003336"} {"ref-id":"A184976","pubmed-id":26212258,"citation":"Jan YH, Richardson JR, Baker AA, Mishin V, Heck DE, Laskin DL, Laskin JD: Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication. Toxicol Appl Pharmacol. 2015 Oct 1;288(1):114-20. doi: 10.1016/j.taap.2015.07.023. Epub 2015 Jul 23.","parent_key":"BE0003336"} {"ref-id":"A14720","pubmed-id":8968657,"citation":"Baumann P: Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet. 1996 Dec;31(6):444-69.","parent_key":"BE0002363"} {"ref-id":"A14723","pubmed-id":10774624,"citation":"Rasmussen BB, Brosen K: Is therapeutic drug monitoring a case for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors? Ther Drug Monit. 2000 Apr;22(2):143-54.","parent_key":"BE0002363"} {"ref-id":"A39125","pubmed-id":9617978,"citation":"Ozdemir V, Naranjo CA, Shulman RW, Herrmann N, Sellers EM, Reed K, Kalow W: Determinants of interindividual variability and extent of CYP2D6 and CYP1A2 inhibition by paroxetine and fluvoxamine in vivo. J Clin Psychopharmacol. 1998 Jun;18(3):198-207.","parent_key":"BE0002363"} {"ref-id":"A14719","pubmed-id":9868741,"citation":"Rasmussen BB, Nielsen TL, Brosen K: Fluvoxamine is a potent inhibitor of the metabolism of caffeine in vitro. Pharmacol Toxicol. 1998 Dec;83(6):240-5.","parent_key":"BE0002433"} {"ref-id":"A14720","pubmed-id":8968657,"citation":"Baumann P: Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet. 1996 Dec;31(6):444-69.","parent_key":"BE0002433"} {"ref-id":"A14721","pubmed-id":8846619,"citation":"Brosen K: Drug interactions and the cytochrome P450 system. The role of cytochrome P450 1A2. Clin Pharmacokinet. 1995;29 Suppl 1:20-5.","parent_key":"BE0002433"} {"ref-id":"A14722","pubmed-id":16910628,"citation":"Micallef J, Fakra E, Blin O: [Use of antidepressant drugs in schizophrenic patients with depression]. Encephale. 2006 Mar-Apr;32(2 Pt 1):263-9.","parent_key":"BE0002433"} {"ref-id":"A14723","pubmed-id":10774624,"citation":"Rasmussen BB, Brosen K: Is therapeutic drug monitoring a case for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors? Ther Drug Monit. 2000 Apr;22(2):143-54.","parent_key":"BE0002433"} {"ref-id":"A14724","pubmed-id":15664751,"citation":"Yasui-Furukori N, Inoue Y, Kaneko S, Otani K: Determination of fluvoxamine and its metabolite fluvoxamino acid by liquid-liquid extraction and column-switching high-performance liquid chromatography. J Pharm Biomed Anal. 2005 Feb 7;37(1):121-5.","parent_key":"BE0002433"} {"ref-id":"A33285","pubmed-id":8823236,"citation":"Carrillo JA, Dahl ML, Svensson JO, Alm C, Rodriguez I, Bertilsson L: Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther. 1996 Aug;60(2):183-90. doi: 10.1016/S0009-9236(96)90134-4.","parent_key":"BE0002433"} {"ref-id":"A183344","pubmed-id":7742153,"citation":"Rasmussen BB, Maenpaa J, Pelkonen O, Loft S, Poulsen HE, Lykkesfeldt J, Brosen K: Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol. 1995 Feb;39(2):151-9. doi: 10.1111/j.1365-2125.1995.tb04422.x.","parent_key":"BE0003543"} {"ref-id":"A184028","pubmed-id":11599655,"citation":"Sy SK, Tang BK, Pastrakuljic A, Roberts EA, Kalow W: Detailed characterization of experimentally derived human hepatic CYP1A1 activity and expression using differential inhibition of ethoxyresorufin O-deethylation by fluvoxamine. Eur J Clin Pharmacol. 2001 Aug;57(5):377-86. doi: 10.1007/s002280100330.","parent_key":"BE0003543"} {"ref-id":"A14720","pubmed-id":8968657,"citation":"Baumann P: Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet. 1996 Dec;31(6):444-69.","parent_key":"BE0002638"} {"ref-id":"A14722","pubmed-id":16910628,"citation":"Micallef J, Fakra E, Blin O: [Use of antidepressant drugs in schizophrenic patients with depression]. Encephale. 2006 Mar-Apr;32(2 Pt 1):263-9.","parent_key":"BE0002638"} {"ref-id":"A178993","pubmed-id":8690825,"citation":"von Moltke LL, Greenblatt DJ, Duan SX, Harmatz JS, Wright CE, Shader RI: Inhibition of terfenadine metabolism in vitro by azole antifungal agents and by selective serotonin reuptake inhibitor antidepressants: relation to pharmacokinetic interactions in vivo. J Clin Psychopharmacol. 1996 Apr;16(2):104-12.","parent_key":"BE0002638"} {"ref-id":"A2491","pubmed-id":8846617,"citation":"van Harten J: Overview of the pharmacokinetics of fluvoxamine. Clin Pharmacokinet. 1995;29 Suppl 1:1-9. doi: 10.2165/00003088-199500291-00003.","parent_key":"BE0002638"} {"ref-id":"A183344","pubmed-id":7742153,"citation":"Rasmussen BB, Maenpaa J, Pelkonen O, Loft S, Poulsen HE, Lykkesfeldt J, Brosen K: Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol. 1995 Feb;39(2):151-9. doi: 10.1111/j.1365-2125.1995.tb04422.x.","parent_key":"BE0004866"} {"ref-id":"A14722","pubmed-id":16910628,"citation":"Micallef J, Fakra E, Blin O: [Use of antidepressant drugs in schizophrenic patients with depression]. Encephale. 2006 Mar-Apr;32(2 Pt 1):263-9.","parent_key":"BE0002793"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0002793"} {"ref-id":"A183920","pubmed-id":11180037,"citation":"Madsen H, Enggaard TP, Hansen LL, Klitgaard NA, Brosen K: Fluvoxamine inhibits the CYP2C9 catalyzed biotransformation of tolbutamide. Clin Pharmacol Ther. 2001 Jan;69(1):41-7. doi: 10.1067/mcp.2001.112689.","parent_key":"BE0002793"} {"ref-id":"A39385","pubmed-id":10192756,"citation":"Hemeryck A, De Vriendt C, Belpaire FM: Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol. 1999 Feb;54(12):947-51.","parent_key":"BE0002793"} {"ref-id":"A14720","pubmed-id":8968657,"citation":"Baumann P: Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet. 1996 Dec;31(6):444-69.","parent_key":"BE0003536"} {"ref-id":"A38608","pubmed-id":15025747,"citation":"Yasui-Furukori N, Takahata T, Nakagami T, Yoshiya G, Inoue Y, Kaneko S, Tateishi T: Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol. 2004 Apr;57(4):487-94. doi: 10.1111/j.1365-2125.2003.02047.x.","parent_key":"BE0003536"} {"ref-id":"A14854","pubmed-id":17101742,"citation":"Walsky RL, Astuccio AV, Obach RS: Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J Clin Pharmacol. 2006 Dec;46(12):1426-38.","parent_key":"BE0003549"} {"ref-id":"A14974","pubmed-id":10997936,"citation":"Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ: CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos. 2000 Oct;28(10):1176-83.","parent_key":"BE0003549"} {"ref-id":"A15583","pubmed-id":16192110,"citation":"Nakashima A, Kawashita H, Masuda N, Saxer C, Niina M, Nagae Y, Iwasaki K: Identification of cytochrome P450 forms involved in the 4-hydroxylation of valsartan, a potent and specific angiotensin II receptor antagonist, in human liver microsomes. Xenobiotica. 2005 Jun;35(6):589-602.","parent_key":"BE0002793"} {"ref-id":"A39430","pubmed-id":17827781,"citation":"Kamiyama E, Yoshigae Y, Kasuya A, Takei M, Kurihara A, Ikeda T: Inhibitory effects of angiotensin receptor blockers on CYP2C9 activity in human liver microsomes. Drug Metab Pharmacokinet. 2007 Aug;22(4):267-75.","parent_key":"BE0002793"} {"ref-id":"A39431","pubmed-id":23118328,"citation":"Cabaleiro T, Roman M, Ochoa D, Talegon M, Prieto-Perez R, Wojnicz A, Lopez-Rodriguez R, Novalbos J, Abad-Santos F: Evaluation of the relationship between sex, polymorphisms in CYP2C8 and CYP2C9, and pharmacokinetics of angiotensin receptor blockers. Drug Metab Dispos. 2013 Jan;41(1):224-9. doi: 10.1124/dmd.112.046292. Epub 2012 Nov 1.","parent_key":"BE0002793"} {"ref-id":"A39432","pubmed-id":26431654,"citation":"Guo G, Zhao Y, Chai J, Hao D, Song F: Effectiveness evaluation of cardiovascular drugs based on CYP2C9 target protein. Pak J Pharm Sci. 2015 Jul;28(4 Suppl):1545-9.","parent_key":"BE0002793"} {"ref-id":"A14725","pubmed-id":9264312,"citation":"Wu D, Otton SV, Inaba T, Kalow W, Sellers EM: Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol. 1997 Jun 1;53(11):1605-12.","parent_key":"BE0002363"} {"ref-id":"A183158","pubmed-id":10456690,"citation":"Bach MV, Coutts RT, Baker GB: Involvement of CYP2D6 in the in vitro metabolism of amphetamine, two N-alkylamphetamines and their 4-methoxylated derivatives. Xenobiotica. 1999 Jul;29(7):719-32. doi: 10.1080/004982599238344 .","parent_key":"BE0002363"} {"ref-id":"A16879","pubmed-id":18065502,"citation":"Siu EC, Tyndale RF: Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther. 2008 Mar;324(3):992-9. Epub 2007 Dec 7.","parent_key":"BE0003336"} {"ref-id":"A39310","pubmed-id":23162568,"citation":"de la Torre R, Yubero-Lahoz S, Pardo-Lozano R, Farre M: MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant? Front Genet. 2012 Nov 12;3:235. doi: 10.3389/fgene.2012.00235. eCollection 2012.","parent_key":"BE0003336"} {"ref-id":"A184448","pubmed-id":12746108,"citation":"Rahnasto M, Raunio H, Poso A, Juvonen RO: More potent inhibition of human CYP2A6 than mouse CYP2A5 enzyme activities by derivatives of phenylethylamine and benzaldehyde. Xenobiotica. 2003 May;33(5):529-39. doi: 10.1080/0049825031000085979 .","parent_key":"BE0003336"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0003336"} {"ref-id":"A33287","pubmed-id":22869927,"citation":"von Weymarn LB, Retzlaff C, Murphy SE: CYP2A6- and CYP2A13-catalyzed metabolism of the nicotine Delta5'(1')iminium ion. J Pharmacol Exp Ther. 2012 Nov;343(2):307-15. doi: 10.1124/jpet.112.195255. Epub 2012 Aug 6.","parent_key":"BE0003336"} {"ref-id":"A39250","pubmed-id":11678779,"citation":"Raunio H, Rautio A, Gullsten H, Pelkonen O: Polymorphisms of CYP2A6 and its practical consequences. Br J Clin Pharmacol. 2001 Oct;52(4):357-63.","parent_key":"BE0003336"} {"ref-id":"A39330","pubmed-id":14757175,"citation":"Denton TT, Zhang X, Cashman JR: Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6. Biochem Pharmacol. 2004 Feb 15;67(4):751-6.","parent_key":"BE0003336"} {"ref-id":"A33228","pubmed-id":12711639,"citation":"Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF: Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol. 2003 Apr;138(7):1376-86. doi: 10.1038/sj.bjp.0705146.","parent_key":"BE0003533"} {"ref-id":"A33229","pubmed-id":11719700,"citation":"Van Vleet TR, Bombick DW, Coulombe RA Jr: Inhibition of human cytochrome P450 2E1 by nicotine, cotinine, and aqueous cigarette tar extract in vitro. Toxicol Sci. 2001 Dec;64(2):185-91.","parent_key":"BE0003533"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0003533"} {"ref-id":"A33231","pubmed-id":12750430,"citation":"Micu AL, Miksys S, Sellers EM, Koop DR, Tyndale RF: Rat hepatic CYP2E1 is induced by very low nicotine doses: an investigation of induction, time course, dose response, and mechanism. J Pharmacol Exp Ther. 2003 Sep;306(3):941-7. doi: 10.1124/jpet.103.052183. Epub 2003 May 15.","parent_key":"BE0003533"} {"ref-id":"A33232","pubmed-id":20233178,"citation":"Hukkanen J, Jacob Iii P, Peng M, Dempsey D, Benowitz NL: Effects of nicotine on cytochrome P450 2A6 and 2E1 activities. Br J Clin Pharmacol. 2010 Feb;69(2):152-9. doi: 10.1111/j.1365-2125.2009.03568.x.","parent_key":"BE0003533"} {"ref-id":"A33233","pubmed-id":8328992,"citation":"Nakayama H, Okuda H, Nakashima T, Imaoka S, Funae Y: Nicotine metabolism by rat hepatic cytochrome P450s. Biochem Pharmacol. 1993 Jun 22;45(12):2554-6.","parent_key":"BE0003533"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0003549"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0003549"} {"ref-id":"A23388","pubmed-id":11849738,"citation":"Wei C, Caccavale RJ, Weyand EH, Chen S, Iba MM: Induction of CYP1A1 and CYP1A2 expressions by prototypic and atypical inducers in the human lung. Cancer Lett. 2002 Apr 8;178(1):25-36.","parent_key":"BE0003543"} {"ref-id":"A39017","pubmed-id":10427467,"citation":"Zevin S, Benowitz NL: Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999 Jun;36(6):425-38. doi: 10.2165/00003088-199936060-00004.","parent_key":"BE0003543"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0003543"} {"ref-id":"A39016","pubmed-id":21599724,"citation":"Hukkanen J, Jacob P 3rd, Peng M, Dempsey D, Benowitz NL: Effect of nicotine on cytochrome P450 1A2 activity. Br J Clin Pharmacol. 2011 Nov;72(5):836-8. doi: 10.1111/j.1365-2125.2011.04023.x.","parent_key":"BE0002433"} {"ref-id":"A39017","pubmed-id":10427467,"citation":"Zevin S, Benowitz NL: Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999 Jun;36(6):425-38. doi: 10.2165/00003088-199936060-00004.","parent_key":"BE0002433"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0002433"} {"ref-id":"A184682","pubmed-id":20932495,"citation":"Pal D, Kwatra D, Minocha M, Paturi DK, Budda B, Mitra AK: Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci. 2011 May 23;88(21-22):959-71. doi: 10.1016/j.lfs.2010.09.012. Epub 2010 Nov 1.","parent_key":"BE0002433"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0003536"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0002887"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0002793"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0002363"} {"ref-id":"A184685","pubmed-id":8807663,"citation":"Benowitz NL, Jacob P 3rd, Perez-Stable E: CYP2D6 phenotype and the metabolism of nicotine and cotinine. Pharmacogenetics. 1996 Jun;6(3):239-42.","parent_key":"BE0002363"} {"ref-id":"A184688","pubmed-id":26287939,"citation":"Tiili EM, Antikainen MS, Mitiushkina NV, Sukhovskaya OA, Imyanitov EN, Hirvonen AP: Effect of genotype and methylation of CYP2D6 on smoking behaviour. Pharmacogenet Genomics. 2015 Nov;25(11):531-40. doi: 10.1097/FPC.0000000000000166.","parent_key":"BE0002363"} {"ref-id":"A33230","pubmed-id":10350185,"citation":"Yamazaki H, Inoue K, Hashimoto M, Shimada T: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.","parent_key":"BE0002638"} {"ref-id":"A14726","pubmed-id":11725960,"citation":"Washio T, Arisawa H, Kohsaka K, Yasuda H: Identification of human drug-metabolizing enzymes involved in the metabolism of SNI-2011. Biol Pharm Bull. 2001 Nov;24(11):1263-6.","parent_key":"BE0002363"} {"ref-id":"A14727","pubmed-id":12608011,"citation":"Washio T, Kohsaka K, Arisawa H, Masunaga H: Pharmacokinetics and metabolism of the novel muscarinic receptor agonist SNI-2011 in rats and dogs. Arzneimittelforschung. 2003;53(1):26-33.","parent_key":"BE0002363"} {"ref-id":"A14726","pubmed-id":11725960,"citation":"Washio T, Arisawa H, Kohsaka K, Yasuda H: Identification of human drug-metabolizing enzymes involved in the metabolism of SNI-2011. Biol Pharm Bull. 2001 Nov;24(11):1263-6.","parent_key":"BE0002638"} {"ref-id":"A14727","pubmed-id":12608011,"citation":"Washio T, Kohsaka K, Arisawa H, Masunaga H: Pharmacokinetics and metabolism of the novel muscarinic receptor agonist SNI-2011 in rats and dogs. Arzneimittelforschung. 2003;53(1):26-33.","parent_key":"BE0002638"} {"ref-id":"A14726","pubmed-id":11725960,"citation":"Washio T, Arisawa H, Kohsaka K, Yasuda H: Identification of human drug-metabolizing enzymes involved in the metabolism of SNI-2011. Biol Pharm Bull. 2001 Nov;24(11):1263-6.","parent_key":"BE0003609"} {"ref-id":"A14727","pubmed-id":12608011,"citation":"Washio T, Kohsaka K, Arisawa H, Masunaga H: Pharmacokinetics and metabolism of the novel muscarinic receptor agonist SNI-2011 in rats and dogs. Arzneimittelforschung. 2003;53(1):26-33.","parent_key":"BE0003609"} {"ref-id":"A39904","pubmed-id":9387087,"citation":"Gregor KJ, Way K, Young CH, James SP: Concomitant use of selective serotonin reuptake inhibitors with other cytochrome P450 2D6 or 3A4 metabolized medications: how often does it really happen? J Affect Disord. 1997 Oct;46(1):59-67.","parent_key":"BE0002638"} {"ref-id":"A2099","pubmed-id":18175099,"citation":"Olkkola KT, Ahonen J: Midazolam and other benzodiazepines. Handb Exp Pharmacol. 2008;(182):335-60. doi: 10.1007/978-3-540-74806-9_16.","parent_key":"BE0002638"} {"ref-id":"A36334","pubmed-id":17125412,"citation":"Sternieri E, Coccia CP, Pinetti D, Guerzoni S, Ferrari A: Pharmacokinetics and interactions of headache medications, part II: prophylactic treatments. Expert Opin Drug Metab Toxicol. 2006 Dec;2(6):981-1007. doi: 10.1517/17425255.2.6.981 .","parent_key":"BE0002363"} {"ref-id":"A16155","pubmed-id":14732961,"citation":"Brodde OE, Kroemer HK: Drug-drug interactions of beta-adrenoceptor blockers. Arzneimittelforschung. 2003;53(12):814-22.","parent_key":"BE0002363"} {"ref-id":"A36333","pubmed-id":27836712,"citation":"Iwaki M, Niwa T, Bandoh S, Itoh M, Hirose H, Kawase A, Komura H: Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol. Drug Metab Pharmacokinet. 2016 Dec;31(6):425-432. doi: 10.1016/j.dmpk.2016.08.007. Epub 2016 Sep 2.","parent_key":"BE0002363"} {"ref-id":"A35984","pubmed-id":22087865,"citation":"Hellmann A, Rule S, Walewski J, Shpilberg O, Feng H, van de Velde H, Patel H, Skee DM, Girgis S, Louw VJ: Effect of cytochrome P450 3A4 inducers on the pharmacokinetic, pharmacodynamic and safety profiles of bortezomib in patients with multiple myeloma or non-Hodgkin's lymphoma. Clin Pharmacokinet. 2011 Dec 1;50(12):781-91. doi: 10.2165/11594410-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A183194","pubmed-id":26622646,"citation":"Zhou W, An G, Jian Y, Guo H, Chen W: Effect of CYP2C19 and CYP3A4 gene polymorphisms on the efficacy of bortezomib-based regimens in patients with multiple myeloma. Oncol Lett. 2015 Aug;10(2):1171-1175. doi: 10.3892/ol.2015.3294. Epub 2015 May 29.","parent_key":"BE0002638"} {"ref-id":"A33250","pubmed-id":15764713,"citation":"Pekol T, Daniels JS, Labutti J, Parsons I, Nix D, Baronas E, Hsieh F, Gan LS, Miwa G: Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005 Jun;33(6):771-7. doi: 10.1124/dmd.104.002956. Epub 2005 Mar 11.","parent_key":"BE0002638"} {"ref-id":"A38586","pubmed-id":16443666,"citation":"Lu C, Gallegos R, Li P, Xia CQ, Pusalkar S, Uttamsingh V, Nix D, Miwa GT, Gan LS: Investigation of drug-drug interaction potential of bortezomib in vivo in female Sprague-Dawley rats and in vitro in human liver microsomes. Drug Metab Dispos. 2006 Apr;34(4):702-8. doi: 10.1124/dmd.105.008060. Epub 2006 Jan 27.","parent_key":"BE0002638"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003536"} {"ref-id":"A33250","pubmed-id":15764713,"citation":"Pekol T, Daniels JS, Labutti J, Parsons I, Nix D, Baronas E, Hsieh F, Gan LS, Miwa G: Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005 Jun;33(6):771-7. doi: 10.1124/dmd.104.002956. Epub 2005 Mar 11.","parent_key":"BE0003536"} {"ref-id":"A38585","pubmed-id":16103134,"citation":"Uttamsingh V, Lu C, Miwa G, Gan LS: Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Drug Metab Dispos. 2005 Nov;33(11):1723-8. doi: 10.1124/dmd.105.005710. Epub 2005 Aug 15.","parent_key":"BE0003536"} {"ref-id":"A38586","pubmed-id":16443666,"citation":"Lu C, Gallegos R, Li P, Xia CQ, Pusalkar S, Uttamsingh V, Nix D, Miwa GT, Gan LS: Investigation of drug-drug interaction potential of bortezomib in vivo in female Sprague-Dawley rats and in vitro in human liver microsomes. Drug Metab Dispos. 2006 Apr;34(4):702-8. doi: 10.1124/dmd.105.008060. Epub 2006 Jan 27.","parent_key":"BE0003536"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0002363"} {"ref-id":"A38585","pubmed-id":16103134,"citation":"Uttamsingh V, Lu C, Miwa G, Gan LS: Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Drug Metab Dispos. 2005 Nov;33(11):1723-8. doi: 10.1124/dmd.105.005710. Epub 2005 Aug 15.","parent_key":"BE0002363"} {"ref-id":"A33250","pubmed-id":15764713,"citation":"Pekol T, Daniels JS, Labutti J, Parsons I, Nix D, Baronas E, Hsieh F, Gan LS, Miwa G: Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005 Jun;33(6):771-7. doi: 10.1124/dmd.104.002956. Epub 2005 Mar 11.","parent_key":"BE0002363"} {"ref-id":"A33250","pubmed-id":15764713,"citation":"Pekol T, Daniels JS, Labutti J, Parsons I, Nix D, Baronas E, Hsieh F, Gan LS, Miwa G: Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005 Jun;33(6):771-7. doi: 10.1124/dmd.104.002956. Epub 2005 Mar 11.","parent_key":"BE0002433"} {"ref-id":"A33250","pubmed-id":15764713,"citation":"Pekol T, Daniels JS, Labutti J, Parsons I, Nix D, Baronas E, Hsieh F, Gan LS, Miwa G: Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005 Jun;33(6):771-7. doi: 10.1124/dmd.104.002956. Epub 2005 Mar 11.","parent_key":"BE0002793"} {"ref-id":"A38586","pubmed-id":16443666,"citation":"Lu C, Gallegos R, Li P, Xia CQ, Pusalkar S, Uttamsingh V, Nix D, Miwa GT, Gan LS: Investigation of drug-drug interaction potential of bortezomib in vivo in female Sprague-Dawley rats and in vitro in human liver microsomes. Drug Metab Dispos. 2006 Apr;34(4):702-8. doi: 10.1124/dmd.105.008060. Epub 2006 Jan 27.","parent_key":"BE0002793"} {"ref-id":"A38585","pubmed-id":16103134,"citation":"Uttamsingh V, Lu C, Miwa G, Gan LS: Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Drug Metab Dispos. 2005 Nov;33(11):1723-8. doi: 10.1124/dmd.105.005710. Epub 2005 Aug 15.","parent_key":"BE0002793"} {"ref-id":"A4269","pubmed-id":15509185,"citation":"Grond S, Sablotzki A: Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879-923.","parent_key":"BE0002363"} {"ref-id":"A38286","pubmed-id":11454734,"citation":"Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, Lake BG: Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos. 2001 Aug;29(8):1146-55.","parent_key":"BE0002638"} {"ref-id":"A4269","pubmed-id":15509185,"citation":"Grond S, Sablotzki A: Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879-923.","parent_key":"BE0002638"} {"ref-id":"A38286","pubmed-id":11454734,"citation":"Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, Lake BG: Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos. 2001 Aug;29(8):1146-55.","parent_key":"BE0003549"} {"ref-id":"A4269","pubmed-id":15509185,"citation":"Grond S, Sablotzki A: Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879-923.","parent_key":"BE0003549"} {"ref-id":"A39225","pubmed-id":17635183,"citation":"Zateyshchikov DA, Minushkina LO, Brovkin AN, Savel'eva EG, Zateyshchikova AA, Manchaeva BB, Nikitin AG, Sidorenko BA, Nosikov VV: Association of CYP2D6 and ADRB1 genes with hypotensive and antichronotropic action of betaxolol in patients with arterial hypertension. Fundam Clin Pharmacol. 2007 Aug;21(4):437-43. doi: 10.1111/j.1472-8206.2007.00518.x.","parent_key":"BE0002363"} {"ref-id":"A34415","pubmed-id":25341854,"citation":"Zisaki A, Miskovic L, Hatzimanikatis V: Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Curr Pharm Des. 2015;21(6):806-22.","parent_key":"BE0002363"} {"ref-id":"A14728","pubmed-id":16141567,"citation":"Niwa T, Shiraga T, Takagi A: Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 2005 Sep;28(9):1805-8.","parent_key":"BE0002638"} {"ref-id":"A14729","pubmed-id":8801056,"citation":"Kunze KL, Wienkers LC, Thummel KE, Trager WF: Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos. 1996 Apr;24(4):414-21.","parent_key":"BE0002638"} {"ref-id":"A14730","pubmed-id":15969931,"citation":"Sakaeda T, Iwaki K, Kakumoto M, Nishikawa M, Niwa T, Jin JS, Nakamura T, Nishiguchi K, Okamura N, Okumura K: Effect of micafungin on cytochrome P450 3A4 and multidrug resistance protein 1 activities, and its comparison with azole antifungal drugs. J Pharm Pharmacol. 2005 Jun;57(6):759-64.","parent_key":"BE0002638"} {"ref-id":"A14728","pubmed-id":16141567,"citation":"Niwa T, Shiraga T, Takagi A: Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 2005 Sep;28(9):1805-8.","parent_key":"BE0002793"} {"ref-id":"A14729","pubmed-id":8801056,"citation":"Kunze KL, Wienkers LC, Thummel KE, Trager WF: Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos. 1996 Apr;24(4):414-21.","parent_key":"BE0002793"} {"ref-id":"A33189","pubmed-id":10952477,"citation":"Kantola T, Backman JT, Niemi M, Kivisto KT, Neuvonen PJ: Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol. 2000 Jun;56(3):225-9.","parent_key":"BE0002793"} {"ref-id":"A15185","pubmed-id":11475469,"citation":"Debruyne D, Coquerel A: Pharmacokinetics of antifungal agents in onychomycoses. Clin Pharmacokinet. 2001;40(6):441-72.","parent_key":"BE0002793"} {"ref-id":"A33190","pubmed-id":10709776,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet. 2000 Feb;38(2):111-80. doi: 10.2165/00003088-200038020-00002.","parent_key":"BE0002793"} {"ref-id":"A14728","pubmed-id":16141567,"citation":"Niwa T, Shiraga T, Takagi A: Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 2005 Sep;28(9):1805-8.","parent_key":"BE0003536"} {"ref-id":"A33190","pubmed-id":10709776,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet. 2000 Feb;38(2):111-80. doi: 10.2165/00003088-200038020-00002.","parent_key":"BE0003536"} {"ref-id":"A38551","pubmed-id":25429674,"citation":"Niwa T, Imagawa Y, Yamazaki H: Drug interactions between nine antifungal agents and drugs metabolized by human cytochromes P450. Curr Drug Metab. 2014;15(7):651-79.","parent_key":"BE0002362"} {"ref-id":"A38707","pubmed-id":11361054,"citation":"Prueksaritanont T, Vega JM, Zhao J, Gagliano K, Kuznetsova O, Musser B, Amin RD, Liu L, Roadcap BA, Dilzer S, Lasseter KC, Rogers JD: Interactions between simvastatin and troglitazone or pioglitazone in healthy subjects. J Clin Pharmacol. 2001 May;41(5):573-81.","parent_key":"BE0002638"} {"ref-id":"A35892","pubmed-id":12843151,"citation":"Dimaraki EV, Jaffe CA: Troglitazone induces CYP3A4 activity leading to falsely abnormal dexamethasone suppression test. J Clin Endocrinol Metab. 2003 Jul;88(7):3113-6. doi: 10.1210/jc.2002-021778.","parent_key":"BE0002638"} {"ref-id":"A24652","pubmed-id":10752642,"citation":"Sahi J, Hamilton G, Sinz M, Barros S, Huang SM, Lesko LJ, LeCluyse EL: Effect of troglitazone on cytochrome P450 enzymes in primary cultures of human and rat hepatocytes. Xenobiotica. 2000 Mar;30(3):273-84.","parent_key":"BE0002638"} {"ref-id":"A15163","pubmed-id":18413310,"citation":"Schoch GA, Yano JK, Sansen S, Dansette PM, Stout CD, Johnson EF: Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid. J Biol Chem. 2008 Jun 20;283(25):17227-37. doi: 10.1074/jbc.M802180200. Epub 2008 Apr 15.","parent_key":"BE0002887"} {"ref-id":"A38112","pubmed-id":26721703,"citation":"Backman JT, Filppula AM, Niemi M, Neuvonen PJ: Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev. 2016 Jan;68(1):168-241. doi: 10.1124/pr.115.011411.","parent_key":"BE0002887"} {"ref-id":"A38678","pubmed-id":10659951,"citation":"Yamazaki H, Suzuki M, Tane K, Shimada N, Nakajima M, Yokoi T: In vitro inhibitory effects of troglitazone and its metabolites on drug oxidation activities of human cytochrome P450 enzymes: comparison with pioglitazone and rosiglitazone. Xenobiotica. 2000 Jan;30(1):61-70.","parent_key":"BE0002887"} {"ref-id":"A14965","pubmed-id":12642470,"citation":"Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46.","parent_key":"BE0002887"} {"ref-id":"A38678","pubmed-id":10659951,"citation":"Yamazaki H, Suzuki M, Tane K, Shimada N, Nakajima M, Yokoi T: In vitro inhibitory effects of troglitazone and its metabolites on drug oxidation activities of human cytochrome P450 enzymes: comparison with pioglitazone and rosiglitazone. Xenobiotica. 2000 Jan;30(1):61-70.","parent_key":"BE0003536"} {"ref-id":"A185009","pubmed-id":18308446,"citation":"Kim HG, Han EH, Jeong HG: Effect of troglitazone on CYP1A1 induction. Toxicology. 2008 Apr 18;246(2-3):166-71. doi: 10.1016/j.tox.2008.01.003. Epub 2008 Jan 16.","parent_key":"BE0003543"} {"ref-id":"A24652","pubmed-id":10752642,"citation":"Sahi J, Hamilton G, Sinz M, Barros S, Huang SM, Lesko LJ, LeCluyse EL: Effect of troglitazone on cytochrome P450 enzymes in primary cultures of human and rat hepatocytes. Xenobiotica. 2000 Mar;30(3):273-84.","parent_key":"BE0003549"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0002793"} {"ref-id":"A38678","pubmed-id":10659951,"citation":"Yamazaki H, Suzuki M, Tane K, Shimada N, Nakajima M, Yokoi T: In vitro inhibitory effects of troglitazone and its metabolites on drug oxidation activities of human cytochrome P450 enzymes: comparison with pioglitazone and rosiglitazone. Xenobiotica. 2000 Jan;30(1):61-70.","parent_key":"BE0002793"} {"ref-id":"A39475","pubmed-id":10534310,"citation":"Yamazaki H, Shibata A, Suzuki M, Nakajima M, Shimada N, Guengerich FP, Yokoi T: Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes. Drug Metab Dispos. 1999 Nov;27(11):1260-6.","parent_key":"BE0002793"} {"ref-id":"A14965","pubmed-id":12642470,"citation":"Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46.","parent_key":"BE0002793"} {"ref-id":"A38836","pubmed-id":15618651,"citation":"Ogino M, Nagata K, Yamazoe Y: Selective suppressions of human CYP3A forms, CYP3A5 and CYP3A7, by troglitazone in HepG2 cells. Drug Metab Pharmacokinet. 2002;17(1):42-6.","parent_key":"BE0002362"} {"ref-id":"A38836","pubmed-id":15618651,"citation":"Ogino M, Nagata K, Yamazoe Y: Selective suppressions of human CYP3A forms, CYP3A5 and CYP3A7, by troglitazone in HepG2 cells. Drug Metab Pharmacokinet. 2002;17(1):42-6.","parent_key":"BE0003612"} {"ref-id":"A15197","pubmed-id":12433820,"citation":"Watanabe Y, Nakajima M, Yokoi T: Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos. 2002 Dec;30(12):1462-9.","parent_key":"BE0003677"} {"ref-id":"A15197","pubmed-id":12433820,"citation":"Watanabe Y, Nakajima M, Yokoi T: Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos. 2002 Dec;30(12):1462-9.","parent_key":"BE0003538"} {"ref-id":"A17495","pubmed-id":12582161,"citation":"Barbier O, Villeneuve L, Bocher V, Fontaine C, Torra IP, Duhem C, Kosykh V, Fruchart JC, Guillemette C, Staels B: The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J Biol Chem. 2003 Apr 18;278(16):13975-83. Epub 2003 Feb 11.","parent_key":"BE0003538"} {"ref-id":"A15197","pubmed-id":12433820,"citation":"Watanabe Y, Nakajima M, Yokoi T: Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos. 2002 Dec;30(12):1462-9.","parent_key":"BE0003679"} {"ref-id":"A33636","pubmed-id":12534644,"citation":"Orlando R, Piccoli P, De Martin S, Padrini R, Palatini P: Effect of the CYP3A4 inhibitor erythromycin on the pharmacokinetics of lignocaine and its pharmacologically active metabolites in subjects with normal and impaired liver function. Br J Clin Pharmacol. 2003 Jan;55(1):86-93.","parent_key":"BE0002638"} {"ref-id":"A38775","pubmed-id":10594474,"citation":"Kenworthy KE, Bloomer JC, Clarke SE, Houston JB: CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol. 1999 Nov;48(5):716-27.","parent_key":"BE0002638"} {"ref-id":"A174484","pubmed-id":17178770,"citation":"Torimoto N, Ishii I, Toyama K, Hata M, Tanaka K, Shimomura H, Nakamura H, Ariyoshi N, Ohmori S, Kitada M: Helices F-G are important for the substrate specificities of CYP3A7. Drug Metab Dispos. 2007 Mar;35(3):484-92. doi: 10.1124/dmd.106.011304. Epub 2006 Dec 18.","parent_key":"BE0003612"} {"ref-id":"A38841","pubmed-id":15377640,"citation":"McConn DJ 2nd, Lin YS, Allen K, Kunze KL, Thummel KE: Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos. 2004 Oct;32(10):1083-91. doi: 10.1124/dmd.32.10..","parent_key":"BE0002362"} {"ref-id":"A174481","pubmed-id":28558634,"citation":"Lolodi O, Wang YM, Wright WC, Chen T: Differential Regulation of CYP3A4 and CYP3A5 and its Implication in Drug Discovery. Curr Drug Metab. 2017;18(12):1095-1105. doi: 10.2174/1389200218666170531112038.","parent_key":"BE0002362"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0002433"} {"ref-id":"A14731","pubmed-id":9492382,"citation":"Hickman D, Wang JP, Wang Y, Unadkat JD: Evaluation of the selectivity of In vitro probes and suitability of organic solvents for the measurement of human cytochrome P450 monooxygenase activities. Drug Metab Dispos. 1998 Mar;26(3):207-15.","parent_key":"BE0002433"} {"ref-id":"A38895","pubmed-id":14616429,"citation":"Hartter S, Nordmark A, Rose DM, Bertilsson L, Tybring G, Laine K: Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003 Dec;56(6):679-82.","parent_key":"BE0002433"} {"ref-id":"A184400","pubmed-id":1302044,"citation":"Gu L, Gonzalez FJ, Kalow W, Tang BK: Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics. 1992 Apr;2(2):73-7.","parent_key":"BE0002433"} {"ref-id":"A184262","pubmed-id":17652830,"citation":"Kot M, Daniel WA: Effect of cytochrome P450 (CYP) inducers on caffeine metabolism in the rat. Pharmacol Rep. 2007 May-Jun;59(3):296-305.","parent_key":"BE0002638"} {"ref-id":"A184394","pubmed-id":17222385,"citation":"Collom SL, Jamakhandi AP, Tackett AJ, Radominska-Pandya A, Miller GP: CYP2E1 active site residues in substrate recognition sequence 5 identified by photoaffinity labeling and homology modeling. Arch Biochem Biophys. 2007 Mar 1;459(1):59-69. doi: 10.1016/j.abb.2006.10.028. Epub 2006 Nov 2.","parent_key":"BE0003533"} {"ref-id":"A184397","pubmed-id":9156694,"citation":"Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, Beaune P, Janezic S, Grant D, Meyer UA, Staib AH: Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics. 1996 Apr;6(2):159-76.","parent_key":"BE0003533"} {"ref-id":"A184400","pubmed-id":1302044,"citation":"Gu L, Gonzalez FJ, Kalow W, Tang BK: Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics. 1992 Apr;2(2):73-7.","parent_key":"BE0003533"} {"ref-id":"A36507","pubmed-id":22293536,"citation":"Thorn CF, Aklillu E, McDonagh EM, Klein TE, Altman RB: PharmGKB summary: caffeine pathway. Pharmacogenet Genomics. 2012 May;22(5):389-95. doi: 10.1097/FPC.0b013e3283505d5e.","parent_key":"BE0002887"} {"ref-id":"A19466","pubmed-id":18619574,"citation":"Kot M, Daniel WA: The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: an in vitro comparative study with cDNA-expressed P450s including CYP2C isoforms. Biochem Pharmacol. 2008 Aug 15;76(4):543-51. doi: 10.1016/j.bcp.2008.05.025. Epub 2008 Jul 9.","parent_key":"BE0002887"} {"ref-id":"A19468","pubmed-id":19211970,"citation":"Kot M, Daniel WA: Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat. Pharmacol Rep. 2008 Nov-Dec;60(6):789-97.","parent_key":"BE0002887"} {"ref-id":"A39427","pubmed-id":23679834,"citation":"Utoh M, Murayama N, Uno Y, Onose Y, Hosaka S, Fujino H, Shimizu M, Iwasaki K, Yamazaki H: Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline. Xenobiotica. 2013 Dec;43(12):1037-42. doi: 10.3109/00498254.2013.793874. Epub 2013 May 16.","parent_key":"BE0002793"} {"ref-id":"A19466","pubmed-id":18619574,"citation":"Kot M, Daniel WA: The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: an in vitro comparative study with cDNA-expressed P450s including CYP2C isoforms. Biochem Pharmacol. 2008 Aug 15;76(4):543-51. doi: 10.1016/j.bcp.2008.05.025. Epub 2008 Jul 9.","parent_key":"BE0002793"} {"ref-id":"A39039","pubmed-id":8474022,"citation":"Tassaneeyakul W, Birkett DJ, Veronese ME, McManus ME, Tukey RH, Quattrochi LC, Gelboin HV, Miners JO: Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2. J Pharmacol Exp Ther. 1993 Apr;265(1):401-7.","parent_key":"BE0003543"} {"ref-id":"A39067","pubmed-id":9152602,"citation":"Shimada T, Gillam EM, Sutter TR, Strickland PT, Guengerich FP, Yamazaki H: Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab Dispos. 1997 May;25(5):617-22.","parent_key":"BE0001111"} {"ref-id":"A39309","pubmed-id":8857078,"citation":"Ha HR, Chen J, Krahenbuhl S, Follath F: Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. Eur J Clin Pharmacol. 1996;49(4):309-15. doi: 10.1007/bf00226333.","parent_key":"BE0002363"} {"ref-id":"A4142","pubmed-id":18308836,"citation":"Ku HY, Ahn HJ, Seo KA, Kim H, Oh M, Bae SK, Shin JG, Shon JH, Liu KH: The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos. 2008 Jun;36(6):986-90. doi: 10.1124/dmd.107.020099. Epub 2008 Feb 28.","parent_key":"BE0002638"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0002638"} {"ref-id":"A14732","pubmed-id":11298070,"citation":"Hyland R, Roe EG, Jones BC, Smith DA: Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol. 2001 Mar;51(3):239-48. doi: 10.1046/j.1365-2125.2001.00318.x.","parent_key":"BE0002638"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0002638"} {"ref-id":"A4142","pubmed-id":18308836,"citation":"Ku HY, Ahn HJ, Seo KA, Kim H, Oh M, Bae SK, Shin JG, Shon JH, Liu KH: The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos. 2008 Jun;36(6):986-90. doi: 10.1124/dmd.107.020099. Epub 2008 Feb 28.","parent_key":"BE0002362"} {"ref-id":"A14732","pubmed-id":11298070,"citation":"Hyland R, Roe EG, Jones BC, Smith DA: Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol. 2001 Mar;51(3):239-48. doi: 10.1046/j.1365-2125.2001.00318.x.","parent_key":"BE0002793"} {"ref-id":"A33578","pubmed-id":10725306,"citation":"Warrington JS, Shader RI, von Moltke LL, Greenblatt DJ: In vitro biotransformation of sildenafil (Viagra): identification of human cytochromes and potential drug interactions. Drug Metab Dispos. 2000 Apr;28(4):392-7.","parent_key":"BE0003536"} {"ref-id":"A14732","pubmed-id":11298070,"citation":"Hyland R, Roe EG, Jones BC, Smith DA: Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol. 2001 Mar;51(3):239-48. doi: 10.1046/j.1365-2125.2001.00318.x.","parent_key":"BE0003536"} {"ref-id":"A33578","pubmed-id":10725306,"citation":"Warrington JS, Shader RI, von Moltke LL, Greenblatt DJ: In vitro biotransformation of sildenafil (Viagra): identification of human cytochromes and potential drug interactions. Drug Metab Dispos. 2000 Apr;28(4):392-7.","parent_key":"BE0002363"} {"ref-id":"A182699","pubmed-id":27800121,"citation":"Sheweita SA, Wally M, Hassan M: Erectile Dysfunction Drugs Changed the Protein Expressions and Activities of Drug-Metabolising Enzymes in the Liver of Male Rats. Oxid Med Cell Longev. 2016;2016:4970906. doi: 10.1155/2016/4970906. Epub 2016 Oct 9.","parent_key":"BE0003533"} {"ref-id":"A39465","pubmed-id":8801060,"citation":"Walker DK, Alabaster CT, Congrave GS, Hargreaves MB, Hyland R, Jones BC, Reed LJ, Smith DA: Significance of metabolism in the disposition and action of the antidysrhythmic drug, dofetilide. In vitro studies and correlation with in vivo data. Drug Metab Dispos. 1996 Apr;24(4):447-55.","parent_key":"BE0002638"} {"ref-id":"A33201","pubmed-id":12688833,"citation":"Yamreudeewong W, DeBisschop M, Martin LG, Lower DL: Potentially significant drug interactions of class III antiarrhythmic drugs. Drug Saf. 2003;26(6):421-38. doi: 10.2165/00002018-200326060-00004.","parent_key":"BE0002638"} {"ref-id":"A15861","pubmed-id":8632764,"citation":"Schuetz EG, Beck WT, Schuetz JD: Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996 Feb;49(2):311-8.","parent_key":"BE0002362"} {"ref-id":"A174175","pubmed-id":28146011,"citation":"Fohner AE, Sparreboom A, Altman RB, Klein TE: PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics. 2017 Apr;27(4):164-167. doi: 10.1097/FPC.0000000000000270.","parent_key":"BE0002638"} {"ref-id":"A187613","pubmed-id":18043468,"citation":"Zhou SF, Xue CC, Yu XQ, Li C, Wang G: Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007 Dec;29(6):687-710. doi: 10.1097/FTD.0b013e31815c16f5.","parent_key":"BE0002638"} {"ref-id":"A33243","pubmed-id":14563790,"citation":"Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM: Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther. 2004 Jan;308(1):189-97. doi: 10.1124/jpet.103.056127. Epub 2003 Oct 16.","parent_key":"BE0003536"} {"ref-id":"A33247","pubmed-id":9390115,"citation":"Donahue SR, Flockhart DA, Abernethy DR, Ko JW: Ticlopidine inhibition of phenytoin metabolism mediated by potent inhibition of CYP2C19. Clin Pharmacol Ther. 1997 Nov;62(5):572-7. doi: 10.1016/S0009-9236(97)90054-0.","parent_key":"BE0003536"} {"ref-id":"A33248","pubmed-id":10613611,"citation":"Donahue S, Flockhart DA, Abernethy DR: Ticlopidine inhibits phenytoin clearance. Clin Pharmacol Ther. 1999 Dec;66(6):563-8. doi: 10.1053/cp.1999.v66.103277001.","parent_key":"BE0003536"} {"ref-id":"A33180","pubmed-id":11372587,"citation":"Giancarlo GM, Venkatakrishnan K, Granda BW, von Moltke LL, Greenblatt DJ: Relative contributions of CYP2C9 and 2C19 to phenytoin 4-hydroxylation in vitro: inhibition by sulfaphenazole, omeprazole, and ticlopidine. Eur J Clin Pharmacol. 2001 Apr;57(1):31-6.","parent_key":"BE0003536"} {"ref-id":"A181412","pubmed-id":10233213,"citation":"Tateishi T, Kumai T, Watanabe M, Nakura H, Tanaka M, Kobayashi S: Ticlopidine decreases the in vivo activity of CYP2C19 as measured by omeprazole metabolism. Br J Clin Pharmacol. 1999 Apr;47(4):454-7. doi: 10.1046/j.1365-2125.1999.00914.x.","parent_key":"BE0003536"} {"ref-id":"A33245","pubmed-id":10759690,"citation":"Ko JW, Desta Z, Soukhova NV, Tracy T, Flockhart DA: In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol. 2000 Apr;49(4):343-51. doi: 10.1046/j.1365-2125.2000.00175.x.","parent_key":"BE0002363"} {"ref-id":"A181361","pubmed-id":28496987,"citation":"Sasaki T, Sato Y, Kumagai T, Yoshinari K, Nagata K: Effect of health foods on cytochrome P450-mediated drug metabolism. J Pharm Health Care Sci. 2017 May 10;3:14. doi: 10.1186/s40780-017-0083-x. eCollection 2017.","parent_key":"BE0002363"} {"ref-id":"A33180","pubmed-id":11372587,"citation":"Giancarlo GM, Venkatakrishnan K, Granda BW, von Moltke LL, Greenblatt DJ: Relative contributions of CYP2C9 and 2C19 to phenytoin 4-hydroxylation in vitro: inhibition by sulfaphenazole, omeprazole, and ticlopidine. Eur J Clin Pharmacol. 2001 Apr;57(1):31-6.","parent_key":"BE0002793"} {"ref-id":"A33247","pubmed-id":9390115,"citation":"Donahue SR, Flockhart DA, Abernethy DR, Ko JW: Ticlopidine inhibition of phenytoin metabolism mediated by potent inhibition of CYP2C19. Clin Pharmacol Ther. 1997 Nov;62(5):572-7. doi: 10.1016/S0009-9236(97)90054-0.","parent_key":"BE0002793"} {"ref-id":"A39378","pubmed-id":21666702,"citation":"Yang SH, Cho YA, Choi JS: Effects of ticlopidine on pharmacokinetics of losartan and its main metabolite EXP-3174 in rats. Acta Pharmacol Sin. 2011 Jul;32(7):967-72. doi: 10.1038/aps.2011.32. Epub 2011 Jun 13.","parent_key":"BE0002793"} {"ref-id":"A33243","pubmed-id":14563790,"citation":"Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM: Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther. 2004 Jan;308(1):189-97. doi: 10.1124/jpet.103.056127. Epub 2003 Oct 16.","parent_key":"BE0002433"} {"ref-id":"A33278","pubmed-id":17403206,"citation":"Aleil B, Rochoux G, Monassier JP, Cazenave JP, Gachet C: Ticlopidine could be an alternative therapy in the case of pharmacological resistance to clopidogrel: a report of three cases. J Thromb Haemost. 2007 Apr;5(4):879-81. doi: 10.1111/j.1538-7836.2007.02338.x.","parent_key":"BE0002433"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0002433"} {"ref-id":"A33245","pubmed-id":10759690,"citation":"Ko JW, Desta Z, Soukhova NV, Tracy T, Flockhart DA: In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol. 2000 Apr;49(4):343-51. doi: 10.1046/j.1365-2125.2000.00175.x.","parent_key":"BE0002433"} {"ref-id":"A33243","pubmed-id":14563790,"citation":"Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM: Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther. 2004 Jan;308(1):189-97. doi: 10.1124/jpet.103.056127. Epub 2003 Oct 16.","parent_key":"BE0003549"} {"ref-id":"A33245","pubmed-id":10759690,"citation":"Ko JW, Desta Z, Soukhova NV, Tracy T, Flockhart DA: In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol. 2000 Apr;49(4):343-51. doi: 10.1046/j.1365-2125.2000.00175.x.","parent_key":"BE0003533"} {"ref-id":"A39279","pubmed-id":10628907,"citation":"Beckmann-Knopp S, Rietbrock S, Weyhenmeyer R, Bocker RH, Beckurts KT, Lang W, Fuhr U: Inhibitory effects of trospium chloride on cytochrome P450 enzymes in human liver microsomes. Pharmacol Toxicol. 1999 Dec;85(6):299-304.","parent_key":"BE0002363"} {"ref-id":"A14944","pubmed-id":16670408,"citation":"Platts SH, Shi SJ, Meck JV: Akathisia with combined use of midodrine and promethazine. JAMA. 2006 May 3;295(17):2000-1.","parent_key":"BE0002363"} {"ref-id":"A33305","pubmed-id":21795468,"citation":"Ogilvie BW, Yerino P, Kazmi F, Buckley DB, Rostami-Hodjegan A, Paris BL, Toren P, Parkinson A: The proton pump inhibitor, omeprazole, but not lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19: implications for coadministration with clopidogrel. Drug Metab Dispos. 2011 Nov;39(11):2020-33. doi: 10.1124/dmd.111.041293. Epub 2011 Jul 27.","parent_key":"BE0003536"} {"ref-id":"A38614","pubmed-id":9165689,"citation":"Meyer UA: Interaction of proton pump inhibitors with cytochromes P450: consequences for drug interactions. Yale J Biol Med. 1996 May-Jun;69(3):203-9.","parent_key":"BE0003536"} {"ref-id":"A35010","pubmed-id":23745048,"citation":"Li W, Zeng S, Yu LS, Zhou Q: Pharmacokinetic drug interaction profile of omeprazole with adverse consequences and clinical risk management. Ther Clin Risk Manag. 2013;9:259-71. doi: 10.2147/TCRM.S43151. Epub 2013 May 27.","parent_key":"BE0003536"} {"ref-id":"A174262","pubmed-id":29620484,"citation":"El Rouby N, Lima JJ, Johnson JA: Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opin Drug Metab Toxicol. 2018 Apr;14(4):447-460. doi: 10.1080/17425255.2018.1461835. Epub 2018 Apr 12.","parent_key":"BE0003536"} {"ref-id":"A38614","pubmed-id":9165689,"citation":"Meyer UA: Interaction of proton pump inhibitors with cytochromes P450: consequences for drug interactions. Yale J Biol Med. 1996 May-Jun;69(3):203-9.","parent_key":"BE0002638"} {"ref-id":"A37417","pubmed-id":10803683,"citation":"Miners JO, Coulter S, Birkett DJ, Goldstein JA: Torsemide metabolism by CYP2C9 variants and other human CYP2C subfamily enzymes. Pharmacogenetics. 2000 Apr;10(3):267-70.","parent_key":"BE0002887"} {"ref-id":"A33236","pubmed-id":15304522,"citation":"Polasek TM, Elliot DJ, Lewis BC, Miners JO: Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007. doi: 10.1124/jpet.104.071803. Epub 2004 Aug 10.","parent_key":"BE0002887"} {"ref-id":"A37826","pubmed-id":11136296,"citation":"Ong CE, Coulter S, Birkett DJ, Bhasker CR, Miners JO: The xenobiotic inhibitor profile of cytochrome P4502C8. Br J Clin Pharmacol. 2000 Dec;50(6):573-80. doi: 10.1046/j.1365-2125.2000.00316.x.","parent_key":"BE0002887"} {"ref-id":"A37417","pubmed-id":10803683,"citation":"Miners JO, Coulter S, Birkett DJ, Goldstein JA: Torsemide metabolism by CYP2C9 variants and other human CYP2C subfamily enzymes. Pharmacogenetics. 2000 Apr;10(3):267-70.","parent_key":"BE0002793"} {"ref-id":"A14733","pubmed-id":11532381,"citation":"Brosen K, Naranjo CA: Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol. 2001 Aug;11(4):275-83.","parent_key":"BE0002638"} {"ref-id":"A14723","pubmed-id":10774624,"citation":"Rasmussen BB, Brosen K: Is therapeutic drug monitoring a case for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors? Ther Drug Monit. 2000 Apr;22(2):143-54.","parent_key":"BE0002638"} {"ref-id":"A14734","pubmed-id":9890159,"citation":"Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H: Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998 Dec;28(12):1203-53.","parent_key":"BE0002638"} {"ref-id":"A37688","pubmed-id":21546862,"citation":"Sangkuhl K, Klein TE, Altman RB: PharmGKB summary: citalopram pharmacokinetics pathway. Pharmacogenet Genomics. 2011 Nov;21(11):769-72. doi: 10.1097/FPC.0b013e328346063f.","parent_key":"BE0002638"} {"ref-id":"A14733","pubmed-id":11532381,"citation":"Brosen K, Naranjo CA: Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol. 2001 Aug;11(4):275-83.","parent_key":"BE0003536"} {"ref-id":"A14723","pubmed-id":10774624,"citation":"Rasmussen BB, Brosen K: Is therapeutic drug monitoring a case for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors? Ther Drug Monit. 2000 Apr;22(2):143-54.","parent_key":"BE0003536"} {"ref-id":"A14734","pubmed-id":9890159,"citation":"Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H: Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998 Dec;28(12):1203-53.","parent_key":"BE0003536"} {"ref-id":"A33264","pubmed-id":10494454,"citation":"von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Venkatakrishnan K, Duan SX, Fogelman SM, Harmatz JS, Shader RI: Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol Psychiatry. 1999 Sep 15;46(6):839-49.","parent_key":"BE0003536"} {"ref-id":"A183566","pubmed-id":10575324,"citation":"Olesen OV, Linnet K: Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology. 1999 Dec;59(6):298-309. doi: 10.1159/000028333.","parent_key":"BE0003536"} {"ref-id":"A33264","pubmed-id":10494454,"citation":"von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Venkatakrishnan K, Duan SX, Fogelman SM, Harmatz JS, Shader RI: Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol Psychiatry. 1999 Sep 15;46(6):839-49.","parent_key":"BE0002433"} {"ref-id":"A17280","pubmed-id":12814962,"citation":"Evans DC, O'Connor D, Lake BG, Evers R, Allen C, Hargreaves R: Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab Dispos. 2003 Jul;31(7):861-9.","parent_key":"BE0002638"} {"ref-id":"A17280","pubmed-id":12814962,"citation":"Evans DC, O'Connor D, Lake BG, Evers R, Allen C, Hargreaves R: Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab Dispos. 2003 Jul;31(7):861-9.","parent_key":"BE0002363"} {"ref-id":"A184625","pubmed-id":29497279,"citation":"Kim YK, Shin KH, Alderman J, Yu KS, Jang IJ, Lee S: Pharmacokinetics and tolerability of eletriptan hydrobromide in healthy Korean subjects. Drug Des Devel Ther. 2018 Feb 19;12:331-337. doi: 10.2147/DDDT.S149119. eCollection 2018.","parent_key":"BE0002363"} {"ref-id":"A38533","pubmed-id":27582896,"citation":"Capi M, Curto M, Lionetto L, de Andres F, Gentile G, Negro A, Martelletti P: Eletriptan in the management of acute migraine: an update on the evidence for efficacy, safety, and consistent response. Ther Adv Neurol Disord. 2016 Sep;9(5):414-23. doi: 10.1177/1756285616650619. Epub 2016 Jun 3.","parent_key":"BE0002793"} {"ref-id":"A39332","pubmed-id":10611140,"citation":"Pichard-Garcia L, Hyland R, Baulieu J, Fabre JM, Milton A, Maurel P: Human hepatocytes in primary culture predict lack of cytochrome P-450 3A4 induction by eletriptan in vivo. Drug Metab Dispos. 2000 Jan;28(1):51-7.","parent_key":"BE0003336"} {"ref-id":"A36863","pubmed-id":19590965,"citation":"Zhou SF, Yang LP, Zhou ZW, Liu YH, Chan E: Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009 Sep;11(3):481-94. doi: 10.1208/s12248-009-9127-y. Epub 2009 Jul 10.","parent_key":"BE0002433"} {"ref-id":"A39270","pubmed-id":9660842,"citation":"Lillibridge JH, Liang BH, Kerr BM, Webber S, Quart B, Shetty BV, Lee CA: Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos. 1998 Jul;26(7):609-16.","parent_key":"BE0002638"} {"ref-id":"A183581","pubmed-id":11709322,"citation":"Hsyu PH, Schultz-Smith MD, Lillibridge JH, Lewis RH, Kerr BM: Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother. 2001 Dec;45(12):3445-50. doi: 10.1128/AAC.45.12.3445-3450.2001.","parent_key":"BE0002638"} {"ref-id":"A33306","pubmed-id":16433896,"citation":"Granfors MT, Wang JS, Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT: Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol. 2006 Jan;98(1):79-85. doi: 10.1111/j.1742-7843.2006.pto_249.x.","parent_key":"BE0002638"} {"ref-id":"A33306","pubmed-id":16433896,"citation":"Granfors MT, Wang JS, Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT: Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol. 2006 Jan;98(1):79-85. doi: 10.1111/j.1742-7843.2006.pto_249.x.","parent_key":"BE0003612"} {"ref-id":"A33306","pubmed-id":16433896,"citation":"Granfors MT, Wang JS, Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT: Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol. 2006 Jan;98(1):79-85. doi: 10.1111/j.1742-7843.2006.pto_249.x.","parent_key":"BE0002362"} {"ref-id":"A14853","pubmed-id":11159797,"citation":"Hesse LM, von Moltke LL, Shader RI, Greenblatt DJ: Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: potential drug interactions with bupropion. Drug Metab Dispos. 2001 Feb;29(2):100-2.","parent_key":"BE0003549"} {"ref-id":"A15134","pubmed-id":18602099,"citation":"Tanabe M, Hashimoto M, Ono H: Imidazoline I(1) receptor-mediated reduction of muscle rigidity in the reserpine-treated murine model of Parkinson's disease. Eur J Pharmacol. 2008 Jul 28;589(1-3):102-5. doi: 10.1016/j.ejphar.2008.06.013. Epub 2008 Jun 7.","parent_key":"BE0003549"} {"ref-id":"A183575","pubmed-id":25752914,"citation":"Kattel K, Evande R, Tan C, Mondal G, Grem JL, Mahato RI: Impact of CYP2C19 polymorphism on the pharmacokinetics of nelfinavir in patients with pancreatic cancer. Br J Clin Pharmacol. 2015 Aug;80(2):267-75. doi: 10.1111/bcp.12620. Epub 2015 Jun 11.","parent_key":"BE0003536"} {"ref-id":"A14940","pubmed-id":17639026,"citation":"Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16.","parent_key":"BE0003536"} {"ref-id":"A37601","pubmed-id":21930825,"citation":"Kirby BJ, Collier AC, Kharasch ED, Dixit V, Desai P, Whittington D, Thummel KE, Unadkat JD: Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metab Dispos. 2011 Dec;39(12):2329-37. doi: 10.1124/dmd.111.038646. Epub 2011 Sep 19.","parent_key":"BE0002793"} {"ref-id":"A37598","pubmed-id":19196837,"citation":"Liedtke MD, Rathbun RC: Warfarin-antiretroviral interactions. Ann Pharmacother. 2009 Feb;43(2):322-8. doi: 10.1345/aph.1L497. Epub 2009 Feb 5.","parent_key":"BE0002793"} {"ref-id":"A36904","pubmed-id":9758674,"citation":"von Moltke LL, Greenblatt DJ, Duan SX, Daily JP, Harmatz JS, Shader RI: Inhibition of desipramine hydroxylation (Cytochrome P450-2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci. 1998 Oct;87(10):1184-9. doi: 10.1021/js980197h.","parent_key":"BE0002363"} {"ref-id":"A39270","pubmed-id":9660842,"citation":"Lillibridge JH, Liang BH, Kerr BM, Webber S, Quart B, Shetty BV, Lee CA: Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos. 1998 Jul;26(7):609-16.","parent_key":"BE0002363"} {"ref-id":"A183584","pubmed-id":9486958,"citation":"Inaba T, Fischer NE, Riddick DS, Stewart DJ, Hidaka T: HIV protease inhibitors, saquinavir, indinavir and ritonavir: inhibition of CYP3A4-mediated metabolism of testosterone and benzoxazinorifamycin, KRM-1648, in human liver microsomes. Toxicol Lett. 1997 Dec;93(2-3):215-9. doi: 10.1016/s0378-4274(97)00098-2.","parent_key":"BE0002638"} {"ref-id":"A183590","pubmed-id":16842395,"citation":"Mouly S, Rizzo-Padoin N, Simoneau G, Verstuyft C, Aymard G, Salvat C, Mahe I, Bergmann JF: Effect of widely used combinations of antiretroviral therapy on liver CYP3A4 activity in HIV-infected patients. Br J Clin Pharmacol. 2006 Aug;62(2):200-9. doi: 10.1111/j.1365-2125.2006.02637.x.","parent_key":"BE0002638"} {"ref-id":"A37800","pubmed-id":9616191,"citation":"Koudriakova T, Iatsimirskaia E, Utkin I, Gangl E, Vouros P, Storozhuk E, Orza D, Marinina J, Gerber N: Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos. 1998 Jun;26(6):552-61.","parent_key":"BE0002362"} {"ref-id":"A33256","pubmed-id":21189658,"citation":"Hong SP, Yang JS, Han JY, Ha SI, Chung JW, Koh YY, Chang KS, Choi DH: Effects of lovastatin on the pharmacokinetics of diltiazem and its main metabolite, desacetyldiltiazem, in rats: possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by lovastatin. J Pharm Pharmacol. 2011 Jan;63(1):129-35.","parent_key":"BE0002638"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0002638"} {"ref-id":"A35026","pubmed-id":18563955,"citation":"Neuvonen PJ, Backman JT, Niemi M: Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet. 2008;47(7):463-74. doi: 10.2165/00003088-200847070-00003.","parent_key":"BE0002638"} {"ref-id":"A15161","pubmed-id":15998357,"citation":"Tornio A, Pasanen MK, Laitila J, Neuvonen PJ, Backman JT: Comparison of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) as inhibitors of cytochrome P450 2C8. Basic Clin Pharmacol Toxicol. 2005 Aug;97(2):104-8.","parent_key":"BE0002887"} {"ref-id":"A15162","pubmed-id":15601807,"citation":"Walsky RL, Gaman EA, Obach RS: Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol. 2005 Jan;45(1):68-78.","parent_key":"BE0002887"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0002887"} {"ref-id":"A35026","pubmed-id":18563955,"citation":"Neuvonen PJ, Backman JT, Niemi M: Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet. 2008;47(7):463-74. doi: 10.2165/00003088-200847070-00003.","parent_key":"BE0002887"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0003677"} {"ref-id":"A18013","pubmed-id":11950779,"citation":"Prueksaritanont T, Subramanian R, Fang X, Ma B, Qiu Y, Lin JH, Pearson PG, Baillie TA: Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos. 2002 May;30(5):505-12.","parent_key":"BE0003679"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0003679"} {"ref-id":"A38719","pubmed-id":27757045,"citation":"Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA: Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016 Oct 3;9:97-106. doi: 10.2147/PGPM.S86013. eCollection 2016.","parent_key":"BE0003536"} {"ref-id":"A184856","pubmed-id":8689955,"citation":"Garton KJ, Yuen P, Meinwald J, Thummel KE, Kharasch ED: Stereoselective metabolism of enflurane by human liver cytochrome P450 2E1. Drug Metab Dispos. 1995 Dec;23(12):1426-30.","parent_key":"BE0003533"} {"ref-id":"A202118","pubmed-id":8162670,"citation":"Kharasch ED, Thummel KE, Mautz D, Bosse S: Clinical enflurane metabolism by cytochrome P450 2E1. Clin Pharmacol Ther. 1994 Apr;55(4):434-40. doi: 10.1038/clpt.1994.53.","parent_key":"BE0003533"} {"ref-id":"A203219","pubmed-id":8989020,"citation":"Njoku D, Laster MJ, Gong DH, Eger EI 2nd, Reed GF, Martin JL: Biotransformation of halothane, enflurane, isoflurane, and desflurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury. Anesth Analg. 1997 Jan;84(1):173-8. doi: 10.1097/00000539-199701000-00031.","parent_key":"BE0003533"} {"ref-id":"A16502","pubmed-id":10359672,"citation":"Shou M, Mei Q, Ettore MW Jr, Dai R, Baillie TA, Rushmore TH: Sigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives. Biochem J. 1999 Jun 15;340 ( Pt 3):845-53.","parent_key":"BE0002638"} {"ref-id":"A39426","pubmed-id":8948091,"citation":"Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez FJ, Satoh T: Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996 Nov;26(11):1155-66. doi: 10.3109/00498259609050260.","parent_key":"BE0003549"} {"ref-id":"A185012","pubmed-id":17256449,"citation":"Kuhn UD, Kirsch M, Merkel U, Eberhardt AM, Wenda B, Maurer I, Hartter S, Hiemke C, Volz HP, Balogh A: Reboxetine and cytochrome P450--comparison with paroxetine treatment in humans. Int J Clin Pharmacol Ther. 2007 Jan;45(1):36-46. doi: 10.5414/cpp45036.","parent_key":"BE0002638"} {"ref-id":"A343","pubmed-id":11192474,"citation":"Fleishaker JC: Clinical pharmacokinetics of reboxetine, a selective norepinephrine reuptake inhibitor for the treatment of patients with depression. Clin Pharmacokinet. 2000 Dec;39(6):413-27.","parent_key":"BE0002638"} {"ref-id":"A345","pubmed-id":10534319,"citation":"Wienkers LC, Allievi C, Hauer MJ, Wynalda MA: Cytochrome P-450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Drug Metab Dispos. 1999 Nov;27(11):1334-40.","parent_key":"BE0002363"} {"ref-id":"A185012","pubmed-id":17256449,"citation":"Kuhn UD, Kirsch M, Merkel U, Eberhardt AM, Wenda B, Maurer I, Hartter S, Hiemke C, Volz HP, Balogh A: Reboxetine and cytochrome P450--comparison with paroxetine treatment in humans. Int J Clin Pharmacol Ther. 2007 Jan;45(1):36-46. doi: 10.5414/cpp45036.","parent_key":"BE0002363"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003549"} {"ref-id":"A183962","pubmed-id":26247717,"citation":"Paganotti GM, Russo G, Sobze MS, Mayaka GB, Muthoga CW, Tawe L, Martinelli A, Romano R, Vullo V: CYP2B6 poor metaboliser alleles involved in efavirenz and nevirapine metabolism: CYP2B6*9 and CYP2B6*18 distribution in HIV-exposed subjects from Dschang, Western Cameroon. Infect Genet Evol. 2015 Oct;35:122-6. doi: 10.1016/j.meegid.2015.08.003. Epub 2015 Aug 4.","parent_key":"BE0003549"} {"ref-id":"A39073","pubmed-id":27709010,"citation":"Hedrich WD, Hassan HE, Wang H: Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016 Sep;6(5):413-425. doi: 10.1016/j.apsb.2016.07.016. Epub 2016 Aug 9.","parent_key":"BE0003549"} {"ref-id":"A181400","pubmed-id":12405866,"citation":"Fichtenbaum CJ, Gerber JG: Interactions between antiretroviral drugs and drugs used for the therapy of the metabolic complications encountered during HIV infection. Clin Pharmacokinet. 2002;41(14):1195-211. doi: 10.2165/00003088-200241140-00004.","parent_key":"BE0002638"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0002362"} {"ref-id":"A181331","pubmed-id":26036354,"citation":"Stolbach A, Paziana K, Heverling H, Pham P: A Review of the Toxicity of HIV Medications II: Interactions with Drugs and Complementary and Alternative Medicine Products. J Med Toxicol. 2015 Sep;11(3):326-41. doi: 10.1007/s13181-015-0465-0.","parent_key":"BE0002793"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003336"} {"ref-id":"A39259","pubmed-id":19364830,"citation":"Wen B, Chen Y, Fitch WL: Metabolic activation of nevirapine in human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab Dispos. 2009 Jul;37(7):1557-62. doi: 10.1124/dmd.108.024851. Epub 2009 Apr 13.","parent_key":"BE0003336"} {"ref-id":"A33196","pubmed-id":11225565,"citation":"von Moltke LL, Greenblatt DJ, Granda BW, Giancarlo GM, Duan SX, Daily JP, Harmatz JS, Shader RI: Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol. 2001 Jan;41(1):85-91. doi: 10.1177/00912700122009728.","parent_key":"BE0002363"} {"ref-id":"A184619","pubmed-id":22354160,"citation":"Heil SG, van der Ende ME, Schenk PW, van der Heiden I, Lindemans J, Burger D, van Schaik RH: Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Ther Drug Monit. 2012 Apr;34(2):153-9. doi: 10.1097/FTD.0b013e31824868f3.","parent_key":"BE0002363"} {"ref-id":"A39259","pubmed-id":19364830,"citation":"Wen B, Chen Y, Fitch WL: Metabolic activation of nevirapine in human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab Dispos. 2009 Jul;37(7):1557-62. doi: 10.1124/dmd.108.024851. Epub 2009 Apr 13.","parent_key":"BE0002363"} {"ref-id":"A33196","pubmed-id":11225565,"citation":"von Moltke LL, Greenblatt DJ, Granda BW, Giancarlo GM, Duan SX, Daily JP, Harmatz JS, Shader RI: Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol. 2001 Jan;41(1):85-91. doi: 10.1177/00912700122009728.","parent_key":"BE0002433"} {"ref-id":"A33272","pubmed-id":26348712,"citation":"Mhandire D, Lacerda M, Castel S, Mhandire K, Zhou D, Swart M, Shamu T, Smith P, Musingwini T, Wiesner L, Stray-Pedersen B, Dandara C: Effects of CYP2B6 and CYP1A2 Genetic Variation on Nevirapine Plasma Concentration and Pharmacodynamics as Measured by CD4 Cell Count in Zimbabwean HIV-Infected Patients. OMICS. 2015 Sep;19(9):553-62. doi: 10.1089/omi.2015.0104.","parent_key":"BE0002433"} {"ref-id":"A17770","pubmed-id":17998298,"citation":"Svecova L, Vrzal R, Burysek L, Anzenbacherova E, Cerveny L, Grim J, Trejtnar F, Kunes J, Pour M, Staud F, Anzenbacher P, Dvorak Z, Pavek P: Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab Dispos. 2008 Feb;36(2):339-48. Epub 2007 Nov 12.","parent_key":"BE0002638"} {"ref-id":"A17771","pubmed-id":21177487,"citation":"Mahajan MK, Uttamsingh V, Daniels JS, Gan LS, LeDuc BW, Williams DA: In vitro metabolism of oxymetazoline: evidence for bioactivation to a reactive metabolite. Drug Metab Dispos. 2011 Apr;39(4):693-702. doi: 10.1124/dmd.110.036004. Epub 2010 Dec 21.","parent_key":"BE0003536"} {"ref-id":"A174898","pubmed-id":26979079,"citation":"Rayner-Hartley E, Sedlak T: Ranolazine: A Contemporary Review. J Am Heart Assoc. 2016 Mar 15;5(3):e003196. doi: 10.1161/JAHA.116.003196.","parent_key":"BE0002638"} {"ref-id":"A174949","pubmed-id":25028555,"citation":"Codolosa JN, Acharjee S, Figueredo VM: Update on ranolazine in the management of angina. Vasc Health Risk Manag. 2014 Jun 24;10:353-62. doi: 10.2147/VHRM.S40477. eCollection 2014.","parent_key":"BE0002638"} {"ref-id":"A174898","pubmed-id":26979079,"citation":"Rayner-Hartley E, Sedlak T: Ranolazine: A Contemporary Review. J Am Heart Assoc. 2016 Mar 15;5(3):e003196. doi: 10.1161/JAHA.116.003196.","parent_key":"BE0002363"} {"ref-id":"A174949","pubmed-id":25028555,"citation":"Codolosa JN, Acharjee S, Figueredo VM: Update on ranolazine in the management of angina. Vasc Health Risk Manag. 2014 Jun 24;10:353-62. doi: 10.2147/VHRM.S40477. eCollection 2014.","parent_key":"BE0002363"} {"ref-id":"A14740","pubmed-id":10771452,"citation":"Prakash C, Kamel A, Cui D, Whalen RD, Miceli JJ, Tweedie D: Identification of the major human liver cytochrome P450 isoform(s) responsible for the formation of the primary metabolites of ziprasidone and prediction of possible drug interactions. Br J Clin Pharmacol. 2000;49 Suppl 1:35S-42S.","parent_key":"BE0002638"} {"ref-id":"A38584","pubmed-id":12670127,"citation":"Prior TI, Baker GB: Interactions between the cytochrome P450 system and the second-generation antipsychotics. J Psychiatry Neurosci. 2003 Mar;28(2):99-112.","parent_key":"BE0002638"} {"ref-id":"A174277","pubmed-id":12826984,"citation":"Beedham C, Miceli JJ, Obach RS: Ziprasidone metabolism, aldehyde oxidase, and clinical implications. J Clin Psychopharmacol. 2003 Jun;23(3):229-32. doi: 10.1097/01.jcp.0000084028.22282.f2.","parent_key":"BE0002638"} {"ref-id":"A39214","pubmed-id":17214606,"citation":"Spina E, de Leon J: Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol. 2007 Jan;100(1):4-22. doi: 10.1111/j.1742-7843.2007.00017.x.","parent_key":"BE0003539"} {"ref-id":"A2080","pubmed-id":18691132,"citation":"Kvernmo T, Houben J, Sylte I: Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem. 2008;8(12):1049-67.","parent_key":"BE0002638"} {"ref-id":"A37672","pubmed-id":16410677,"citation":"Nakatsuka A, Nagai M, Yabe H, Nishikawa N, Nomura T, Moritoyo H, Moritoyo T, Nomoto M: Effect of clarithromycin on the pharmacokinetics of cabergoline in healthy controls and in patients with Parkinson's disease. J Pharmacol Sci. 2006 Jan;100(1):59-64. doi: 10.1254/jphs.fp0050711. Epub 2006 Jan 13.","parent_key":"BE0002638"} {"ref-id":"A184121","pubmed-id":7586950,"citation":"Mitra AK, Thummel KE, Kalhorn TF, Kharasch ED, Unadkat JD, Slattery JT: Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin Pharmacol Ther. 1995 Nov;58(5):556-66. doi: 10.1016/0009-9236(95)90176-0.","parent_key":"BE0002638"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003606"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0002887"} {"ref-id":"A184208","pubmed-id":17286541,"citation":"Gil JP, Gil Berglund E: CYP2C8 and antimalaria drug efficacy. Pharmacogenomics. 2007 Feb;8(2):187-98. doi: 10.2217/14622416.8.2.187.","parent_key":"BE0002887"} {"ref-id":"A14742","pubmed-id":10901692,"citation":"Winter HR, Wang Y, Unadkat JD: CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone. Drug Metab Dispos. 2000 Aug;28(8):865-8.","parent_key":"BE0002887"} {"ref-id":"A38641","pubmed-id":19998329,"citation":"Ganesan S, Sahu R, Walker LA, Tekwani BL: Cytochrome P450-dependent toxicity of dapsone in human erythrocytes. J Appl Toxicol. 2010 Apr;30(3):271-5. doi: 10.1002/jat.1493.","parent_key":"BE0003536"} {"ref-id":"A38642","pubmed-id":21422237,"citation":"Abouraya M, Sacco JC, Hayes K, Thomas S, Kitchens CS, Trepanier LA: Dapsone-associated methemoglobinemia in a patient with slow NAT2*5B haplotype and impaired cytochrome b5 reductase activity. J Clin Pharmacol. 2012 Feb;52(2):272-8. doi: 10.1177/0091270010393343.","parent_key":"BE0003536"} {"ref-id":"A39341","pubmed-id":12386124,"citation":"Hutzler JM, Kolwankar D, Hummel MA, Tracy TS: Activation of CYP2C9-mediated metabolism by a series of dapsone analogs: kinetics and structural requirements. Drug Metab Dispos. 2002 Nov;30(11):1194-200.","parent_key":"BE0002793"} {"ref-id":"A183266","pubmed-id":11408370,"citation":"Hutzler JM, Hauer MJ, Tracy TS: Dapsone activation of CYP2C9-mediated metabolism: evidence for activation of multiple substrates and a two-site model. Drug Metab Dispos. 2001 Jul;29(7):1029-34.","parent_key":"BE0002793"} {"ref-id":"A184121","pubmed-id":7586950,"citation":"Mitra AK, Thummel KE, Kalhorn TF, Kharasch ED, Unadkat JD, Slattery JT: Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin Pharmacol Ther. 1995 Nov;58(5):556-66. doi: 10.1016/0009-9236(95)90176-0.","parent_key":"BE0003533"} {"ref-id":"A14743","pubmed-id":8806399,"citation":"Levy RH: Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia. 1995;36 Suppl 5:S8-13.","parent_key":"BE0002793"} {"ref-id":"A11772","pubmed-id":15805193,"citation":"Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, Thom M, Sen A, Shorvon SD, Sander JW, Wood NW, Goldstein DB: Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5507-12. Epub 2005 Apr 1.","parent_key":"BE0002793"} {"ref-id":"A14744","pubmed-id":11038165,"citation":"Komatsu T, Yamazaki H, Asahi S, Gillam EM, Guengerich FP, Nakajima M, Yokoi T: Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug Metab Dispos. 2000 Nov;28(11):1361-8.","parent_key":"BE0002793"} {"ref-id":"A33234","pubmed-id":17708140,"citation":"Lynch T, Price A: The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007 Aug 1;76(3):391-6.","parent_key":"BE0002793"} {"ref-id":"A39400","pubmed-id":11434505,"citation":"van der Weide J, Steijns LS, van Weelden MJ, de Haan K: The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics. 2001 Jun;11(4):287-91.","parent_key":"BE0002793"} {"ref-id":"A33734","pubmed-id":21358975,"citation":"Johannessen SI, Landmark CJ: Antiepileptic drug interactions - principles and clinical implications. Curr Neuropharmacol. 2010 Sep;8(3):254-67. doi: 10.2174/157015910792246254.","parent_key":"BE0002793"} {"ref-id":"A14743","pubmed-id":8806399,"citation":"Levy RH: Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia. 1995;36 Suppl 5:S8-13.","parent_key":"BE0003536"} {"ref-id":"A14744","pubmed-id":11038165,"citation":"Komatsu T, Yamazaki H, Asahi S, Gillam EM, Guengerich FP, Nakajima M, Yokoi T: Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug Metab Dispos. 2000 Nov;28(11):1361-8.","parent_key":"BE0003536"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0002887"} {"ref-id":"A22137","pubmed-id":15933212,"citation":"Ferguson SS, Chen Y, LeCluyse EL, Negishi M, Goldstein JA: Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha. Mol Pharmacol. 2005 Sep;68(3):747-57. Epub 2005 Jun 2.","parent_key":"BE0002887"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0003549"} {"ref-id":"A38206","pubmed-id":18783297,"citation":"Ohno Y, Hisaka A, Ueno M, Suzuki H: General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669-80. doi: 10.2165/00003088-200847100-00004.","parent_key":"BE0002638"} {"ref-id":"A15702","pubmed-id":18473749,"citation":"Zhou SF: Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008 May;9(4):310-22.","parent_key":"BE0002638"} {"ref-id":"A184676","pubmed-id":14616412,"citation":"Purkins L, Wood N, Ghahramani P, Love ER, Eve MD, Fielding A: Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration. Br J Clin Pharmacol. 2003 Dec;56 Suppl 1:37-44. doi: 10.1046/j.1365-2125.2003.01997.x.","parent_key":"BE0002638"} {"ref-id":"A37734","pubmed-id":29649093,"citation":"Hole K, Wollmann BM, Nguyen C, Haslemo T, Molden E: Comparison of CYP3A4-Inducing Capacity of Enzyme-Inducing Antiepileptic Drugs Using 4beta-Hydroxycholesterol as Biomarker. Ther Drug Monit. 2018 Aug;40(4):463-468. doi: 10.1097/FTD.0000000000000518.","parent_key":"BE0002638"} {"ref-id":"A33734","pubmed-id":21358975,"citation":"Johannessen SI, Landmark CJ: Antiepileptic drug interactions - principles and clinical implications. Curr Neuropharmacol. 2010 Sep;8(3):254-67. doi: 10.2174/157015910792246254.","parent_key":"BE0002638"} {"ref-id":"A21546","pubmed-id":12673034,"citation":"Usui T, Saitoh Y, Komada F: Induction of CYP3As in HepG2 cells by several drugs. Association between induction of CYP3A4 and expression of glucocorticoid receptor. Biol Pharm Bull. 2003 Apr;26(4):510-7. doi: 10.1248/bpb.26.510.","parent_key":"BE0002362"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0002362"} {"ref-id":"A21546","pubmed-id":12673034,"citation":"Usui T, Saitoh Y, Komada F: Induction of CYP3As in HepG2 cells by several drugs. Association between induction of CYP3A4 and expression of glucocorticoid receptor. Biol Pharm Bull. 2003 Apr;26(4):510-7. doi: 10.1248/bpb.26.510.","parent_key":"BE0003612"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0003612"} {"ref-id":"A182714","pubmed-id":2519258,"citation":"Funakoshi M: The effect of phenytoin on the corticoidogenesis in the mitochondria and the endoplasmic reticulum of bovine adrenal cortex. Shika Kiso Igakkai Zasshi. 1989 Feb;31(1):95-101.","parent_key":"BE0000731"} {"ref-id":"A35522","pubmed-id":15933229,"citation":"Kostrubsky SE, Sinclair JF, Strom SC, Wood S, Urda E, Stolz DB, Wen YH, Kulkarni S, Mutlib A: Phenobarbital and phenytoin increased acetaminophen hepatotoxicity due to inhibition of UDP-glucuronosyltransferases in cultured human hepatocytes. Toxicol Sci. 2005 Sep;87(1):146-55. doi: 10.1093/toxsci/kfi211. Epub 2005 Jun 2.","parent_key":"BE0003538"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0003538"} {"ref-id":"A33734","pubmed-id":21358975,"citation":"Johannessen SI, Landmark CJ: Antiepileptic drug interactions - principles and clinical implications. Curr Neuropharmacol. 2010 Sep;8(3):254-67. doi: 10.2174/157015910792246254.","parent_key":"BE0002433"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0003336"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0002363"} {"ref-id":"A33595","pubmed-id":22569204,"citation":"Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB: PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70. doi: 10.1097/FPC.0b013e32834aeedb.","parent_key":"BE0003533"} {"ref-id":"A181316","pubmed-id":20482443,"citation":"Dvorak Z, Pavek P: Regulation of drug-metabolizing cytochrome P450 enzymes by glucocorticoids. Drug Metab Rev. 2010 Nov;42(4):621-35. doi: 10.3109/03602532.2010.484462.","parent_key":"BE0002638"} {"ref-id":"A181316","pubmed-id":20482443,"citation":"Dvorak Z, Pavek P: Regulation of drug-metabolizing cytochrome P450 enzymes by glucocorticoids. Drug Metab Rev. 2010 Nov;42(4):621-35. doi: 10.3109/03602532.2010.484462.","parent_key":"BE0002362"} {"ref-id":"A16880","pubmed-id":10716067,"citation":"Zhao XJ, Ishizaki T: A further interaction study of quinine with clinically important drugs by human liver microsomes: determinations of inhibition constant (Ki) and type of inhibition. Eur J Drug Metab Pharmacokinet. 1999 Jul-Sep;24(3):272-8.","parent_key":"BE0002638"} {"ref-id":"A38737","pubmed-id":9399990,"citation":"Zhao XJ, Ishizaki T: The In vitro hepatic metabolism of quinine in mice, rats and dogs: comparison with human liver microsomes. J Pharmacol Exp Ther. 1997 Dec;283(3):1168-76.","parent_key":"BE0002638"} {"ref-id":"A15167","pubmed-id":21553654,"citation":"Qu YQ, Fang ZZ, Yang L, Gao ZM, Liang R, Zhu LL, Dong PP, Zhang YY, Ge GB, Wang LM: Reversible inhibition of four important human liver cytochrome P450 enzymes by diethylstilbestrol. Pharmazie. 2011 Mar;66(3):216-21.","parent_key":"BE0002638"} {"ref-id":"A22292","pubmed-id":23384967,"citation":"Kuzbari O, Peterson CM, Franklin MR, Hathaway LB, Johnstone EB, Hammoud AO, Lamb JG: Comparative analysis of human CYP3A4 and rat CYP3A1 induction and relevant gene expression by bisphenol A and diethylstilbestrol: implications for toxicity testing paradigms. Reprod Toxicol. 2013 Jun;37:24-30. doi: 10.1016/j.reprotox.2013.01.005. Epub 2013 Feb 4.","parent_key":"BE0002638"} {"ref-id":"A15167","pubmed-id":21553654,"citation":"Qu YQ, Fang ZZ, Yang L, Gao ZM, Liang R, Zhu LL, Dong PP, Zhang YY, Ge GB, Wang LM: Reversible inhibition of four important human liver cytochrome P450 enzymes by diethylstilbestrol. Pharmazie. 2011 Mar;66(3):216-21.","parent_key":"BE0002887"} {"ref-id":"A15167","pubmed-id":21553654,"citation":"Qu YQ, Fang ZZ, Yang L, Gao ZM, Liang R, Zhu LL, Dong PP, Zhang YY, Ge GB, Wang LM: Reversible inhibition of four important human liver cytochrome P450 enzymes by diethylstilbestrol. Pharmazie. 2011 Mar;66(3):216-21.","parent_key":"BE0002793"} {"ref-id":"A15167","pubmed-id":21553654,"citation":"Qu YQ, Fang ZZ, Yang L, Gao ZM, Liang R, Zhu LL, Dong PP, Zhang YY, Ge GB, Wang LM: Reversible inhibition of four important human liver cytochrome P450 enzymes by diethylstilbestrol. Pharmazie. 2011 Mar;66(3):216-21.","parent_key":"BE0003533"} {"ref-id":"A38980","pubmed-id":11315104,"citation":"Renwick AB, Surry D, Price RJ, Lake BG, Evans DC: Metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin by human hepatic cytochrome P450 isoforms. Xenobiotica. 2000 Oct;30(10):955-69. doi: 10.1080/00498250050200113 .","parent_key":"BE0003533"} {"ref-id":"A15337","pubmed-id":12751267,"citation":"Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach SR, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J, Wrighton SA: The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. J Clin Pharmacol. 2003 May;43(5):443-69.","parent_key":"BE0002638"} {"ref-id":"A33239","pubmed-id":15135088,"citation":"Monostory K, Hazai E, Vereczkey L: Inhibition of cytochrome P450 enzymes participating in p-nitrophenol hydroxylation by drugs known as CYP2E1 inhibitors. Chem Biol Interact. 2004 Apr 15;147(3):331-40. doi: 10.1016/j.cbi.2004.03.003.","parent_key":"BE0002638"} {"ref-id":"A33242","pubmed-id":20233179,"citation":"Shord SS, Chan LN, Camp JR, Vasquez EM, Jeong HY, Molokie RE, Baum CL, Xie H: Effects of oral clotrimazole troches on the pharmacokinetics of oral and intravenous midazolam. Br J Clin Pharmacol. 2010 Feb;69(2):160-6. doi: 10.1111/j.1365-2125.2009.03559.x.","parent_key":"BE0002638"} {"ref-id":"A36972","pubmed-id":21037909,"citation":"Choy M: Tacrolimus interaction with clotrimazole: a concise case report and literature review. P T. 2010 Oct;35(10):568-9.","parent_key":"BE0002638"} {"ref-id":"A15669","pubmed-id":14977870,"citation":"Faucette SR, Wang H, Hamilton GA, Jolley SL, Gilbert D, Lindley C, Yan B, Negishi M, LeCluyse EL: Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos. 2004 Mar;32(3):348-58.","parent_key":"BE0003549"} {"ref-id":"A17830","pubmed-id":11854151,"citation":"Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM: Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002 Mar;30(3):314-8.","parent_key":"BE0002363"} {"ref-id":"A37813","pubmed-id":9143352,"citation":"Draper AJ, Madan A, Parkinson A: Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch Biochem Biophys. 1997 May 1;341(1):47-61. doi: 10.1006/abbi.1997.9964.","parent_key":"BE0003336"} {"ref-id":"A38831","pubmed-id":16430569,"citation":"Sweeney BP, Bromilow J: Liver enzyme induction and inhibition: implications for anaesthesia. Anaesthesia. 2006 Feb;61(2):159-77. doi: 10.1111/j.1365-2044.2005.04462.x.","parent_key":"BE0002793"} {"ref-id":"A38550","pubmed-id":9663807,"citation":"Miners JO, Birkett DJ: Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998 Jun;45(6):525-38.","parent_key":"BE0002793"} {"ref-id":"A33239","pubmed-id":15135088,"citation":"Monostory K, Hazai E, Vereczkey L: Inhibition of cytochrome P450 enzymes participating in p-nitrophenol hydroxylation by drugs known as CYP2E1 inhibitors. Chem Biol Interact. 2004 Apr 15;147(3):331-40. doi: 10.1016/j.cbi.2004.03.003.","parent_key":"BE0003533"} {"ref-id":"A18018","pubmed-id":9574817,"citation":"Tassaneeyakul W, Birkett DJ, Miners JO: Inhibition of human hepatic cytochrome P4502E1 by azole antifungals, CNS-active drugs and non-steroidal anti-inflammatory agents. Xenobiotica. 1998 Mar;28(3):293-301. doi: 10.1080/004982598239579 .","parent_key":"BE0003533"} {"ref-id":"A17738","pubmed-id":14739663,"citation":"van den Bongard HJ, Sparidans RW, Critchley DJ, Beijnen JH, Schellens JH: Pharmacokinetic drug-drug interaction of the novel anticancer agent E7070 and acenocoumarol. Invest New Drugs. 2004 Apr;22(2):151-8.","parent_key":"BE0003536"} {"ref-id":"A17738","pubmed-id":14739663,"citation":"van den Bongard HJ, Sparidans RW, Critchley DJ, Beijnen JH, Schellens JH: Pharmacokinetic drug-drug interaction of the novel anticancer agent E7070 and acenocoumarol. Invest New Drugs. 2004 Apr;22(2):151-8.","parent_key":"BE0002363"} {"ref-id":"A17738","pubmed-id":14739663,"citation":"van den Bongard HJ, Sparidans RW, Critchley DJ, Beijnen JH, Schellens JH: Pharmacokinetic drug-drug interaction of the novel anticancer agent E7070 and acenocoumarol. Invest New Drugs. 2004 Apr;22(2):151-8.","parent_key":"BE0003533"} {"ref-id":"A17738","pubmed-id":14739663,"citation":"van den Bongard HJ, Sparidans RW, Critchley DJ, Beijnen JH, Schellens JH: Pharmacokinetic drug-drug interaction of the novel anticancer agent E7070 and acenocoumarol. Invest New Drugs. 2004 Apr;22(2):151-8.","parent_key":"BE0002638"} {"ref-id":"A38896","pubmed-id":23184666,"citation":"Martinez-Selles M, Datino T, Figueiras-Graillet L, Gama JG, Jones C, Franklin R, Fernandez-Aviles F: Cardiovascular safety of anagrelide in healthy subjects: effects of caffeine and food intake on pharmacokinetics and adverse reactions. Clin Drug Investig. 2013 Jan;33(1):45-54. doi: 10.1007/s40261-012-0032-2.","parent_key":"BE0002433"} {"ref-id":"A33213","pubmed-id":10725317,"citation":"Komatsu K, Ito K, Nakajima Y, Kanamitsu Si, Imaoka S, Funae Y, Green CE, Tyson CA, Shimada N, Sugiyama Y: Prediction of in vivo drug-drug interactions between tolbutamide and various sulfonamides in humans based on in vitro experiments. Drug Metab Dispos. 2000 Apr;28(4):475-81.","parent_key":"BE0002793"} {"ref-id":"A14747","pubmed-id":9681670,"citation":"Belpaire FM, Wijnant P, Temmerman A, Rasmussen BB, Brosen K: The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors. Eur J Clin Pharmacol. 1998 May;54(3):261-4.","parent_key":"BE0002363"} {"ref-id":"A15129","pubmed-id":11038161,"citation":"McGinnity DF, Parker AJ, Soars M, Riley RJ: Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos. 2000 Nov;28(11):1327-34.","parent_key":"BE0002363"} {"ref-id":"A175162","pubmed-id":30248178,"citation":"Bahar MA, Kamp J, Borgsteede SD, Hak E, Wilffert B: The impact of CYP2D6 mediated drug-drug interaction: a systematic review on a combination of metoprolol and paroxetine/fluoxetine. Br J Clin Pharmacol. 2018 Dec;84(12):2704-2715. doi: 10.1111/bcp.13741. Epub 2018 Sep 24.","parent_key":"BE0002363"} {"ref-id":"A39459","pubmed-id":25866574,"citation":"Militaru FC, Vesa SC, Pop TR, Buzoianu AD: Pharmacogenetics aspects of oral anticoagulants therapy. J Med Life. 2015 Apr-Jun;8(2):171-5.","parent_key":"BE0002793"} {"ref-id":"A39460","pubmed-id":18466099,"citation":"Limdi NA, Arnett DK, Goldstein JA, Beasley TM, McGwin G, Adler BK, Acton RT: Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics. 2008 May;9(5):511-26. doi: 10.2217/14622416.9.5.511.","parent_key":"BE0002793"} {"ref-id":"A39461","pubmed-id":23041981,"citation":"Fung E, Patsopoulos NA, Belknap SM, O'Rourke DJ, Robb JF, Anderson JL, Shworak NW, Moore JH: Effect of genetic variants, especially CYP2C9 and VKORC1, on the pharmacology of warfarin. Semin Thromb Hemost. 2012 Nov;38(8):893-904. doi: 10.1055/s-0032-1328891. Epub 2012 Oct 6.","parent_key":"BE0002793"} {"ref-id":"A2080","pubmed-id":18691132,"citation":"Kvernmo T, Houben J, Sylte I: Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem. 2008;8(12):1049-67.","parent_key":"BE0002433"} {"ref-id":"A38726","pubmed-id":9321526,"citation":"Wynalda MA, Wienkers LC: Assessment of potential interactions between dopamine receptor agonists and various human cytochrome P450 enzymes using a simple in vitro inhibition screen. Drug Metab Dispos. 1997 Oct;25(10):1211-4.","parent_key":"BE0002433"} {"ref-id":"A37840","pubmed-id":11069211,"citation":"Kaye CM, Nicholls B: Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000 Oct;39(4):243-54. doi: 10.2165/00003088-200039040-00001.","parent_key":"BE0002433"} {"ref-id":"A174547","pubmed-id":19412490,"citation":"Kushida CA: Ropinirole for the treatment of restless legs syndrome. Neuropsychiatr Dis Treat. 2006 Dec;2(4):407-19.","parent_key":"BE0002433"} {"ref-id":"A37897","pubmed-id":9469685,"citation":"Michalets EL: Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 1998 Jan-Feb;18(1):84-112.","parent_key":"BE0002638"} {"ref-id":"A175246","pubmed-id":10768303,"citation":"Garnett WR: Clinical pharmacology of topiramate: a review. Epilepsia. 2000;41 Suppl 1:S61-5.","parent_key":"BE0003536"} {"ref-id":"A37746","pubmed-id":12102670,"citation":"Sachdeo RC, Sachdeo SK, Levy RH, Streeter AJ, Bishop FE, Kunze KL, Mather GG, Roskos LK, Shen DD, Thummel KE, Trager WF, Curtin CR, Doose DR, Gisclon LG, Bialer M: Topiramate and phenytoin pharmacokinetics during repetitive monotherapy and combination therapy to epileptic patients. Epilepsia. 2002 Jul;43(7):691-6.","parent_key":"BE0003536"} {"ref-id":"A24057","pubmed-id":14636322,"citation":"Nallani SC, Glauser TA, Hariparsad N, Setchell K, Buckley DJ, Buckley AR, Desai PB: Dose-dependent induction of cytochrome P450 (CYP) 3A4 and activation of pregnane X receptor by topiramate. Epilepsia. 2003 Dec;44(12):1521-8.","parent_key":"BE0002638"} {"ref-id":"A35767","pubmed-id":11030437,"citation":"Benedetti MS: Enzyme induction and inhibition by new antiepileptic drugs: a review of human studies. Fundam Clin Pharmacol. 2000 Jul-Aug;14(4):301-19. doi: 10.1111/j.1472-8206.2000.tb00411.x.","parent_key":"BE0002638"} {"ref-id":"A39315","pubmed-id":7632164,"citation":"Zhang ZY, Kaminsky LS: Characterization of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem Pharmacol. 1995 Jul 17;50(2):205-11.","parent_key":"BE0002638"} {"ref-id":"A14748","pubmed-id":19754423,"citation":"Wang B, Zhou SF: Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218.","parent_key":"BE0002433"} {"ref-id":"A183275","pubmed-id":23167834,"citation":"Wang L, Hu Z, Deng X, Wang Y, Zhang Z, Cheng ZN: Association between common CYP1A2 polymorphisms and theophylline metabolism in non-smoking healthy volunteers. Basic Clin Pharmacol Toxicol. 2013 Apr;112(4):257-63. doi: 10.1111/bcpt.12038. Epub 2012 Dec 20.","parent_key":"BE0002433"} {"ref-id":"A14749","pubmed-id":1346993,"citation":"Sarkar MA, Hunt C, Guzelian PS, Karnes HT: Characterization of human liver cytochromes P-450 involved in theophylline metabolism. Drug Metab Dispos. 1992 Jan-Feb;20(1):31-7.","parent_key":"BE0003533"} {"ref-id":"A36814","pubmed-id":28050398,"citation":"Sutrisna E: The Impact of CYP1A2 and CYP2E1 Genes Polymorphism on Theophylline Response. J Clin Diagn Res. 2016 Nov;10(11):FE01-FE03. doi: 10.7860/JCDR/2016/21067.8914. Epub 2016 Nov 1.","parent_key":"BE0003533"} {"ref-id":"A184058","pubmed-id":15985363,"citation":"Kim YC, Lee AK, Lee JH, Lee I, Lee DC, Kim SH, Kim SG, Lee MG: Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation. Eur J Pharm Sci. 2005 Sep;26(1):114-23. doi: 10.1016/j.ejps.2005.05.004.","parent_key":"BE0003533"} {"ref-id":"A36570","pubmed-id":7619675,"citation":"Ha HR, Chen J, Freiburghaus AU, Follath F: Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol. 1995 Mar;39(3):321-6.","parent_key":"BE0003543"} {"ref-id":"A36570","pubmed-id":7619675,"citation":"Ha HR, Chen J, Freiburghaus AU, Follath F: Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol. 1995 Mar;39(3):321-6.","parent_key":"BE0002363"} {"ref-id":"A39315","pubmed-id":7632164,"citation":"Zhang ZY, Kaminsky LS: Characterization of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem Pharmacol. 1995 Jul 17;50(2):205-11.","parent_key":"BE0002363"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0002363"} {"ref-id":"A38848","pubmed-id":10234600,"citation":"Tran JQ, Di Cicco RA, Sheth SB, Tucci M, Peng L, Jorkasky DK, Hursting MJ, Benincosa LJ: Assessment of the potential pharmacokinetic and pharmacodynamic interactions between erythromycin and argatroban. J Clin Pharmacol. 1999 May;39(5):513-9.","parent_key":"BE0002638"} {"ref-id":"A38848","pubmed-id":10234600,"citation":"Tran JQ, Di Cicco RA, Sheth SB, Tucci M, Peng L, Jorkasky DK, Hursting MJ, Benincosa LJ: Assessment of the potential pharmacokinetic and pharmacodynamic interactions between erythromycin and argatroban. J Clin Pharmacol. 1999 May;39(5):513-9.","parent_key":"BE0002362"} {"ref-id":"A14750","pubmed-id":10901704,"citation":"Echizen H, Tanizaki M, Tatsuno J, Chiba K, Berwick T, Tani M, Gonzalez FJ, Ishizaki T: Identification of CYP3A4 as the enzyme involved in the mono-N-dealkylation of disopyramide enantiomers in humans. Drug Metab Dispos. 2000 Aug;28(8):937-44.","parent_key":"BE0002638"} {"ref-id":"A14751","pubmed-id":11407536,"citation":"Zhang L, Fitzloff JF, Engel LC, Cook CS: Species difference in stereoselective involvement of CYP3A in the mono-N-dealkylation of disopyramide. Xenobiotica. 2001 Feb;31(2):73-83.","parent_key":"BE0002638"} {"ref-id":"A14751","pubmed-id":11407536,"citation":"Zhang L, Fitzloff JF, Engel LC, Cook CS: Species difference in stereoselective involvement of CYP3A in the mono-N-dealkylation of disopyramide. Xenobiotica. 2001 Feb;31(2):73-83.","parent_key":"BE0002433"} {"ref-id":"A14752","pubmed-id":10901707,"citation":"Wang JS, Backman JT, Taavitsainen P, Neuvonen PJ, Kivisto KT: Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.","parent_key":"BE0002638"} {"ref-id":"A184274","pubmed-id":26730802,"citation":"Zhang J, Zhu J, Yao X, Duan Y, Zhou X, Yang M, Li X: Pharmacokinetics of Lidocaine Hydrochloride Metabolized by CYP3A4 in Chinese Han Volunteers Living at Low Altitude and in Native Han and Tibetan Chinese Volunteers Living at High Altitude. Pharmacology. 2016;97(3-4):107-13. doi: 10.1159/000443332. Epub 2016 Jan 6.","parent_key":"BE0002638"} {"ref-id":"A184556","pubmed-id":8033500,"citation":"Mustajoki P, Mustajoki S, Rautio A, Arvela P, Pelkonen O: Effects of heme arginate on cytochrome P450-mediated metabolism of drugs in patients with variegate porphyria and in healthy men. Clin Pharmacol Ther. 1994 Jul;56(1):9-13. doi: 10.1038/clpt.1994.94.","parent_key":"BE0002638"} {"ref-id":"A39222","pubmed-id":8565792,"citation":"Masubuchi Y, Takahashii C, Fujio N, Horie T, Suzuki T, Imaoka S, Funae Y, Narimatsu S: Inhibition and induction of cytochrome P450 isozymes after repetitive administration of imipramine in rats. Drug Metab Dispos. 1995 Sep;23(9):999-1003.","parent_key":"BE0002363"} {"ref-id":"A14752","pubmed-id":10901707,"citation":"Wang JS, Backman JT, Taavitsainen P, Neuvonen PJ, Kivisto KT: Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.","parent_key":"BE0002363"} {"ref-id":"A14752","pubmed-id":10901707,"citation":"Wang JS, Backman JT, Taavitsainen P, Neuvonen PJ, Kivisto KT: Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.","parent_key":"BE0002433"} {"ref-id":"A33261","pubmed-id":10215663,"citation":"Wei X, Dai R, Zhai S, Thummel KE, Friedman FK, Vestal RE: Inhibition of human liver cytochrome P-450 1A2 by the class IB antiarrhythmics mexiletine, lidocaine, and tocainide. J Pharmacol Exp Ther. 1999 May;289(2):853-8.","parent_key":"BE0002433"} {"ref-id":"A38898","pubmed-id":14749694,"citation":"Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P: Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther. 2004 Jan;75(1):80-8. doi: 10.1016/j.clpt.2003.09.007.","parent_key":"BE0002433"} {"ref-id":"A14752","pubmed-id":10901707,"citation":"Wang JS, Backman JT, Taavitsainen P, Neuvonen PJ, Kivisto KT: Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.","parent_key":"BE0002793"} {"ref-id":"A14753","pubmed-id":10192828,"citation":"Fogelman SM, Schmider J, Venkatakrishnan K, von Moltke LL, Harmatz JS, Shader RI, Greenblatt DJ: O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology. 1999 May;20(5):480-90.","parent_key":"BE0002363"} {"ref-id":"A177259","pubmed-id":30485867,"citation":"Lin XQ, Wang P, Cai WK, Xu GL, Yang M, Zhou MD, Sun M, He F, He GH: The Associations Between CYP2D6 Metabolizer Status and Pharmacokinetics and Clinical Outcomes of Venlafaxine: A Systematic Review and Meta-Analysis. Pharmacopsychiatry. 2018 Nov 28. doi: 10.1055/a-0792-1340.","parent_key":"BE0002363"} {"ref-id":"A19457","pubmed-id":8838442,"citation":"Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM: Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol. 1996 Feb;41(2):149-56.","parent_key":"BE0002638"} {"ref-id":"A37707","pubmed-id":15582923,"citation":"Ciusani E, Zullino DF, Eap CB, Brawand-Amey M, Brocard M, Baumann P: Combination therapy with venlafaxine and carbamazepine in depressive patients not responding to venlafaxine: pharmacokinetic and clinical aspects. J Psychopharmacol. 2004 Dec;18(4):559-66. doi: 10.1177/026988110401800414.","parent_key":"BE0002638"} {"ref-id":"A14754","pubmed-id":12865317,"citation":"Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT: Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.","parent_key":"BE0002638"} {"ref-id":"A175552","pubmed-id":28798519,"citation":"Authors unspecified: Conjugated oestrogens/bazedoxifene. Aust Prescr. 2017 Jun;40(3):114-115. doi: 10.18773/austprescr.2017.039. Epub 2017 May 10.","parent_key":"BE0002638"} {"ref-id":"A14755","pubmed-id":11259318,"citation":"Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, Rushmore TH, Shou M: Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos. 2001 Apr;29(4 Pt 1):368-74.","parent_key":"BE0002433"} {"ref-id":"A38899","pubmed-id":17050794,"citation":"O'Connell MB, Frye RF, Matzke GR, St Peter JV, Willhite LA, Welch MR, Kowal P, LaValleur J: Effect of conjugated equine estrogens on oxidative metabolism in middle-aged and elderly postmenopausal women. J Clin Pharmacol. 2006 Nov;46(11):1299-307. doi: 10.1177/0091270006292249.","parent_key":"BE0002433"} {"ref-id":"A426","pubmed-id":16142049,"citation":"Purper-Ouakil D, Fourneret P, Wohl M, Reneric JP: [Atomoxetine: a new treatment for Attention Deficit/Hyperactivity Disorder (ADHD) in children and adolescents]. Encephale. 2005 May-Jun;31(3):337-48.","parent_key":"BE0002363"} {"ref-id":"A4513","pubmed-id":19445548,"citation":"Garnock-Jones KP, Keating GM: Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs. 2009;11(3):203-26. doi: 10.2165/00148581-200911030-00005.","parent_key":"BE0002363"} {"ref-id":"A33226","pubmed-id":14610241,"citation":"Sauer JM, Long AJ, Ring B, Gillespie JS, Sanburn NP, DeSante KA, Petullo D, VandenBranden MR, Jensen CB, Wrighton SA, Smith BP, Read HA, Witcher JW: Atomoxetine hydrochloride: clinical drug-drug interaction prediction and outcome. J Pharmacol Exp Ther. 2004 Feb;308(2):410-8. doi: 10.1124/jpet.103.058727. Epub 2003 Nov 10.","parent_key":"BE0002363"} {"ref-id":"A175669","pubmed-id":26859445,"citation":"Yu G, Li GF, Markowitz JS: Atomoxetine: A Review of Its Pharmacokinetics and Pharmacogenomics Relative to Drug Disposition. J Child Adolesc Psychopharmacol. 2016 May;26(4):314-26. doi: 10.1089/cap.2015.0137. Epub 2016 Feb 9.","parent_key":"BE0002363"} {"ref-id":"A175669","pubmed-id":26859445,"citation":"Yu G, Li GF, Markowitz JS: Atomoxetine: A Review of Its Pharmacokinetics and Pharmacogenomics Relative to Drug Disposition. J Child Adolesc Psychopharmacol. 2016 May;26(4):314-26. doi: 10.1089/cap.2015.0137. Epub 2016 Feb 9.","parent_key":"BE0003536"} {"ref-id":"A184466","pubmed-id":24346747,"citation":"Choi CI, Bae JW, Lee YJ, Lee HI, Jang CG, Lee SY: Effects of CYP2C19 genetic polymorphisms on atomoxetine pharmacokinetics. J Clin Psychopharmacol. 2014 Feb;34(1):139-42. doi: 10.1097/JCP.0b013e3182a608a2.","parent_key":"BE0003536"} {"ref-id":"A182741","pubmed-id":8312688,"citation":"Weber MM, Lang J, Abedinpour F, Zeilberger K, Adelmann B, Engelhardt D: Different inhibitory effect of etomidate and ketoconazole on the human adrenal steroid biosynthesis. Clin Investig. 1993 Nov;71(11):933-8.","parent_key":"BE0000731"} {"ref-id":"A16550","pubmed-id":17487473,"citation":"Hermansson V, Asp V, Bergman A, Bergstrom U, Brandt I: Comparative CYP-dependent binding of the adrenocortical toxicants 3-methylsulfonyl-DDE and o,p'-DDD in Y-1 adrenal cells. Arch Toxicol. 2007 Nov;81(11):793-801. Epub 2007 May 9.","parent_key":"BE0000731"} {"ref-id":"A182750","pubmed-id":20352599,"citation":"Hahner S, Sturmer A, Fassnacht M, Hartmann RW, Schewe K, Cochran S, Zink M, Schirbel A, Allolio B: Etomidate unmasks intraadrenal regulation of steroidogenesis and proliferation in adrenal cortical cell lines. Horm Metab Res. 2010 Jun;42(7):528-34. doi: 10.1055/s-0030-1249629. Epub 2010 Mar 29.","parent_key":"BE0000731"} {"ref-id":"A176180","pubmed-id":12936704,"citation":"Projean D, Morin PE, Tu TM, Ducharme J: Identification of CYP3A4 and CYP2C8 as the major cytochrome P450 s responsible for morphine N-demethylation in human liver microsomes. Xenobiotica. 2003 Aug;33(8):841-54. doi: 10.1080/0049825031000121608 .","parent_key":"BE0002887"} {"ref-id":"A38563","pubmed-id":19761371,"citation":"Daily EB, Aquilante CL: Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics. 2009 Sep;10(9):1489-510. doi: 10.2217/pgs.09.82.","parent_key":"BE0002887"} {"ref-id":"A176180","pubmed-id":12936704,"citation":"Projean D, Morin PE, Tu TM, Ducharme J: Identification of CYP3A4 and CYP2C8 as the major cytochrome P450 s responsible for morphine N-demethylation in human liver microsomes. Xenobiotica. 2003 Aug;33(8):841-54. doi: 10.1080/0049825031000121608 .","parent_key":"BE0002638"} {"ref-id":"A176183","pubmed-id":16204972,"citation":"Takeda S, Ishii Y, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H: Modulation of UDP-glucuronosyltransferase 2B7 function by cytochrome P450s in vitro: differential effects of CYP1A2, CYP2C9 and CYP3A4. Biol Pharm Bull. 2005 Oct;28(10):2026-7.","parent_key":"BE0002638"} {"ref-id":"A38563","pubmed-id":19761371,"citation":"Daily EB, Aquilante CL: Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics. 2009 Sep;10(9):1489-510. doi: 10.2217/pgs.09.82.","parent_key":"BE0002638"} {"ref-id":"A17501","pubmed-id":9010622,"citation":"Coffman BL, Rios GR, King CD, Tephly TR: Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997 Jan;25(1):1-4.","parent_key":"BE0003679"} {"ref-id":"A17502","pubmed-id":15611481,"citation":"Takeda S, Ishii Y, Iwanaga M, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H: Modulation of UDP-glucuronosyltransferase function by cytochrome P450: evidence for the alteration of UGT2B7-catalyzed glucuronidation of morphine by CYP3A4. Mol Pharmacol. 2005 Mar;67(3):665-72. Epub 2004 Dec 20.","parent_key":"BE0003679"} {"ref-id":"A17503","pubmed-id":14746343,"citation":"Yamada H, Ishii K, Ishii Y, Ieiri I, Nishio S, Morioka T, Oguri K: Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci. 2003 Dec;28(5):395-401.","parent_key":"BE0003679"} {"ref-id":"A17504","pubmed-id":20071451,"citation":"Abildskov K, Weldy P, Garland M: Molecular cloning of the baboon UDP-glucuronosyltransferase 2B gene family and their activity in conjugating morphine. Drug Metab Dispos. 2010 Apr;38(4):545-53. doi: 10.1124/dmd.109.030635. Epub 2010 Jan 13.","parent_key":"BE0003679"} {"ref-id":"A17504","pubmed-id":20071451,"citation":"Abildskov K, Weldy P, Garland M: Molecular cloning of the baboon UDP-glucuronosyltransferase 2B gene family and their activity in conjugating morphine. Drug Metab Dispos. 2010 Apr;38(4):545-53. doi: 10.1124/dmd.109.030635. Epub 2010 Jan 13.","parent_key":"BE0003681"} {"ref-id":"A17506","pubmed-id":9616184,"citation":"Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR: Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos. 1998 Jun;26(6):507-12.","parent_key":"BE0003677"} {"ref-id":"A14756","pubmed-id":9834040,"citation":"Arlander E, Ekstrom G, Alm C, Carrillo JA, Bielenstein M, Bottiger Y, Bertilsson L, Gustafsson LL: Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther. 1998 Nov;64(5):484-91.","parent_key":"BE0002433"} {"ref-id":"A182756","pubmed-id":7832304,"citation":"Oda Y, Furuichi K, Tanaka K, Hiroi T, Imaoka S, Asada A, Fujimori M, Funae Y: Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450. Anesthesiology. 1995 Jan;82(1):214-20. doi: 10.1097/00000542-199501000-00026.","parent_key":"BE0003549"} {"ref-id":"A182756","pubmed-id":7832304,"citation":"Oda Y, Furuichi K, Tanaka K, Hiroi T, Imaoka S, Asada A, Fujimori M, Funae Y: Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450. Anesthesiology. 1995 Jan;82(1):214-20. doi: 10.1097/00000542-199501000-00026.","parent_key":"BE0002638"} {"ref-id":"A14757","pubmed-id":10725304,"citation":"Gantenbein M, Attolini L, Bruguerolle B, Villard PH, Puyoou F, Durand A, Lacarelle B, Hardwigsen J, Le-Treut YP: Oxidative metabolism of bupivacaine into pipecolylxylidine in humans is mainly catalyzed by CYP3A. Drug Metab Dispos. 2000 Apr;28(4):383-5.","parent_key":"BE0002638"} {"ref-id":"A14757","pubmed-id":10725304,"citation":"Gantenbein M, Attolini L, Bruguerolle B, Villard PH, Puyoou F, Durand A, Lacarelle B, Hardwigsen J, Le-Treut YP: Oxidative metabolism of bupivacaine into pipecolylxylidine in humans is mainly catalyzed by CYP3A. Drug Metab Dispos. 2000 Apr;28(4):383-5.","parent_key":"BE0003536"} {"ref-id":"A14757","pubmed-id":10725304,"citation":"Gantenbein M, Attolini L, Bruguerolle B, Villard PH, Puyoou F, Durand A, Lacarelle B, Hardwigsen J, Le-Treut YP: Oxidative metabolism of bupivacaine into pipecolylxylidine in humans is mainly catalyzed by CYP3A. Drug Metab Dispos. 2000 Apr;28(4):383-5.","parent_key":"BE0002363"} {"ref-id":"A185042","pubmed-id":16472102,"citation":"Huwyler J, Wright MB, Gutmann H, Drewe J: Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin. Curr Drug Metab. 2006 Feb;7(2):119-26.","parent_key":"BE0002638"} {"ref-id":"A185045","pubmed-id":30447161,"citation":"Dekker SJ, Dohmen F, Vermeulen NPE, Commandeur JNM: Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A-catalysed hydroxylation by sulfaphenazole. Br J Pharmacol. 2019 Feb;176(3):466-477. doi: 10.1111/bph.14548. Epub 2018 Dec 26.","parent_key":"BE0002638"} {"ref-id":"A448","pubmed-id":15963096,"citation":"Korhonen T, Tolonen A, Uusitalo J, Lundgren S, Jalonen J, Laine K: The role of CYP2C and CYP3A in the disposition of 3-keto-desogestrel after administration of desogestrel. Br J Clin Pharmacol. 2005 Jul;60(1):69-75.","parent_key":"BE0002638"} {"ref-id":"A37705","pubmed-id":22057855,"citation":"Wakelee HA, Takimoto CH, Lopez-Anaya A, Chu Q, Middleton G, Dunlop D, Ramlau R, Leighl N, Rowinsky EK, Hao D, Zatloukal P, Jacobs CD, Rodon J: The effect of bexarotene on atorvastatin pharmacokinetics: results from a phase I trial of bexarotene plus chemotherapy in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2012 Feb;69(2):563-71. doi: 10.1007/s00280-011-1772-z. Epub 2011 Nov 6.","parent_key":"BE0002638"} {"ref-id":"A40185","pubmed-id":29805374,"citation":"Maminakis C, Whitman AC, Islam N: Bexarotene-Induced Hypertriglyceridemia: A Case Report. Case Rep Oncol. 2018 Apr 11;11(1):234-238. doi: 10.1159/000488447. eCollection 2018 Jan-Apr.","parent_key":"BE0002638"} {"ref-id":"A38669","pubmed-id":20959500,"citation":"Smith NF, Mani S, Schuetz EG, Yasuda K, Sissung TM, Bates SE, Figg WD, Sparreboom A: Induction of CYP3A4 by vinblastine: Role of the nuclear receptor NR1I2. Ann Pharmacother. 2010 Nov;44(11):1709-17. doi: 10.1345/aph.1P354. Epub 2010 Oct 19.","parent_key":"BE0002638"} {"ref-id":"A38646","pubmed-id":10805060,"citation":"Mamiya K, Hadama A, Yukawa E, Ieiri I, Otsubo K, Ninomiya H, Tashiro N, Higuchi S: CYP2C19 polymorphism effect on phenobarbitone. Pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):821-5.","parent_key":"BE0003536"} {"ref-id":"A184235","pubmed-id":20602621,"citation":"Amini-Shirazi N, Ghahremani MH, Ahmadkhaniha R, Mandegary A, Dadgar A, Abdollahi M, Shadnia S, Pakdaman H, Kebriaeezadeh A: Influence of CYP2C9 polymorphism on metabolism of valproate and its hepatotoxin metabolite in Iranian patients. Toxicol Mech Methods. 2010 Oct;20(8):452-7. doi: 10.3109/15376516.2010.497977.","parent_key":"BE0002793"} {"ref-id":"A38784","pubmed-id":17516991,"citation":"Gunes A, Bilir E, Zengil H, Babaoglu MO, Bozkurt A, Yasar U: Inhibitory effect of valproic acid on cytochrome P450 2C9 activity in epilepsy patients. Basic Clin Pharmacol Toxicol. 2007 Jun;100(6):383-6. doi: 10.1111/j.1742-7843.2007.00061.x.","parent_key":"BE0002793"} {"ref-id":"A38724","pubmed-id":10365650,"citation":"Facciola G, Avenoso A, Scordo MG, Madia AG, Ventimiglia A, Perucca E, Spina E: Small effects of valproic acid on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenic or affective disorders. Ther Drug Monit. 1999 Jun;21(3):341-5.","parent_key":"BE0002433"} {"ref-id":"A38783","pubmed-id":15795555,"citation":"Fleming J, Chetty M: Psychotropic drug interactions with valproate. Clin Neuropharmacol. 2005 Mar-Apr;28(2):96-101.","parent_key":"BE0003536"} {"ref-id":"A36225","pubmed-id":9606477,"citation":"Anderson GD: A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998 May;32(5):554-63. doi: 10.1345/aph.17332.","parent_key":"BE0003536"} {"ref-id":"A38784","pubmed-id":17516991,"citation":"Gunes A, Bilir E, Zengil H, Babaoglu MO, Bozkurt A, Yasar U: Inhibitory effect of valproic acid on cytochrome P450 2C9 activity in epilepsy patients. Basic Clin Pharmacol Toxicol. 2007 Jun;100(6):383-6. doi: 10.1111/j.1742-7843.2007.00061.x.","parent_key":"BE0003536"} {"ref-id":"A38724","pubmed-id":10365650,"citation":"Facciola G, Avenoso A, Scordo MG, Madia AG, Ventimiglia A, Perucca E, Spina E: Small effects of valproic acid on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenic or affective disorders. Ther Drug Monit. 1999 Jun;21(3):341-5.","parent_key":"BE0002638"} {"ref-id":"A18113","pubmed-id":15761113,"citation":"Krishnaswamy S, Hao Q, Al-Rohaimi A, Hesse LM, von Moltke LL, Greenblatt DJ, Court MH: UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J Pharmacol Exp Ther. 2005 Jun;313(3):1340-6. Epub 2005 Mar 10.","parent_key":"BE0003677"} {"ref-id":"A18112","pubmed-id":18838507,"citation":"Argikar UA, Remmel RP: Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos. 2009 Jan;37(1):229-36. doi: 10.1124/dmd.108.022426. Epub 2008 Oct 6.","parent_key":"BE0003677"} {"ref-id":"A18114","pubmed-id":17687269,"citation":"Chung JY, Cho JY, Yu KS, Kim JR, Lim KS, Sohn DR, Shin SG, Jang IJ: Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther. 2008 Apr;83(4):595-600. Epub 2007 Aug 8.","parent_key":"BE0003677"} {"ref-id":"A18114","pubmed-id":17687269,"citation":"Chung JY, Cho JY, Yu KS, Kim JR, Lim KS, Sohn DR, Shin SG, Jang IJ: Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther. 2008 Apr;83(4):595-600. Epub 2007 Aug 8.","parent_key":"BE0003679"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003538"} {"ref-id":"A38903","pubmed-id":14642738,"citation":"Yu LS, Yao TW, Zeng S: In vitro metabolism of zolmitriptan in rat cytochromes induced with beta-naphthoflavone and the interaction between six drugs and zolmitriptan. Chem Biol Interact. 2003 Dec 15;146(3):263-72.","parent_key":"BE0002433"} {"ref-id":"A15027","pubmed-id":10553725,"citation":"Wild MJ, McKillop D, Butters CJ: Determination of the human cytochrome P450 isoforms involved in the metabolism of zolmitriptan. Xenobiotica. 1999 Aug;29(8):847-57.","parent_key":"BE0002433"} {"ref-id":"A37743","pubmed-id":18370509,"citation":"Dixon R, French S, Kemp J, Sellers M, Yates R: The metabolism of zolmitriptan: effects of an inducer and an inhibitor of cytochrome p450 on its pharmacokinetics in healthy volunteers. Clin Drug Investig. 1998;15(6):515-22.","parent_key":"BE0002433"} {"ref-id":"A15225","pubmed-id":11095574,"citation":"Dong H, Haining RL, Thummel KE, Rettie AE, Nelson SD: Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab Dispos. 2000 Dec;28(12):1397-400.","parent_key":"BE0003533"} {"ref-id":"A176372","pubmed-id":10741631,"citation":"Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT: Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000 Mar;67(3):275-82. doi: 10.1067/mcp.2000.104736.","parent_key":"BE0003533"} {"ref-id":"A14760","pubmed-id":2729995,"citation":"Raucy JL, Lasker JM, Lieber CS, Black M: Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys. 1989 Jun;271(2):270-83.","parent_key":"BE0002433"} {"ref-id":"A39037","pubmed-id":8374050,"citation":"Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ, Guengerich FP, Yang CS: Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol. 1993 Jul-Aug;6(4):511-8.","parent_key":"BE0002433"} {"ref-id":"A39038","pubmed-id":7956731,"citation":"Li Y, Wang E, Patten CJ, Chen L, Yang CS: Effects of flavonoids on cytochrome P450-dependent acetaminophen metabolism in rats and human liver microsomes. Drug Metab Dispos. 1994 Jul-Aug;22(4):566-71.","parent_key":"BE0002433"} {"ref-id":"A39039","pubmed-id":8474022,"citation":"Tassaneeyakul W, Birkett DJ, Veronese ME, McManus ME, Tukey RH, Quattrochi LC, Gelboin HV, Miners JO: Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2. J Pharmacol Exp Ther. 1993 Apr;265(1):401-7.","parent_key":"BE0002433"} {"ref-id":"A35815","pubmed-id":26049587,"citation":"Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE: PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015 Aug;25(8):416-26. doi: 10.1097/FPC.0000000000000150.","parent_key":"BE0002433"} {"ref-id":"A38747","pubmed-id":11811955,"citation":"Feierman DE, Melnikov Z, Zhang J: The paradoxical effect of acetaminophen on CYP3A4 activity and content in transfected HepG2 cells. Arch Biochem Biophys. 2002 Feb 1;398(1):109-17. doi: 10.1006/abbi.2001.2677.","parent_key":"BE0002638"} {"ref-id":"A176384","pubmed-id":28872689,"citation":"Cao L, Kwara A, Greenblatt DJ: Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772. doi: 10.1111/jphp.12812. Epub 2017 Sep 5.","parent_key":"BE0002638"} {"ref-id":"A184928","pubmed-id":19219744,"citation":"Laine JE, Auriola S, Pasanen M, Juvonen RO: Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica. 2009 Jan;39(1):11-21. doi: 10.1080/00498250802512830 .","parent_key":"BE0002638"} {"ref-id":"A15225","pubmed-id":11095574,"citation":"Dong H, Haining RL, Thummel KE, Rettie AE, Nelson SD: Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab Dispos. 2000 Dec;28(12):1397-400.","parent_key":"BE0002363"} {"ref-id":"A176384","pubmed-id":28872689,"citation":"Cao L, Kwara A, Greenblatt DJ: Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772. doi: 10.1111/jphp.12812. Epub 2017 Sep 5.","parent_key":"BE0002363"} {"ref-id":"A176384","pubmed-id":28872689,"citation":"Cao L, Kwara A, Greenblatt DJ: Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772. doi: 10.1111/jphp.12812. Epub 2017 Sep 5.","parent_key":"BE0003336"} {"ref-id":"A33185","pubmed-id":27147854,"citation":"Kalsi SS, Wood DM, Waring WS, Dargan PI: Does cytochrome P450 liver isoenzyme induction increase the risk of liver toxicity after paracetamol overdose? Open Access Emerg Med. 2011 Oct 13;3:69-76. doi: 10.2147/OAEM.S24962. eCollection 2011.","parent_key":"BE0003336"} {"ref-id":"A18001","pubmed-id":11714888,"citation":"Court MH, Duan SX, von Moltke LL, Greenblatt DJ, Patten CJ, Miners JO, Mackenzie PI: Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther. 2001 Dec;299(3):998-1006.","parent_key":"BE0003538"} {"ref-id":"A38232","pubmed-id":29654492,"citation":"Linakis MW, Cook SF, Kumar SS, Liu X, Wilkins DG, Gaedigk R, Gaedigk A, Sherwin CMT, van den Anker JN: Polymorphic Expression of UGT1A9 is Associated with Variable Acetaminophen Glucuronidation in Neonates: A Population Pharmacokinetic and Pharmacogenetic Study. Clin Pharmacokinet. 2018 Apr 13. pii: 10.1007/s40262-018-0634-9. doi: 10.1007/s40262-018-0634-9.","parent_key":"BE0003538"} {"ref-id":"A36633","pubmed-id":24713129,"citation":"Filppula AM, Neuvonen PJ, Backman JT: In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors. Drug Metab Dispos. 2014 Jul;42(7):1202-9. doi: 10.1124/dmd.114.057695. Epub 2014 Apr 8.","parent_key":"BE0002638"} {"ref-id":"A183758","pubmed-id":22111840,"citation":"Alfieri RR, Galetti M, Tramonti S, Andreoli R, Mozzoni P, Cavazzoni A, Bonelli M, Fumarola C, La Monica S, Galvani E, De Palma G, Mutti A, Mor M, Tiseo M, Mari E, Ardizzoni A, Petronini PG: Metabolism of the EGFR tyrosin kinase inhibitor gefitinib by cytochrome P450 1A1 enzyme in EGFR-wild type non small cell lung cancer cell lines. Mol Cancer. 2011 Nov 23;10:143. doi: 10.1186/1476-4598-10-143.","parent_key":"BE0002638"} {"ref-id":"A39290","pubmed-id":16719544,"citation":"Swaisland HC, Cantarini MV, Fuhr R, Holt A: Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin Pharmacokinet. 2006;45(6):633-44. doi: 10.2165/00003088-200645060-00006.","parent_key":"BE0002363"} {"ref-id":"A39291","pubmed-id":16176119,"citation":"Swaisland HC, Ranson M, Smith RP, Leadbetter J, Laight A, McKillop D, Wild MJ: Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol. Clin Pharmacokinet. 2005;44(10):1067-81. doi: 10.2165/00003088-200544100-00005.","parent_key":"BE0002363"} {"ref-id":"A184313","pubmed-id":23207012,"citation":"Suzumura T, Kimura T, Kudoh S, Umekawa K, Nagata M, Matsuura K, Tanaka H, Mitsuoka S, Yoshimura N, Kira Y, Nakai T, Hirata K: Reduced CYP2D6 function is associated with gefitinib-induced rash in patients with non-small cell lung cancer. BMC Cancer. 2012 Dec 4;12:568. doi: 10.1186/1471-2407-12-568.","parent_key":"BE0002363"} {"ref-id":"A184316","pubmed-id":23664723,"citation":"Takimoto T, Kijima T, Otani Y, Nonen S, Namba Y, Mori M, Yokota S, Minami S, Komuta K, Uchida J, Imamura F, Furukawa M, Tsuruta N, Fujio Y, Azuma J, Tachibana I, Kumanogoh A: Polymorphisms of CYP2D6 gene and gefitinib-induced hepatotoxicity. Clin Lung Cancer. 2013 Sep;14(5):502-7. doi: 10.1016/j.cllc.2013.03.003. Epub 2013 May 9.","parent_key":"BE0002363"} {"ref-id":"A14826","pubmed-id":17575239,"citation":"Li J, Zhao M, He P, Hidalgo M, Baker SD: Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007 Jun 15;13(12):3731-7.","parent_key":"BE0002362"} {"ref-id":"A14826","pubmed-id":17575239,"citation":"Li J, Zhao M, He P, Hidalgo M, Baker SD: Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007 Jun 15;13(12):3731-7.","parent_key":"BE0003543"} {"ref-id":"A14761","pubmed-id":19817501,"citation":"Zhou SF: Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet. 2009;48(11):689-723. doi: 10.2165/11318030-000000000-00000.","parent_key":"BE0002363"} {"ref-id":"A34242","pubmed-id":15304429,"citation":"Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE: Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8. doi: 10.1124/dmd.104.000794. Epub 2004 Aug 10.","parent_key":"BE0002638"} {"ref-id":"A39247","pubmed-id":9143866,"citation":"Yue QY, Sawe J: Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol. 1997;52(1):41-7.","parent_key":"BE0002638"} {"ref-id":"A175114","pubmed-id":20484152,"citation":"Raungrut P, Uchaipichat V, Elliot DJ, Janchawee B, Somogyi AA, Miners JO: In vitro-in vivo extrapolation predicts drug-drug interactions arising from inhibition of codeine glucuronidation by dextropropoxyphene, fluconazole, ketoconazole, and methadone in humans. J Pharmacol Exp Ther. 2010 Aug;334(2):609-18. doi: 10.1124/jpet.110.167916. Epub 2010 May 18.","parent_key":"BE0003681"} {"ref-id":"A175117","pubmed-id":22092298,"citation":"Gelston EA, Coller JK, Lopatko OV, James HM, Schmidt H, White JM, Somogyi AA: Methadone inhibits CYP2D6 and UGT2B7/2B4 in vivo: a study using codeine in methadone- and buprenorphine-maintained subjects. Br J Clin Pharmacol. 2012 May;73(5):786-94. doi: 10.1111/j.1365-2125.2011.04145.x.","parent_key":"BE0003681"} {"ref-id":"A15708","pubmed-id":12583687,"citation":"Moubarak AS, Rosenkrans CF Jr, Johnson ZB: Modulation of cytochrome P450 metabolism by ergonovine and dihydroergotamine. Vet Hum Toxicol. 2003 Feb;45(1):6-9.","parent_key":"BE0002638"} {"ref-id":"A39187","pubmed-id":17948937,"citation":"Zhou Q, Yan XF, Zhang ZM, Pan WS, Zeng S: Rational prescription of drugs within similar therapeutic or structural class for gastrointestinal disease treatment: drug metabolism and its related interactions. World J Gastroenterol. 2007 Nov 14;13(42):5618-28.","parent_key":"BE0002638"} {"ref-id":"A14763","pubmed-id":18359012,"citation":"Wen B, Ma L, Zhu M: Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Chem Biol Interact. 2008 May 9;173(1):59-67. doi: 10.1016/j.cbi.2008.02.001. Epub 2008 Feb 14.","parent_key":"BE0002363"} {"ref-id":"A15179","pubmed-id":9131945,"citation":"Ghahramani P, Ellis SW, Lennard MS, Ramsay LE, Tucker GT: Cytochromes P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol. 1997 Feb;43(2):137-44.","parent_key":"BE0002363"} {"ref-id":"A14764","pubmed-id":11259560,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.","parent_key":"BE0002363"} {"ref-id":"A14763","pubmed-id":18359012,"citation":"Wen B, Ma L, Zhu M: Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Chem Biol Interact. 2008 May 9;173(1):59-67. doi: 10.1016/j.cbi.2008.02.001. Epub 2008 Feb 14.","parent_key":"BE0002433"} {"ref-id":"A14764","pubmed-id":11259560,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.","parent_key":"BE0002433"} {"ref-id":"A174916","pubmed-id":28344482,"citation":"Arici M, Ozhan G: The genetic profiles of CYP1A1, CYP1A2 and CYP2E1 enzymes as susceptibility factor in xenobiotic toxicity in Turkish population. Saudi Pharm J. 2017 Feb;25(2):294-297. doi: 10.1016/j.jsps.2016.06.001. Epub 2016 Jun 16.","parent_key":"BE0002433"} {"ref-id":"A15127","pubmed-id":12228186,"citation":"Shin JG, Park JY, Kim MJ, Shon JH, Yoon YR, Cha IJ, Lee SS, Oh SW, Kim SW, Flockhart DA: Inhibitory effects of tricyclic antidepressants (TCAs) on human cytochrome P450 enzymes in vitro: mechanism of drug interaction between TCAs and phenytoin. Drug Metab Dispos. 2002 Oct;30(10):1102-7.","parent_key":"BE0003536"} {"ref-id":"A14764","pubmed-id":11259560,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.","parent_key":"BE0003536"} {"ref-id":"A174919","pubmed-id":28296334,"citation":"Ryu S, Park S, Lee JH, Kim YR, Na HS, Lim HS, Choi HY, Hwang IY, Lee JG, Park ZW, Oh WY, Kim JM, Choi SE: A Study on CYP2C19 and CYP2D6 Polymorphic Effects on Pharmacokinetics and Pharmacodynamics of Amitriptyline in Healthy Koreans. Clin Transl Sci. 2017 Mar;10(2):93-101. doi: 10.1111/cts.12451. Epub 2017 Mar 14.","parent_key":"BE0003536"} {"ref-id":"A15179","pubmed-id":9131945,"citation":"Ghahramani P, Ellis SW, Lennard MS, Ramsay LE, Tucker GT: Cytochromes P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol. 1997 Feb;43(2):137-44.","parent_key":"BE0002793"} {"ref-id":"A174922","pubmed-id":24492587,"citation":"Attia TZ, Yamashita T, Hammad MA, Hayasaki A, Sato T, Miyamoto M, Yasuhara Y, Nakamura T, Kagawa Y, Tsujino H, Omar MA, Abdelmageed OH, Derayea SM, Uno T: Effect of cytochrome P450 2C19 and 2C9 amino acid residues 72 and 241 on metabolism of tricyclic antidepressant drugs. Chem Pharm Bull (Tokyo). 2014;62(2):176-81.","parent_key":"BE0002793"} {"ref-id":"A38686","pubmed-id":9399333,"citation":"Olesen OV, Linnet K: Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology. 1997 Nov;55(5):235-43. doi: 10.1159/000139533.","parent_key":"BE0002793"} {"ref-id":"A14763","pubmed-id":18359012,"citation":"Wen B, Ma L, Zhu M: Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Chem Biol Interact. 2008 May 9;173(1):59-67. doi: 10.1016/j.cbi.2008.02.001. Epub 2008 Feb 14.","parent_key":"BE0002638"} {"ref-id":"A15179","pubmed-id":9131945,"citation":"Ghahramani P, Ellis SW, Lennard MS, Ramsay LE, Tucker GT: Cytochromes P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol. 1997 Feb;43(2):137-44.","parent_key":"BE0002638"} {"ref-id":"A14764","pubmed-id":11259560,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.","parent_key":"BE0002638"} {"ref-id":"A14763","pubmed-id":18359012,"citation":"Wen B, Ma L, Zhu M: Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Chem Biol Interact. 2008 May 9;173(1):59-67. doi: 10.1016/j.cbi.2008.02.001. Epub 2008 Feb 14.","parent_key":"BE0002362"} {"ref-id":"A14764","pubmed-id":11259560,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.","parent_key":"BE0003549"} {"ref-id":"A174925","pubmed-id":18537573,"citation":"Ekins S, Iyer M, Krasowski MD, Kharasch ED: Molecular characterization of CYP2B6 substrates. Curr Drug Metab. 2008 Jun;9(5):363-73.","parent_key":"BE0003549"} {"ref-id":"A14764","pubmed-id":11259560,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.","parent_key":"BE0002887"} {"ref-id":"A174928","pubmed-id":15606441,"citation":"Martinez C, Garcia-Martin E, Blanco G, Gamito FJ, Ladero JM, Agundez JA: The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects. Br J Clin Pharmacol. 2005 Jan;59(1):62-9. doi: 10.1111/j.1365-2125.2004.02183.x.","parent_key":"BE0002887"} {"ref-id":"A174931","pubmed-id":20190184,"citation":"Naraharisetti SB, Lin YS, Rieder MJ, Marciante KD, Psaty BM, Thummel KE, Totah RA: Human liver expression of CYP2C8: gender, age, and genotype effects. Drug Metab Dispos. 2010 Jun;38(6):889-93. doi: 10.1124/dmd.109.031542. Epub 2010 Feb 26.","parent_key":"BE0002887"} {"ref-id":"A33219","pubmed-id":16445595,"citation":"Gunes A, Coskun U, Boruban C, Gunel N, Babaoglu MO, Sencan O, Bozkurt A, Rane A, Hassan M, Zengil H, Yasar U: Inhibitory effect of 5-fluorouracil on cytochrome P450 2C9 activity in cancer patients. Basic Clin Pharmacol Toxicol. 2006 Feb;98(2):197-200. doi: 10.1111/j.1742-7843.2006.pto_304.x.","parent_key":"BE0002793"} {"ref-id":"A33222","pubmed-id":10473927,"citation":"Brown MC: An adverse interaction between warfarin and 5-fluorouracil: A case report and review of the literature. Chemotherapy. 1999 Sep-Oct;45(5):392-5. doi: 10.1159/000007230.","parent_key":"BE0002793"} {"ref-id":"A33223","pubmed-id":11724084,"citation":"Gilbar PJ, Brodribb TR: Phenytoin and fluorouracil interaction. Ann Pharmacother. 2001 Nov;35(11):1367-70. doi: 10.1345/aph.1A051.","parent_key":"BE0002793"} {"ref-id":"A33224","pubmed-id":15452381,"citation":"Karadag O, Babaoglu MO, Altundag K, Elkiran T, Yasar U, Bozkurt A: 5-Fluorouracil-induced coronary spasm: may inhibition of hyperpolarization factors produced by CYP2C enzymes be the cause? Oncology. 2004;66(6):510-1. doi: 10.1159/000079506.","parent_key":"BE0002793"} {"ref-id":"A39477","pubmed-id":10806608,"citation":"Jorga KM, Fotteler B, Gasser R, Banken L, Birnboeck H: Lack of interaction between tolcapone and tolbutamide in healthy volunteers. J Clin Pharmacol. 2000 May;40(5):544-51.","parent_key":"BE0002793"} {"ref-id":"A14738","pubmed-id":12167569,"citation":"El-Sankary W, Bombail V, Gibson GG, Plant N: Glucocorticoid-mediated induction of CYP3A4 is decreased by disruption of a protein: DNA interaction distinct from the pregnane X receptor response element. Drug Metab Dispos. 2002 Sep;30(9):1029-34.","parent_key":"BE0002638"} {"ref-id":"A182768","pubmed-id":8170947,"citation":"Stadler J, Trockfeld J, Schmalix WA, Brill T, Siewert JR, Greim H, Doehmer J: Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3559-63. doi: 10.1073/pnas.91.9.3559.","parent_key":"BE0003543"} {"ref-id":"A39478","pubmed-id":15268978,"citation":"Benetton SA, Borges VM, Chang TK, McErlane KM: Role of individual human cytochrome P450 enzymes in the in vitro metabolism of hydromorphone. Xenobiotica. 2004 Apr;34(4):335-44. doi: 10.1080/00498250310001657559 .","parent_key":"BE0002793"} {"ref-id":"A38368","pubmed-id":23218233,"citation":"Gudin J: Opioid therapies and cytochrome p450 interactions. J Pain Symptom Manage. 2012 Dec;44(6 Suppl):S4-14. doi: 10.1016/j.jpainsymman.2012.08.013.","parent_key":"BE0003677"} {"ref-id":"A176501","pubmed-id":21999760,"citation":"Overholser BR, Foster DR: Opioid pharmacokinetic drug-drug interactions. Am J Manag Care. 2011 Sep;17 Suppl 11:S276-87.","parent_key":"BE0003679"} {"ref-id":"A38368","pubmed-id":23218233,"citation":"Gudin J: Opioid therapies and cytochrome p450 interactions. J Pain Symptom Manage. 2012 Dec;44(6 Suppl):S4-14. doi: 10.1016/j.jpainsymman.2012.08.013.","parent_key":"BE0003679"} {"ref-id":"A15207","pubmed-id":17245571,"citation":"Mano Y, Usui T, Kamimura H: Contribution of UDP-glucuronosyltransferases 1A9 and 2B7 to the glucuronidation of indomethacin in the human liver. Eur J Clin Pharmacol. 2007 Mar;63(3):289-96. Epub 2007 Jan 24.","parent_key":"BE0003538"} {"ref-id":"A15207","pubmed-id":17245571,"citation":"Mano Y, Usui T, Kamimura H: Contribution of UDP-glucuronosyltransferases 1A9 and 2B7 to the glucuronidation of indomethacin in the human liver. Eur J Clin Pharmacol. 2007 Mar;63(3):289-96. Epub 2007 Jan 24.","parent_key":"BE0003679"} {"ref-id":"A17507","pubmed-id":17200831,"citation":"Mano Y, Usui T, Kamimura H: Inhibitory potential of nonsteroidal anti-inflammatory drugs on UDP-glucuronosyltransferase 2B7 in human liver microsomes. Eur J Clin Pharmacol. 2007 Feb;63(2):211-6. Epub 2007 Jan 3.","parent_key":"BE0003679"} {"ref-id":"A14766","pubmed-id":15371986,"citation":"Kharasch ED, Hoffer C, Whittington D, Sheffels P: Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther. 2004 Sep;76(3):250-69.","parent_key":"BE0002638"} {"ref-id":"A38710","pubmed-id":11318772,"citation":"Boulton DW, Arnaud P, DeVane CL: A single dose of methadone inhibits cytochrome P-4503A activity in healthy volunteers as assessed by the urinary cortisol ratio. Br J Clin Pharmacol. 2001 Apr;51(4):350-4.","parent_key":"BE0002638"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0002638"} {"ref-id":"A38637","pubmed-id":27199033,"citation":"Lan T, Yuan LJ, Hu XX, Zhou Q, Wang J, Huang XX, Dai DP, Cai JP, Hu GX: Effects of CYP2C19 variants on methadone metabolism in vitro. Drug Test Anal. 2017 Apr;9(4):634-639. doi: 10.1002/dta.1997. Epub 2016 May 19.","parent_key":"BE0003536"} {"ref-id":"A184127","pubmed-id":24016178,"citation":"Wang SC, Ho IK, Tsou HH, Liu SW, Hsiao CF, Chen CH, Tan HK, Lin L, Wu CS, Su LW, Huang CL, Yang YH, Liu ML, Lin KM, Liu SC, Wu HY, Kuo HW, Chen AC, Chang YS, Liu YL: Functional genetic polymorphisms in CYP2C19 gene in relation to cardiac side effects and treatment dose in a methadone maintenance cohort. OMICS. 2013 Oct;17(10):519-26. doi: 10.1089/omi.2012.0068. Epub 2013 Sep 9.","parent_key":"BE0003536"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0003536"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0003612"} {"ref-id":"A181346","pubmed-id":8448065,"citation":"Wu D, Otton SV, Sproule BA, Busto U, Inaba T, Kalow W, Sellers EM: Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone. Br J Clin Pharmacol. 1993 Jan;35(1):30-4. doi: 10.1111/j.1365-2125.1993.tb05666.x.","parent_key":"BE0002363"} {"ref-id":"A175117","pubmed-id":22092298,"citation":"Gelston EA, Coller JK, Lopatko OV, James HM, Schmidt H, White JM, Somogyi AA: Methadone inhibits CYP2D6 and UGT2B7/2B4 in vivo: a study using codeine in methadone- and buprenorphine-maintained subjects. Br J Clin Pharmacol. 2012 May;73(5):786-94. doi: 10.1111/j.1365-2125.2011.04145.x.","parent_key":"BE0002363"} {"ref-id":"A181349","pubmed-id":22369095,"citation":"Coller JK, Michalakas JR, James HM, Farquharson AL, Colvill J, White JM, Somogyi AA: Inhibition of CYP2D6-mediated tramadol O-demethylation in methadone but not buprenorphine maintenance patients. Br J Clin Pharmacol. 2012 Nov;74(5):835-41. doi: 10.1111/j.1365-2125.2012.04256.x.","parent_key":"BE0002363"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0002363"} {"ref-id":"A14766","pubmed-id":15371986,"citation":"Kharasch ED, Hoffer C, Whittington D, Sheffels P: Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther. 2004 Sep;76(3):250-69.","parent_key":"BE0003549"} {"ref-id":"A34546","pubmed-id":19567715,"citation":"Smith HS: Opioid metabolism. Mayo Clin Proc. 2009 Jul;84(7):613-24. doi: 10.1016/S0025-6196(11)60750-7.","parent_key":"BE0003549"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0003549"} {"ref-id":"A184130","pubmed-id":12756206,"citation":"Wang JS, DeVane CL: Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab Dispos. 2003 Jun;31(6):742-7. doi: 10.1124/dmd.31.6.742.","parent_key":"BE0002887"} {"ref-id":"A184133","pubmed-id":28263461,"citation":"Kharasch ED: Current Concepts in Methadone Metabolism and Transport. Clin Pharmacol Drug Dev. 2017 Mar;6(2):125-134. doi: 10.1002/cpdd.326.","parent_key":"BE0002887"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0002887"} {"ref-id":"A35816","pubmed-id":15501692,"citation":"Ferrari A, Coccia CP, Bertolini A, Sternieri E: Methadone--metabolism, pharmacokinetics and interactions. Pharmacol Res. 2004 Dec;50(6):551-9. doi: 10.1016/j.phrs.2004.05.002.","parent_key":"BE0002433"} {"ref-id":"A39014","pubmed-id":12900870,"citation":"Prost F, Thormann W: Capillary electrophoresis to assess drug metabolism induced in vitro using single CYP450 enzymes (Supersomes): application to the chiral metabolism of mephenytoin and methadone. Electrophoresis. 2003 Aug;24(15):2577-87. doi: 10.1002/elps.200305493.","parent_key":"BE0002433"} {"ref-id":"A40113","pubmed-id":22035341,"citation":"Kapur BM, Hutson JR, Chibber T, Luk A, Selby P: Methadone: a review of drug-drug and pathophysiological interactions. Crit Rev Clin Lab Sci. 2011 Jul-Aug;48(4):171-95. doi: 10.3109/10408363.2011.620601.","parent_key":"BE0002433"} {"ref-id":"A40113","pubmed-id":22035341,"citation":"Kapur BM, Hutson JR, Chibber T, Luk A, Selby P: Methadone: a review of drug-drug and pathophysiological interactions. Crit Rev Clin Lab Sci. 2011 Jul-Aug;48(4):171-95. doi: 10.3109/10408363.2011.620601.","parent_key":"BE0002793"} {"ref-id":"A185234","pubmed-id":30205091,"citation":"Volpe DA, Xu Y, Sahajwalla CG, Younis IR, Patel V: Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J Pharm Sci. 2018 Dec;107(12):2983-2991. doi: 10.1016/j.xphs.2018.08.025. Epub 2018 Sep 8.","parent_key":"BE0002793"} {"ref-id":"A14767","pubmed-id":10511917,"citation":"Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM: Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999 Sep;37(3):177-93.","parent_key":"BE0002433"} {"ref-id":"A177014","pubmed-id":30422498,"citation":"Thomas K, Saadabadi A: Olanzapine .","parent_key":"BE0002433"} {"ref-id":"A14767","pubmed-id":10511917,"citation":"Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM: Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999 Sep;37(3):177-93.","parent_key":"BE0002363"} {"ref-id":"A177014","pubmed-id":30422498,"citation":"Thomas K, Saadabadi A: Olanzapine .","parent_key":"BE0002363"} {"ref-id":"A184202","pubmed-id":11704898,"citation":"Rao ML, Hiemke C, Grasmader K, Baumann P: [Olanzapine: pharmacology, pharmacokinetics and therapeutic drug monitoring]. Fortschr Neurol Psychiatr. 2001 Nov;69(11):510-7. doi: 10.1055/s-2001-18381.","parent_key":"BE0002363"} {"ref-id":"A14767","pubmed-id":10511917,"citation":"Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM: Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999 Sep;37(3):177-93.","parent_key":"BE0003606"} {"ref-id":"A38742","pubmed-id":8866916,"citation":"Ring BJ, Binkley SN, Vandenbranden M, Wrighton SA: In vitro interaction of the antipsychotic agent olanzapine with human cytochromes P450 CYP2C9, CYP2C19, CYP2D6 and CYP3A. Br J Clin Pharmacol. 1996 Mar;41(3):181-6.","parent_key":"BE0003536"} {"ref-id":"A38742","pubmed-id":8866916,"citation":"Ring BJ, Binkley SN, Vandenbranden M, Wrighton SA: In vitro interaction of the antipsychotic agent olanzapine with human cytochromes P450 CYP2C9, CYP2C19, CYP2D6 and CYP3A. Br J Clin Pharmacol. 1996 Mar;41(3):181-6.","parent_key":"BE0002638"} {"ref-id":"A184700","pubmed-id":23476805,"citation":"Gervasini G, Caballero MJ, Carrillo JA, Benitez J: Comparative cytochrome p450 in vitro inhibition by atypical antipsychotic drugs. ISRN Pharmacol. 2013;2013:792456. doi: 10.1155/2013/792456. Epub 2013 Feb 13.","parent_key":"BE0002638"} {"ref-id":"A38742","pubmed-id":8866916,"citation":"Ring BJ, Binkley SN, Vandenbranden M, Wrighton SA: In vitro interaction of the antipsychotic agent olanzapine with human cytochromes P450 CYP2C9, CYP2C19, CYP2D6 and CYP3A. Br J Clin Pharmacol. 1996 Mar;41(3):181-6.","parent_key":"BE0004866"} {"ref-id":"A184700","pubmed-id":23476805,"citation":"Gervasini G, Caballero MJ, Carrillo JA, Benitez J: Comparative cytochrome p450 in vitro inhibition by atypical antipsychotic drugs. ISRN Pharmacol. 2013;2013:792456. doi: 10.1155/2013/792456. Epub 2013 Feb 13.","parent_key":"BE0004866"} {"ref-id":"A15035","pubmed-id":952514,"citation":"Tatsumi K, Kitamura S, Yoshimura H: Reduction of nitrofuran derivatives by xanthine oxidase and microsomes. Isolation and identification of reduction products. Arch Biochem Biophys. 1976 Jul;175(1):131-7.","parent_key":"BE0002204"} {"ref-id":"A15036","pubmed-id":6585203,"citation":"Kutcher WW, McCalla DR: Aerobic reduction of 5-nitro-2-furaldehyde semicarbazone by rat liver xanthine dehydrogenase. Biochem Pharmacol. 1984 Mar 1;33(5):799-805.","parent_key":"BE0002204"} {"ref-id":"A17817","pubmed-id":16467136,"citation":"Zollinger M, Waldmeier F, Hartmann S, Zenke G, Zimmerlin AG, Glaenzel U, Baldeck JP, Schweitzer A, Berthier S, Moenius T, Grassberger MA: Pimecrolimus: absorption, distribution, metabolism, and excretion in healthy volunteers after a single oral dose and supplementary investigations in vitro. Drug Metab Dispos. 2006 May;34(5):765-74. Epub 2006 Feb 7.","parent_key":"BE0002638"} {"ref-id":"A34597","pubmed-id":11020135,"citation":"Kuper JI, D'Aprile M: Drug-Drug interactions of clinical significance in the treatment of patients with Mycobacterium avium complex disease. Clin Pharmacokinet. 2000 Sep;39(3):203-14. doi: 10.2165/00003088-200039030-00003.","parent_key":"BE0002638"} {"ref-id":"A37356","pubmed-id":10611146,"citation":"Harvey JL, Paine AJ, Maurel P, Wright MC: Effect of the adrenal 11-beta-hydroxylase inhibitor metyrapone on human hepatic cytochrome P-450 expression: induction of cytochrome P-450 3A4. Drug Metab Dispos. 2000 Jan;28(1):96-101.","parent_key":"BE0003543"} {"ref-id":"A37374","pubmed-id":10445394,"citation":"Kikuchi H, Hossain A: Signal transduction-mediated CYP1A1 induction by omeprazole in human HepG2 cells. Exp Toxicol Pathol. 1999 Jul;51(4-5):342-6. doi: 10.1016/S0940-2993(99)80018-9.","parent_key":"BE0003543"} {"ref-id":"A37421","pubmed-id":18549670,"citation":"Lee DY, Jung YS, Shin HS, Lee I, Kim YC, Lee MG: Faster clearance of omeprazole in rats with acute renal failure induced by uranyl nitrate: contribution of increased expression of hepatic cytochrome P450 (CYP) 3A1 and intestinal CYP1A and 3A subfamilies. J Pharm Pharmacol. 2008 Jul;60(7):843-51. doi: 10.1211/jpp.60.7.0005.","parent_key":"BE0003543"} {"ref-id":"A37457","pubmed-id":12806570,"citation":"Frick A, Kopitz J, Bergemann N: Omeprazole reduces clozapine plasma concentrations. A case report. Pharmacopsychiatry. 2003 May;36(3):121-3. doi: 10.1055/s-2003-39980.","parent_key":"BE0002433"} {"ref-id":"A21048","pubmed-id":12623754,"citation":"Krusekopf S, Roots I, Hildebrandt AG, Kleeberg U: Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+ -ATPase inhibitors and other xenobiotics. Xenobiotica. 2003 Feb;33(2):107-18.","parent_key":"BE0002433"} {"ref-id":"A37469","pubmed-id":16248835,"citation":"Zhou Q, Zhou S, Chan E: Effect of omeprazole on the hydroxylation of warfarin enantiomers in human: in-vitro studies with liver microsomes and cDNA-expressed cytochrome P450 isozymes. Curr Drug Metab. 2005 Oct;6(5):399-411.","parent_key":"BE0002433"} {"ref-id":"A37470","pubmed-id":12445035,"citation":"Han XM, Ouyang DS, Chen XP, Shu Y, Jiang CH, Tan ZR, Zhou HH: Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br J Clin Pharmacol. 2002 Nov;54(5):540-3.","parent_key":"BE0002433"} {"ref-id":"A37472","pubmed-id":10584979,"citation":"Rost KL, Fuhr U, Thomsen T, Zaigler M, Brockmoller J, Bohnemeier H, Roots I: Omeprazole weakly inhibits CYP1A2 activity in man. Int J Clin Pharmacol Ther. 1999 Nov;37(11):567-74.","parent_key":"BE0002433"} {"ref-id":"A39101","pubmed-id":1505152,"citation":"Rost KL, Brosicke H, Brockmoller J, Scheffler M, Helge H, Roots I: Increase of cytochrome P450IA2 activity by omeprazole: evidence by the 13C-[N-3-methyl]-caffeine breath test in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther. 1992 Aug;52(2):170-80.","parent_key":"BE0002433"} {"ref-id":"A39102","pubmed-id":1280125,"citation":"Daujat M, Peryt B, Lesca P, Fourtanier G, Domergue J, Maurel P: Omeprazole, an inducer of human CYP1A1 and 1A2, is not a ligand for the Ah receptor. Biochem Biophys Res Commun. 1992 Oct 30;188(2):820-5.","parent_key":"BE0002433"} {"ref-id":"A21048","pubmed-id":12623754,"citation":"Krusekopf S, Roots I, Hildebrandt AG, Kleeberg U: Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+ -ATPase inhibitors and other xenobiotics. Xenobiotica. 2003 Feb;33(2):107-18.","parent_key":"BE0001111"} {"ref-id":"A37474","pubmed-id":8894508,"citation":"Karam WG, Goldstein JA, Lasker JM, Ghanayem BI: Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Drug Metab Dispos. 1996 Oct;24(10):1081-7.","parent_key":"BE0002887"} {"ref-id":"A14960","pubmed-id":9578596,"citation":"Lasker JM, Wester MR, Aramsombatdee E, Raucy JL: Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys. 1998 May 1;353(1):16-28.","parent_key":"BE0002793"} {"ref-id":"A39429","pubmed-id":27199745,"citation":"Du H, Wei Z, Yan Y, Xiong Y, Zhang X, Shen L, Ruan Y, Wu X, Xu Q, He L, Qin S: Functional Characterization of Human CYP2C9 Allelic Variants in COS-7 Cells. Front Pharmacol. 2016 Apr 25;7:98. doi: 10.3389/fphar.2016.00098. eCollection 2016.","parent_key":"BE0002793"} {"ref-id":"A37504","pubmed-id":11334262,"citation":"Furuta S, Kamada E, Suzuki T, Sugimoto T, Kawabata Y, Shinozaki Y, Sano H: Inhibition of drug metabolism in human liver microsomes by nizatidine, cimetidine and omeprazole. Xenobiotica. 2001 Jan;31(1):1-10. doi: 10.1080/00498250110035615.","parent_key":"BE0002363"} {"ref-id":"A14770","pubmed-id":15258107,"citation":"Li XQ, Andersson TB, Ahlstrom M, Weidolf L: Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004 Aug;32(8):821-7.","parent_key":"BE0002363"} {"ref-id":"A14771","pubmed-id":16093273,"citation":"Li XQ, Weidolf L, Simonsson R, Andersson TB: Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4. J Pharmacol Exp Ther. 2005 Nov;315(2):777-87. Epub 2005 Aug 10.","parent_key":"BE0002638"} {"ref-id":"A14987","pubmed-id":8423765,"citation":"Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer HK: Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol. 1993 Jan;43(1):120-6.","parent_key":"BE0002638"} {"ref-id":"A15285","pubmed-id":15626586,"citation":"Turpeinen M, Uusitalo J, Jalonen J, Pelkonen O: Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. Eur J Pharm Sci. 2005 Jan;24(1):123-32.","parent_key":"BE0002638"} {"ref-id":"A37509","pubmed-id":16276979,"citation":"Park EJ, Cho HY, Lee YB: Effect of Cimetidine and Phenobarbital on metabolite kinetics of Omeprazole in rats. Arch Pharm Res. 2005 Oct;28(10):1196-202.","parent_key":"BE0002638"} {"ref-id":"A37469","pubmed-id":16248835,"citation":"Zhou Q, Zhou S, Chan E: Effect of omeprazole on the hydroxylation of warfarin enantiomers in human: in-vitro studies with liver microsomes and cDNA-expressed cytochrome P450 isozymes. Curr Drug Metab. 2005 Oct;6(5):399-411.","parent_key":"BE0002638"} {"ref-id":"A37510","pubmed-id":15037195,"citation":"Roymans D, Van Looveren C, Leone A, Parker JB, McMillian M, Johnson MD, Koganti A, Gilissen R, Silber P, Mannens G, Meuldermans W: Determination of cytochrome P450 1A2 and cytochrome P450 3A4 induction in cryopreserved human hepatocytes. Biochem Pharmacol. 2004 Feb 1;67(3):427-37. doi: 10.1016/j.bcp.2003.09.022.","parent_key":"BE0002638"} {"ref-id":"A37511","pubmed-id":10901708,"citation":"Abelo A, Andersson TB, Antonsson M, Naudot AK, Skanberg I, Weidolf L: Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Aug;28(8):966-72.","parent_key":"BE0002638"} {"ref-id":"A37513","pubmed-id":10671908,"citation":"Tassaneeyakul W, Vannaprasaht S, Yamazoe Y: Formation of omeprazole sulphone but not 5-hydroxyomeprazole is inhibited by grapefruit juice. Br J Clin Pharmacol. 2000 Feb;49(2):139-44.","parent_key":"BE0002638"} {"ref-id":"A14769","pubmed-id":18048485,"citation":"Foti RS, Wahlstrom JL: CYP2C19 inhibition: the impact of substrate probe selection on in vitro inhibition profiles. Drug Metab Dispos. 2008 Mar;36(3):523-8. Epub 2007 Nov 29.","parent_key":"BE0003536"} {"ref-id":"A14770","pubmed-id":15258107,"citation":"Li XQ, Andersson TB, Ahlstrom M, Weidolf L: Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004 Aug;32(8):821-7.","parent_key":"BE0003536"} {"ref-id":"A14771","pubmed-id":16093273,"citation":"Li XQ, Weidolf L, Simonsson R, Andersson TB: Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4. J Pharmacol Exp Ther. 2005 Nov;315(2):777-87. Epub 2005 Aug 10.","parent_key":"BE0003536"} {"ref-id":"A14772","pubmed-id":9353355,"citation":"Yamazaki H, Inoue K, Shaw PM, Checovich WJ, Guengerich FP, Shimada T: Different contributions of cytochrome P450 2C19 and 3A4 in the oxidation of omeprazole by human liver microsomes: effects of contents of these two forms in individual human samples. J Pharmacol Exp Ther. 1997 Nov;283(2):434-42.","parent_key":"BE0003536"} {"ref-id":"A15129","pubmed-id":11038161,"citation":"McGinnity DF, Parker AJ, Soars M, Riley RJ: Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos. 2000 Nov;28(11):1327-34.","parent_key":"BE0003536"} {"ref-id":"A37252","pubmed-id":9224780,"citation":"Ko JW, Sukhova N, Thacker D, Chen P, Flockhart DA: Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos. 1997 Jul;25(7):853-62.","parent_key":"BE0003536"} {"ref-id":"A38615","pubmed-id":8681489,"citation":"Ieiri I, Kubota T, Urae A, Kimura M, Wada Y, Mamiya K, Yoshioka S, Irie S, Amamoto T, Nakamura K, Nakano S, Higuchi S: Pharmacokinetics of omeprazole (a substrate of CYP2C19) and comparison with two mutant alleles, C gamma P2C19m1 in exon 5 and C gamma P2C19m2 in exon 4, in Japanese subjects. Clin Pharmacol Ther. 1996 Jun;59(6):647-53. doi: 10.1016/S0009-9236(96)90004-1.","parent_key":"BE0003536"} {"ref-id":"A15037","pubmed-id":8216357,"citation":"Moriwaki Y, Yamamoto T, Nasako Y, Takahashi S, Suda M, Hiroishi K, Hada T, Higashino K: In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase. Biochem Pharmacol. 1993 Sep 14;46(6):975-81.","parent_key":"BE0002204"} {"ref-id":"A15037","pubmed-id":8216357,"citation":"Moriwaki Y, Yamamoto T, Nasako Y, Takahashi S, Suda M, Hiroishi K, Hada T, Higashino K: In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase. Biochem Pharmacol. 1993 Sep 14;46(6):975-81.","parent_key":"BE0003539"} {"ref-id":"A14773","pubmed-id":10681383,"citation":"Wang RW, Newton DJ, Liu N, Atkins WM, Lu AY: Human cytochrome P-450 3A4: in vitro drug-drug interaction patterns are substrate-dependent. Drug Metab Dispos. 2000 Mar;28(3):360-6.","parent_key":"BE0002638"} {"ref-id":"A4638","pubmed-id":9485522,"citation":"Kishimoto W, Hiroi T, Sakai K, Funae Y, Igarashi T: Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol. 1997 Dec;98(3):273-92.","parent_key":"BE0002638"} {"ref-id":"A14774","pubmed-id":8610817,"citation":"Nemeroff CB, DeVane CL, Pollock BG: Newer antidepressants and the cytochrome P450 system. Am J Psychiatry. 1996 Mar;153(3):311-20.","parent_key":"BE0002638"} {"ref-id":"A4638","pubmed-id":9485522,"citation":"Kishimoto W, Hiroi T, Sakai K, Funae Y, Igarashi T: Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol. 1997 Dec;98(3):273-92.","parent_key":"BE0002363"} {"ref-id":"A14857","pubmed-id":12662125,"citation":"Cvetkovic RS, Goa KL: Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003;63(8):769-802.","parent_key":"BE0002363"} {"ref-id":"A185048","pubmed-id":12365197,"citation":"Kortunay S, Bozkurt A, Basci NE, Kayaalp SO: Effects of terfenadine and diphenhydramine on the CYP2D6 activity in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2002 Jul-Sep;27(3):171-4. doi: 10.1007/BF03190453.","parent_key":"BE0002363"} {"ref-id":"A31360","pubmed-id":9733666,"citation":"Jones BC, Hyland R, Ackland M, Tyman CA, Smith DA: Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos. 1998 Sep;26(9):875-82.","parent_key":"BE0002363"} {"ref-id":"A14775","pubmed-id":12124305,"citation":"Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA: Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002 Aug;30(8):883-91.","parent_key":"BE0002638"} {"ref-id":"A15128","pubmed-id":11560871,"citation":"Kosuge K, Jun Y, Watanabe H, Kimura M, Nishimoto M, Ishizaki T, Ohashi K: Effects of CYP3A4 inhibition by diltiazem on pharmacokinetics and dynamics of diazepam in relation to CYP2C19 genotype status. Drug Metab Dispos. 2001 Oct;29(10):1284-9.","parent_key":"BE0002638"} {"ref-id":"A184286","pubmed-id":16024008,"citation":"Yamamoto T, Kubota T, Ozeki T, Sawada M, Yokota S, Yamada Y, Kumagai Y, Iga T: Effects of the CYP3A5 genetic polymorphism on the pharmacokinetics of diltiazem. Clin Chim Acta. 2005 Dec;362(1-2):147-54. doi: 10.1016/j.cccn.2005.06.013. Epub 2005 Jul 15.","parent_key":"BE0002362"} {"ref-id":"A184289","pubmed-id":23700791,"citation":"Zheng T, Su CH, Zhao J, Zhang XJ, Zhang TY, Zhang LR, Kan QC, Zhang SJ: Effects of CYP3A5 and CYP2D6 genetic polymorphism on the pharmacokinetics of diltiazem and its metabolites in Chinese subjects. Pharmazie. 2013 Apr;68(4):257-60.","parent_key":"BE0002362"} {"ref-id":"A184292","pubmed-id":27149910,"citation":"Zhou LY, Zuo XC, Chen K, Wang JL, Chen QJ, Zhou YN, Yuan H, Ma Y, Zhu LJ, Peng YX, Ming YZ: Significant impacts of CYP3A4*1G and CYP3A5*3 genetic polymorphisms on the pharmacokinetics of diltiazem and its main metabolites in Chinese adult kidney transplant patients. J Clin Pharm Ther. 2016 Jun;41(3):341-7. doi: 10.1111/jcpt.12394. Epub 2016 May 5.","parent_key":"BE0002362"} {"ref-id":"A184295","pubmed-id":15801939,"citation":"Pinto AG, Horlander J, Chalasani N, Hamman M, Asghar A, Kolwankar D, Hall SD: Diltiazem inhibits human intestinal cytochrome P450 3A (CYP3A) activity in vivo without altering the expression of intestinal mRNA or protein. Br J Clin Pharmacol. 2005 Apr;59(4):440-6. doi: 10.1111/j.1365-2125.2005.02343.x.","parent_key":"BE0002362"} {"ref-id":"A15128","pubmed-id":11560871,"citation":"Kosuge K, Jun Y, Watanabe H, Kimura M, Nishimoto M, Ishizaki T, Ohashi K: Effects of CYP3A4 inhibition by diltiazem on pharmacokinetics and dynamics of diazepam in relation to CYP2C19 genotype status. Drug Metab Dispos. 2001 Oct;29(10):1284-9.","parent_key":"BE0003536"} {"ref-id":"A39292","pubmed-id":11744603,"citation":"Molden E, Asberg A, Christensen H: Desacetyl-diltiazem displays severalfold higher affinity to CYP2D6 compared with CYP3A4. Drug Metab Dispos. 2002 Jan;30(1):1-3.","parent_key":"BE0002363"} {"ref-id":"A39293","pubmed-id":12235455,"citation":"Molden E, Johansen PW, Boe GH, Bergan S, Christensen H, Rugstad HE, Rootwelt H, Reubsaet L, Lehne G: Pharmacokinetics of diltiazem and its metabolites in relation to CYP2D6 genotype. Clin Pharmacol Ther. 2002 Sep;72(3):333-42. doi: 10.1067/mcp.2002.127396.","parent_key":"BE0002363"} {"ref-id":"A39294","pubmed-id":11151747,"citation":"Molden E, Asberg A, Christensen H: CYP2D6 is involved in O-demethylation of diltiazem. An in vitro study with transfected human liver cells. Eur J Clin Pharmacol. 2000 Nov;56(8):575-9.","parent_key":"BE0002363"} {"ref-id":"A182798","pubmed-id":9223567,"citation":"Sutton D, Butler AM, Nadin L, Murray M: Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther. 1997 Jul;282(1):294-300.","parent_key":"BE0002887"} {"ref-id":"A14776","pubmed-id":15555475,"citation":"Guay DR: Extended-release alfuzosin hydrochloride: a new alpha-adrenergic receptor antagonist for symptomatic benign prostatic hyperplasia. Am J Geriatr Pharmacother. 2004 Mar;2(1):14-23.","parent_key":"BE0002638"} {"ref-id":"A14852","pubmed-id":14651673,"citation":"Tanaka E, Kurata N, Yasuhara H: Involvement of cytochrome P450 2C9, 2E1 and 3A4 in trimethadione N-demethylation in human microsomes. J Clin Pharm Ther. 2003 Dec;28(6):493-6.","parent_key":"BE0003533"} {"ref-id":"A14777","pubmed-id":9879636,"citation":"Kurata N, Nishimura Y, Iwase M, Fischer NE, Tang BK, Inaba T, Yasuhara H: Trimethadione metabolism by human liver cytochrome P450: evidence for the involvement of CYP2E1. Xenobiotica. 1998 Nov;28(11):1041-7.","parent_key":"BE0003533"} {"ref-id":"A14852","pubmed-id":14651673,"citation":"Tanaka E, Kurata N, Yasuhara H: Involvement of cytochrome P450 2C9, 2E1 and 3A4 in trimethadione N-demethylation in human microsomes. J Clin Pharm Ther. 2003 Dec;28(6):493-6.","parent_key":"BE0002638"} {"ref-id":"A14777","pubmed-id":9879636,"citation":"Kurata N, Nishimura Y, Iwase M, Fischer NE, Tang BK, Inaba T, Yasuhara H: Trimethadione metabolism by human liver cytochrome P450: evidence for the involvement of CYP2E1. Xenobiotica. 1998 Nov;28(11):1041-7.","parent_key":"BE0002638"} {"ref-id":"A14777","pubmed-id":9879636,"citation":"Kurata N, Nishimura Y, Iwase M, Fischer NE, Tang BK, Inaba T, Yasuhara H: Trimethadione metabolism by human liver cytochrome P450: evidence for the involvement of CYP2E1. Xenobiotica. 1998 Nov;28(11):1041-7.","parent_key":"BE0002887"} {"ref-id":"A14852","pubmed-id":14651673,"citation":"Tanaka E, Kurata N, Yasuhara H: Involvement of cytochrome P450 2C9, 2E1 and 3A4 in trimethadione N-demethylation in human microsomes. J Clin Pharm Ther. 2003 Dec;28(6):493-6.","parent_key":"BE0002793"} {"ref-id":"A14777","pubmed-id":9879636,"citation":"Kurata N, Nishimura Y, Iwase M, Fischer NE, Tang BK, Inaba T, Yasuhara H: Trimethadione metabolism by human liver cytochrome P450: evidence for the involvement of CYP2E1. Xenobiotica. 1998 Nov;28(11):1041-7.","parent_key":"BE0002793"} {"ref-id":"A14777","pubmed-id":9879636,"citation":"Kurata N, Nishimura Y, Iwase M, Fischer NE, Tang BK, Inaba T, Yasuhara H: Trimethadione metabolism by human liver cytochrome P450: evidence for the involvement of CYP2E1. Xenobiotica. 1998 Nov;28(11):1041-7.","parent_key":"BE0003536"} {"ref-id":"A38668","pubmed-id":11896285,"citation":"Ginsberg G, Hattis D, Sonawane B, Russ A, Banati P, Kozlak M, Smolenski S, Goble R: Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci. 2002 Apr;66(2):185-200.","parent_key":"BE0003536"} {"ref-id":"A18648","pubmed-id":15483195,"citation":"Giraud C, Tran A, Rey E, Vincent J, Treluyer JM, Pons G: In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004 Nov;32(11):1279-86.","parent_key":"BE0002638"} {"ref-id":"A183803","pubmed-id":23318278,"citation":"de Leon J, Spina E, Diaz FJ: Clobazam therapeutic drug monitoring: a comprehensive review of the literature with proposals to improve future studies. Ther Drug Monit. 2013 Feb;35(1):30-47. doi: 10.1097/FTD.0b013e31827ada88.","parent_key":"BE0002638"} {"ref-id":"A183803","pubmed-id":23318278,"citation":"de Leon J, Spina E, Diaz FJ: Clobazam therapeutic drug monitoring: a comprehensive review of the literature with proposals to improve future studies. Ther Drug Monit. 2013 Feb;35(1):30-47. doi: 10.1097/FTD.0b013e31827ada88.","parent_key":"BE0003536"} {"ref-id":"A18648","pubmed-id":15483195,"citation":"Giraud C, Tran A, Rey E, Vincent J, Treluyer JM, Pons G: In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004 Nov;32(11):1279-86.","parent_key":"BE0003536"} {"ref-id":"A18648","pubmed-id":15483195,"citation":"Giraud C, Tran A, Rey E, Vincent J, Treluyer JM, Pons G: In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004 Nov;32(11):1279-86.","parent_key":"BE0003549"} {"ref-id":"A184451","pubmed-id":30285275,"citation":"Tolbert D, Larsen F: A Comprehensive Overview of the Clinical Pharmacokinetics of Clobazam. J Clin Pharmacol. 2019 Jan;59(1):7-19. doi: 10.1002/jcph.1313. Epub 2018 Oct 4.","parent_key":"BE0003549"} {"ref-id":"A35875","pubmed-id":29050522,"citation":"House L, Seminerio MJ, Mirkov S, Ramirez J, Skor M, Sachleben JR, Isikbay M, Singhal H, Greene GL, Vander Griend D, Conzen SD, Ratain MJ: Metabolism of megestrol acetate in vitro and the role of oxidative metabolites. Xenobiotica. 2018 Oct;48(10):973-983. doi: 10.1080/00498254.2017.1386335. Epub 2017 Nov 10.","parent_key":"BE0002638"} {"ref-id":"A14734","pubmed-id":9890159,"citation":"Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H: Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998 Dec;28(12):1203-53.","parent_key":"BE0003533"} {"ref-id":"A14778","pubmed-id":15255802,"citation":"Ernstgard L, Warholm M, Johanson G: Robustness of chlorzoxazone as an in vivo measure of cytochrome P450 2E1 activity. Br J Clin Pharmacol. 2004 Aug;58(2):190-200.","parent_key":"BE0003533"} {"ref-id":"A15169","pubmed-id":20164110,"citation":"Wiercinska P, Squires EJ: Chlorzoxazone metabolism by porcine cytochrome P450 enzymes and the effect of cytochrome b5. Drug Metab Dispos. 2010 May;38(5):857-62. doi: 10.1124/dmd.109.030528. Epub 2010 Feb 17.","parent_key":"BE0003543"} {"ref-id":"A15170","pubmed-id":15231049,"citation":"Warrington JS, Court MH, Greenblatt DJ, von Moltke LL: Phenacetin and chlorzoxazone biotransformation in aging male Fischer 344 rats. J Pharm Pharmacol. 2004 Jun;56(6):819-25.","parent_key":"BE0003543"} {"ref-id":"A15153","pubmed-id":9825829,"citation":"Yang TJ, Sai Y, Krausz KW, Gonzalez FJ, Gelboin HV: Inhibitory monoclonal antibodies to human cytochrome P450 1A2: analysis of phenacetin O-deethylation in human liver. Pharmacogenetics. 1998 Oct;8(5):375-82.","parent_key":"BE0002433"} {"ref-id":"A38941","pubmed-id":7550365,"citation":"Ono S, Hatanaka T, Hotta H, Tsutsui M, Satoh T, Gonzalez FJ: Chlorzoxazone is metabolized by human CYP1A2 as well as by human CYP2E1. Pharmacogenetics. 1995 Jun;5(3):143-50.","parent_key":"BE0002433"} {"ref-id":"A15168","pubmed-id":10534312,"citation":"Shimada T, Tsumura F, Yamazaki H: Prediction of human liver microsomal oxidations of 7-ethoxycoumarin and chlorzoxazone with kinetic parameters of recombinant cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Nov;27(11):1274-80.","parent_key":"BE0003336"} {"ref-id":"A33232","pubmed-id":20233178,"citation":"Hukkanen J, Jacob Iii P, Peng M, Dempsey D, Benowitz NL: Effects of nicotine on cytochrome P450 2A6 and 2E1 activities. Br J Clin Pharmacol. 2010 Feb;69(2):152-9. doi: 10.1111/j.1365-2125.2009.03568.x.","parent_key":"BE0003336"} {"ref-id":"A183992","pubmed-id":10510277,"citation":"Soucek P: Expression of cytochrome P450 2A6 in Escherichia coli: purification, spectral and catalytic characterization, and preparation of polyclonal antibodies. Arch Biochem Biophys. 1999 Oct 15;370(2):190-200. doi: 10.1006/abbi.1999.1388.","parent_key":"BE0003336"} {"ref-id":"A15180","pubmed-id":9141232,"citation":"Gorski JC, Jones DR, Wrighton SA, Hall SD: Contribution of human CYP3A subfamily members to the 6-hydroxylation of chlorzoxazone. Xenobiotica. 1997 Mar;27(3):243-56.","parent_key":"BE0002638"} {"ref-id":"A15169","pubmed-id":20164110,"citation":"Wiercinska P, Squires EJ: Chlorzoxazone metabolism by porcine cytochrome P450 enzymes and the effect of cytochrome b5. Drug Metab Dispos. 2010 May;38(5):857-62. doi: 10.1124/dmd.109.030528. Epub 2010 Feb 17.","parent_key":"BE0002638"} {"ref-id":"A184430","pubmed-id":12235448,"citation":"Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y, Ang CY: Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin Pharmacol Ther. 2002 Sep;72(3):276-87. doi: 10.1067/mcp.2002.126913.","parent_key":"BE0002638"} {"ref-id":"A15168","pubmed-id":10534312,"citation":"Shimada T, Tsumura F, Yamazaki H: Prediction of human liver microsomal oxidations of 7-ethoxycoumarin and chlorzoxazone with kinetic parameters of recombinant cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Nov;27(11):1274-80.","parent_key":"BE0002363"} {"ref-id":"A15180","pubmed-id":9141232,"citation":"Gorski JC, Jones DR, Wrighton SA, Hall SD: Contribution of human CYP3A subfamily members to the 6-hydroxylation of chlorzoxazone. Xenobiotica. 1997 Mar;27(3):243-56.","parent_key":"BE0002363"} {"ref-id":"A15653","pubmed-id":6765487,"citation":"Santen RJ, Misbin RI: Aminoglutethimide: review of pharmacology and clinical use. Pharmacotherapy. 1981 Sep-Oct;1(2):95-120.","parent_key":"BE0002638"} {"ref-id":"A18418","pubmed-id":17961023,"citation":"Gross BA, Mindea SA, Pick AJ, Chandler JP, Batjer HH: Medical management of Cushing disease. Neurosurg Focus. 2007;23(3):E10.","parent_key":"BE0002638"} {"ref-id":"A15653","pubmed-id":6765487,"citation":"Santen RJ, Misbin RI: Aminoglutethimide: review of pharmacology and clinical use. Pharmacotherapy. 1981 Sep-Oct;1(2):95-120.","parent_key":"BE0003536"} {"ref-id":"A18418","pubmed-id":17961023,"citation":"Gross BA, Mindea SA, Pick AJ, Chandler JP, Batjer HH: Medical management of Cushing disease. Neurosurg Focus. 2007;23(3):E10.","parent_key":"BE0003536"} {"ref-id":"A38732","pubmed-id":10834303,"citation":"Fontaine F, de Sousa G, Burcham PC, Duchene P, Rahmani R: Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci. 2000 Apr 21;66(22):2193-212.","parent_key":"BE0002638"} {"ref-id":"A38733","pubmed-id":11092571,"citation":"Ridtitid W, Wongnawa M, Mahatthanatrakul W, Chaipol P, Sunbhanich M: Effect of rifampin on plasma concentrations of mefloquine in healthy volunteers. J Pharm Pharmacol. 2000 Oct;52(10):1265-9.","parent_key":"BE0002638"} {"ref-id":"A38734","pubmed-id":1510705,"citation":"Bangchang KN, Karbwang J, Back DJ: Primaquine metabolism by human liver microsomes: effect of other antimalarial drugs. Biochem Pharmacol. 1992 Aug 4;44(3):587-90.","parent_key":"BE0002638"} {"ref-id":"A33214","pubmed-id":15843491,"citation":"Winter HR, Unadkat JD: Identification of cytochrome P450 and arylamine N-acetyltransferase isoforms involved in sulfadiazine metabolism. Drug Metab Dispos. 2005 Jul;33(7):969-76. doi: 10.1124/dmd.104.002998. Epub 2005 Apr 20.","parent_key":"BE0002638"} {"ref-id":"A38660","pubmed-id":12894568,"citation":"Leveque D, Wisniewski S, Renault C, Peter JD, Le Corre P, Monteil H, Jehl F: The effect of rifampin on the pharmacokinetics of vinorelbine in the micropig. Anticancer Res. 2003 May-Jun;23(3B):2741-4.","parent_key":"BE0002638"} {"ref-id":"A38662","pubmed-id":16176333,"citation":"Beulz-Riche D, Grude P, Puozzo C, Sautel F, Filaquier C, Riche C, Ratanasavanh D: Characterization of human cytochrome P450 isoenzymes involved in the metabolism of vinorelbine. Fundam Clin Pharmacol. 2005 Oct;19(5):545-53. doi: 10.1111/j.1472-8206.2005.00367.x.","parent_key":"BE0002638"} {"ref-id":"A39260","pubmed-id":8258200,"citation":"Le Guellec C, Lacarelle B, Catalin J, Durand A: Inhibitory effects of anticancer drugs on dextromethorphan-O-demethylase activity in human liver microsomes. Cancer Chemother Pharmacol. 1993;32(6):491-5.","parent_key":"BE0002363"} {"ref-id":"A14779","pubmed-id":9840430,"citation":"Fang J, Coutts RT, McKenna KF, Baker GB: Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol. 1998 Nov;358(5):592-9.","parent_key":"BE0002433"} {"ref-id":"A14768","pubmed-id":10976659,"citation":"Carrillo JA, Benitez J: Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000 Aug;39(2):127-53.","parent_key":"BE0002433"} {"ref-id":"A39420","pubmed-id":17504220,"citation":"Chetty M, Murray M: CYP-mediated clozapine interactions: how predictable are they? Curr Drug Metab. 2007 May;8(4):307-13.","parent_key":"BE0002363"} {"ref-id":"A38584","pubmed-id":12670127,"citation":"Prior TI, Baker GB: Interactions between the cytochrome P450 system and the second-generation antipsychotics. J Psychiatry Neurosci. 2003 Mar;28(2):99-112.","parent_key":"BE0002363"} {"ref-id":"A184319","pubmed-id":1545398,"citation":"Fischer V, Vogels B, Maurer G, Tynes RE: The antipsychotic clozapine is metabolized by the polymorphic human microsomal and recombinant cytochrome P450 2D6. J Pharmacol Exp Ther. 1992 Mar;260(3):1355-60.","parent_key":"BE0002363"} {"ref-id":"A15579","pubmed-id":9029042,"citation":"Jung F, Richardson TH, Raucy JL, Johnson EF: Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases. Drug Metab Dispos. 1997 Feb;25(2):133-9.","parent_key":"BE0002793"} {"ref-id":"A39420","pubmed-id":17504220,"citation":"Chetty M, Murray M: CYP-mediated clozapine interactions: how predictable are they? Curr Drug Metab. 2007 May;8(4):307-13.","parent_key":"BE0002793"} {"ref-id":"A38741","pubmed-id":10422890,"citation":"Prior TI, Chue PS, Tibbo P, Baker GB: Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol. 1999 Jun;9(4):301-9.","parent_key":"BE0002638"} {"ref-id":"A14779","pubmed-id":9840430,"citation":"Fang J, Coutts RT, McKenna KF, Baker GB: Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol. 1998 Nov;358(5):592-9.","parent_key":"BE0002638"} {"ref-id":"A39420","pubmed-id":17504220,"citation":"Chetty M, Murray M: CYP-mediated clozapine interactions: how predictable are they? Curr Drug Metab. 2007 May;8(4):307-13.","parent_key":"BE0002638"} {"ref-id":"A14779","pubmed-id":9840430,"citation":"Fang J, Coutts RT, McKenna KF, Baker GB: Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol. 1998 Nov;358(5):592-9.","parent_key":"BE0003536"} {"ref-id":"A38741","pubmed-id":10422890,"citation":"Prior TI, Chue PS, Tibbo P, Baker GB: Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol. 1999 Jun;9(4):301-9.","parent_key":"BE0003536"} {"ref-id":"A184634","pubmed-id":28664816,"citation":"Piatkov I, Caetano D, Assur Y, Lau SL, Coelho M, Jones T, Nguyen T, Boyages S, McLean M: CYP2C19*17 protects against metabolic complications of clozapine treatment. World J Biol Psychiatry. 2017 Oct;18(7):521-527. doi: 10.1080/15622975.2017.1347712. Epub 2017 Jul 18.","parent_key":"BE0003536"} {"ref-id":"A39268","pubmed-id":23297297,"citation":"Dragovic S, Gunness P, Ingelman-Sundberg M, Vermeulen NP, Commandeur JN: Characterization of human cytochrome P450s involved in the bioactivation of clozapine. Drug Metab Dispos. 2013 Mar;41(3):651-8. doi: 10.1124/dmd.112.050484. Epub 2013 Jan 7.","parent_key":"BE0003336"} {"ref-id":"A14779","pubmed-id":9840430,"citation":"Fang J, Coutts RT, McKenna KF, Baker GB: Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol. 1998 Nov;358(5):592-9.","parent_key":"BE0002887"} {"ref-id":"A38741","pubmed-id":10422890,"citation":"Prior TI, Chue PS, Tibbo P, Baker GB: Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol. 1999 Jun;9(4):301-9.","parent_key":"BE0003543"} {"ref-id":"A14782","pubmed-id":10589374,"citation":"Rodighiero V: Effects of liver disease on pharmacokinetics. An update. Clin Pharmacokinet. 1999 Nov;37(5):399-431.","parent_key":"BE0002433"} {"ref-id":"A14783","pubmed-id":20210724,"citation":"Bril F, Gonzalez CD, Di Girolamo G: Antimicrobial agents-associated with QT interval prolongation. Curr Drug Saf. 2010 Jan;5(1):85-92.","parent_key":"BE0002433"} {"ref-id":"A37128","pubmed-id":26936044,"citation":"Gabriel L, Tod M, Goutelle S: Quantitative Prediction of Drug Interactions Caused by CYP1A2 Inhibitors and Inducers. Clin Pharmacokinet. 2016 Aug;55(8):977-90. doi: 10.1007/s40262-016-0371-x.","parent_key":"BE0002433"} {"ref-id":"A38904","pubmed-id":9433655,"citation":"Efthymiopoulos C, Bramer SL, Maroli A, Blum B: Theophylline and warfarin interaction studies with grepafloxacin. Clin Pharmacokinet. 1997;33 Suppl 1:39-46.","parent_key":"BE0002433"} {"ref-id":"A39287","pubmed-id":26838075,"citation":"Liu L, Miao MX, Zhong ZY, Xu P, Chen Y, Liu XD: Chronic administration of caderofloxacin, a new fluoroquinolone, increases hepatic CYP2E1 expression and activity in rats. Acta Pharmacol Sin. 2016 Apr;37(4):561-70. doi: 10.1038/aps.2015.160. Epub 2016 Feb 1.","parent_key":"BE0002433"} {"ref-id":"A14780","pubmed-id":18040809,"citation":"Pal D, Mitra AK: MDR- and CYP3A4-mediated drug-drug interactions. J Neuroimmune Pharmacol. 2006 Sep;1(3):323-39. Epub 2006 Aug 2.","parent_key":"BE0002638"} {"ref-id":"A14781","pubmed-id":15139788,"citation":"Owens RC Jr: QT prolongation with antimicrobial agents: understanding the significance. Drugs. 2004;64(10):1091-124.","parent_key":"BE0002638"} {"ref-id":"A182084","pubmed-id":23715232,"citation":"Moreno I, Quinones L, Catalan J, Miranda C, Roco A, Sasso J, Tamayo E, Caceres D, Tchernitchin AN, Gaete L, Saavedra I: [Influence of CYP3A4/5 polymorphisms in the pharmacokinetics of levonorgestrel: a pilot study]. Biomedica. 2012 Oct-Dec;32(4):570-7. doi: 10.1590/S0120-41572012000400012.","parent_key":"BE0002638"} {"ref-id":"A182087","pubmed-id":22299599,"citation":"Edelman A, Munar M, Elman MR, Koop D, Cherala G: Effect of the ethinylestradiol/levonorgestrel combined oral contraceptive on the activity of cytochrome P4503A in obese women. Br J Clin Pharmacol. 2012 Sep;74(3):510-4. doi: 10.1111/j.1365-2125.2012.04209.x.","parent_key":"BE0002638"} {"ref-id":"A182090","pubmed-id":12817528,"citation":"Hatorp V, Hansen KT, Thomsen MS: Influence of drugs interacting with CYP3A4 on the pharmacokinetics, pharmacodynamics, and safety of the prandial glucose regulator repaglinide. J Clin Pharmacol. 2003 Jun;43(6):649-60.","parent_key":"BE0002638"} {"ref-id":"A182084","pubmed-id":23715232,"citation":"Moreno I, Quinones L, Catalan J, Miranda C, Roco A, Sasso J, Tamayo E, Caceres D, Tchernitchin AN, Gaete L, Saavedra I: [Influence of CYP3A4/5 polymorphisms in the pharmacokinetics of levonorgestrel: a pilot study]. Biomedica. 2012 Oct-Dec;32(4):570-7. doi: 10.1590/S0120-41572012000400012.","parent_key":"BE0002362"} {"ref-id":"A182087","pubmed-id":22299599,"citation":"Edelman A, Munar M, Elman MR, Koop D, Cherala G: Effect of the ethinylestradiol/levonorgestrel combined oral contraceptive on the activity of cytochrome P4503A in obese women. Br J Clin Pharmacol. 2012 Sep;74(3):510-4. doi: 10.1111/j.1365-2125.2012.04209.x.","parent_key":"BE0002362"} {"ref-id":"A182093","pubmed-id":28187506,"citation":"Neary M, Lamorde M, Olagunju A, Darin KM, Merry C, Byakika-Kibwika P, Back DJ, Siccardi M, Owen A, Scarsi KK: The Effect of Gene Variants on Levonorgestrel Pharmacokinetics When Combined With Antiretroviral Therapy Containing Efavirenz or Nevirapine. Clin Pharmacol Ther. 2017 Sep;102(3):529-536. doi: 10.1002/cpt.667. Epub 2017 May 30.","parent_key":"BE0002362"} {"ref-id":"A4709","pubmed-id":11607047,"citation":"Anttila SA, Leinonen EV: A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev. 2001 Fall;7(3):249-64.","parent_key":"BE0002638"} {"ref-id":"A14784","pubmed-id":10997935,"citation":"Stormer E, von Moltke LL, Shader RI, Greenblatt DJ: Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos. 2000 Oct;28(10):1168-75.","parent_key":"BE0002638"} {"ref-id":"A38046","pubmed-id":9597349,"citation":"Owen JR, Nemeroff CB: New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine. Depress Anxiety. 1998;7 Suppl 1:24-32.","parent_key":"BE0002638"} {"ref-id":"A4709","pubmed-id":11607047,"citation":"Anttila SA, Leinonen EV: A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev. 2001 Fall;7(3):249-64.","parent_key":"BE0002363"} {"ref-id":"A14784","pubmed-id":10997935,"citation":"Stormer E, von Moltke LL, Shader RI, Greenblatt DJ: Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos. 2000 Oct;28(10):1168-75.","parent_key":"BE0002363"} {"ref-id":"A177916","pubmed-id":15538128,"citation":"Kirchheiner J, Henckel HB, Meineke I, Roots I, Brockmoller J: Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol. 2004 Dec;24(6):647-52.","parent_key":"BE0002363"} {"ref-id":"A4709","pubmed-id":11607047,"citation":"Anttila SA, Leinonen EV: A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev. 2001 Fall;7(3):249-64.","parent_key":"BE0002433"} {"ref-id":"A14784","pubmed-id":10997935,"citation":"Stormer E, von Moltke LL, Shader RI, Greenblatt DJ: Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos. 2000 Oct;28(10):1168-75.","parent_key":"BE0002433"} {"ref-id":"A38046","pubmed-id":9597349,"citation":"Owen JR, Nemeroff CB: New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine. Depress Anxiety. 1998;7 Suppl 1:24-32.","parent_key":"BE0002433"} {"ref-id":"A179518","pubmed-id":27534869,"citation":"Maenpaa J, Pelkonen O: Cardiac safety of ophthalmic timolol. Expert Opin Drug Saf. 2016 Nov;15(11):1549-1561. doi: 10.1080/14740338.2016.1225718. Epub 2016 Aug 31.","parent_key":"BE0002363"} {"ref-id":"A179551","pubmed-id":17431033,"citation":"Volotinen M, Turpeinen M, Tolonen A, Uusitalo J, Maenpaa J, Pelkonen O: Timolol metabolism in human liver microsomes is mediated principally by CYP2D6. Drug Metab Dispos. 2007 Jul;35(7):1135-41. doi: 10.1124/dmd.106.012906. Epub 2007 Apr 12.","parent_key":"BE0002363"} {"ref-id":"A179551","pubmed-id":17431033,"citation":"Volotinen M, Turpeinen M, Tolonen A, Uusitalo J, Maenpaa J, Pelkonen O: Timolol metabolism in human liver microsomes is mediated principally by CYP2D6. Drug Metab Dispos. 2007 Jul;35(7):1135-41. doi: 10.1124/dmd.106.012906. Epub 2007 Apr 12.","parent_key":"BE0003536"} {"ref-id":"A20315","pubmed-id":21385322,"citation":"Volotinen M, Hakkola J, Pelkonen O, Vapaatalo H, Maenpaa J: Metabolism of ophthalmic timolol: new aspects of an old drug. Basic Clin Pharmacol Toxicol. 2011 May;108(5):297-303. doi: 10.1111/j.1742-7843.2011.00694.x.","parent_key":"BE0003536"} {"ref-id":"A17855","pubmed-id":20133511,"citation":"Gotzkowsky SK, Dingemanse J, Lai A, Mottola D, Laliberte K: Lack of a pharmacokinetic interaction between oral treprostinil and bosentan in healthy adult volunteers. J Clin Pharmacol. 2010 Jul;50(7):829-34. doi: 10.1177/0091270009351173. Epub 2010 Feb 4.","parent_key":"BE0002793"} {"ref-id":"A567","pubmed-id":15378559,"citation":"Stoltz R, Parisi S, Shah A, Macciocchi A: Pharmacokinetics, metabolism and excretion of intravenous [l4C]-palonosetron in healthy human volunteers. Biopharm Drug Dispos. 2004 Nov;25(8):329-37.","parent_key":"BE0002363"} {"ref-id":"A562","pubmed-id":15102873,"citation":"Stoltz R, Cyong JC, Shah A, Parisi S: Pharmacokinetic and safety evaluation of palonosetron, a 5-hydroxytryptamine-3 receptor antagonist, in U.S. and Japanese healthy subjects. J Clin Pharmacol. 2004 May;44(5):520-31.","parent_key":"BE0002363"} {"ref-id":"A14892","pubmed-id":16192915,"citation":"Janicki PK: Cytochrome P450 2D6 metabolism and 5-hydroxytryptamine type 3 receptor antagonists for postoperative nausea and vomiting. Med Sci Monit. 2005 Oct;11(10):RA322-8. Epub 2005 Sep 26.","parent_key":"BE0002363"} {"ref-id":"A567","pubmed-id":15378559,"citation":"Stoltz R, Parisi S, Shah A, Macciocchi A: Pharmacokinetics, metabolism and excretion of intravenous [l4C]-palonosetron in healthy human volunteers. Biopharm Drug Dispos. 2004 Nov;25(8):329-37.","parent_key":"BE0002638"} {"ref-id":"A562","pubmed-id":15102873,"citation":"Stoltz R, Cyong JC, Shah A, Parisi S: Pharmacokinetic and safety evaluation of palonosetron, a 5-hydroxytryptamine-3 receptor antagonist, in U.S. and Japanese healthy subjects. J Clin Pharmacol. 2004 May;44(5):520-31.","parent_key":"BE0002638"} {"ref-id":"A567","pubmed-id":15378559,"citation":"Stoltz R, Parisi S, Shah A, Macciocchi A: Pharmacokinetics, metabolism and excretion of intravenous [l4C]-palonosetron in healthy human volunteers. Biopharm Drug Dispos. 2004 Nov;25(8):329-37.","parent_key":"BE0002433"} {"ref-id":"A562","pubmed-id":15102873,"citation":"Stoltz R, Cyong JC, Shah A, Parisi S: Pharmacokinetic and safety evaluation of palonosetron, a 5-hydroxytryptamine-3 receptor antagonist, in U.S. and Japanese healthy subjects. J Clin Pharmacol. 2004 May;44(5):520-31.","parent_key":"BE0002433"} {"ref-id":"A35776","pubmed-id":26796435,"citation":"Olbrich M, Weigl K, Kahler E, Mihara K: Dydrogesterone metabolism in human liver by aldo-keto reductases and cytochrome P450 enzymes. Xenobiotica. 2016 Oct;46(10):868-74. doi: 10.3109/00498254.2015.1134852. Epub 2016 Jan 21.","parent_key":"BE0002638"} {"ref-id":"A14785","pubmed-id":9690950,"citation":"Nakajima M, Kobayashi K, Shimada N, Tokudome S, Yamamoto T, Kuroiwa Y: Involvement of CYP1A2 in mexiletine metabolism. Br J Clin Pharmacol. 1998 Jul;46(1):55-62.","parent_key":"BE0002433"} {"ref-id":"A14785","pubmed-id":9690950,"citation":"Nakajima M, Kobayashi K, Shimada N, Tokudome S, Yamamoto T, Kuroiwa Y: Involvement of CYP1A2 in mexiletine metabolism. Br J Clin Pharmacol. 1998 Jul;46(1):55-62.","parent_key":"BE0002363"} {"ref-id":"A183815","pubmed-id":12937870,"citation":"Otani M, Fukuda T, Naohara M, Maune H, Senda C, Yamamoto I, Azuma J: Impact of CYP2D6*10 on mexiletine pharmacokinetics in healthy adult volunteers. Eur J Clin Pharmacol. 2003 Sep;59(5-6):395-9. doi: 10.1007/s00228-003-0656-5. Epub 2003 Aug 23.","parent_key":"BE0002363"} {"ref-id":"A183818","pubmed-id":11453897,"citation":"Senda C, Yamaura Y, Kobayashi K, Fujii H, Minami H, Sasaki Y, Igarashi T, Chiba K: Influence of the CYP2D6*10 allele on the metabolism of mexiletine by human liver microsomes. Br J Clin Pharmacol. 2001 Jul;52(1):100-3. doi: 10.1046/j.0306-5251.2001.01411.x.","parent_key":"BE0002363"} {"ref-id":"A31178","pubmed-id":12519691,"citation":"Labbe L, Abolfathi Z, Lessard E, Pakdel H, Beaune P, Turgeon J: Role of specific cytochrome P450 enzymes in the N-oxidation of the antiarrhythmic agent mexiletine. Xenobiotica. 2003 Jan;33(1):13-25.","parent_key":"BE0003549"} {"ref-id":"A31178","pubmed-id":12519691,"citation":"Labbe L, Abolfathi Z, Lessard E, Pakdel H, Beaune P, Turgeon J: Role of specific cytochrome P450 enzymes in the N-oxidation of the antiarrhythmic agent mexiletine. Xenobiotica. 2003 Jan;33(1):13-25.","parent_key":"BE0003533"} {"ref-id":"A39089","pubmed-id":10945315,"citation":"Labbe L, O'Hara G, Lefebvre M, Lessard E, Gilbert M, Adedoyin A, Champagne J, Hamelin B, Turgeon J: Pharmacokinetic and pharmacodynamic interaction between mexiletine and propafenone in human beings. Clin Pharmacol Ther. 2000 Jul;68(1):44-57. doi: 10.1067/mcp.2000.108023.","parent_key":"BE0002638"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0002638"} {"ref-id":"A32032","pubmed-id":24301608,"citation":"Zhu Y, Wang F, Li Q, Zhu M, Du A, Tang W, Chen W: Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab Dispos. 2014 Feb;42(2):245-9. doi: 10.1124/dmd.113.055400. Epub 2013 Dec 3.","parent_key":"BE0002638"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0003543"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0003549"} {"ref-id":"A121591","pubmed-id":22909231,"citation":"Shah MB, Wilderman PR, Pascual J, Zhang Q, Stout CD, Halpert JR: Conformational adaptation of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 revealed upon binding multiple amlodipine molecules. Biochemistry. 2012 Sep 18;51(37):7225-38. doi: 10.1021/bi300894z. Epub 2012 Sep 4.","parent_key":"BE0003549"} {"ref-id":"A32032","pubmed-id":24301608,"citation":"Zhu Y, Wang F, Li Q, Zhu M, Du A, Tang W, Chen W: Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab Dispos. 2014 Feb;42(2):245-9. doi: 10.1124/dmd.113.055400. Epub 2013 Dec 3.","parent_key":"BE0002362"} {"ref-id":"A175363","pubmed-id":19907160,"citation":"Bhatnagar V, Garcia EP, O'Connor DT, Brophy VH, Alcaraz J, Richard E, Bakris GL, Middleton JP, Norris KC, Wright J, Hiremath L, Contreras G, Appel LJ, Lipkowitz MS: CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol. 2010;31(2):95-103. doi: 10.1159/000258688. Epub 2009 Nov 12.","parent_key":"BE0002362"} {"ref-id":"A175366","pubmed-id":28259948,"citation":"Lu Y, Zhong H, Tang Q, Huang Z, Jing N, Smith J, Miao R, Li Y, Yuan H: Construction and verification of CYP3A5 gene polymorphisms using a Saccharomyces cerevisiae expression system to predict drug metabolism. Mol Med Rep. 2017 Apr;15(4):1593-1600. doi: 10.3892/mmr.2017.6214. Epub 2017 Feb 17.","parent_key":"BE0002362"} {"ref-id":"A175369","pubmed-id":23863802,"citation":"Zhang YP, Zuo XC, Huang ZJ, Cai JJ, Wen J, Duan DD, Yuan H: CYP3A5 polymorphism, amlodipine and hypertension. J Hum Hypertens. 2014 Mar;28(3):145-9. doi: 10.1038/jhh.2013.67. Epub 2013 Jul 18.","parent_key":"BE0002362"} {"ref-id":"A175384","pubmed-id":22419147,"citation":"Floyd JS, Kaspera R, Marciante KD, Weiss NS, Heckbert SR, Lumley T, Wiggins KL, Tamraz B, Kwok PY, Totah RA, Psaty BM: A screening study of drug-drug interactions in cerivastatin users: an adverse effect of clopidogrel. Clin Pharmacol Ther. 2012 May;91(5):896-904. doi: 10.1038/clpt.2011.295. Epub 2012 Mar 14.","parent_key":"BE0002887"} {"ref-id":"A175387","pubmed-id":30102628,"citation":"Augustin M, Schoretsanitis G, Grunder G, Haen E, Paulzen M: How to Treat Hypertension in Venlafaxine-Medicated Patients-Pharmacokinetic Considerations in Prescribing Amlodipine and Ramipril. J Clin Psychopharmacol. 2018 Oct;38(5):498-501. doi: 10.1097/JCP.0000000000000929.","parent_key":"BE0002363"} {"ref-id":"A14787","pubmed-id":12065442,"citation":"Obach RS, Reed-Hagen AE: Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos. 2002 Jul;30(7):831-7.","parent_key":"BE0002433"} {"ref-id":"A39120","pubmed-id":16035375,"citation":"Fuhr U, Kober S, Zaigler M, Mutschler E, Spahn-Langguth H: Rate-limiting biotransformation of triamterene is mediated by CYP1A2. Int J Clin Pharmacol Ther. 2005 Jul;43(7):327-34.","parent_key":"BE0002433"} {"ref-id":"A17715","pubmed-id":16510159,"citation":"Konstandi M, Kostakis D, Harkitis P, Johnson EO, Marselos M, Adamidis K, Lang MA: Benzo(alpha)pyrene-induced up-regulation of CYP1A2 gene expression: role of adrenoceptor-linked signaling pathways. Life Sci. 2006 Jun 20;79(4):331-41. Epub 2006 Feb 28.","parent_key":"BE0002433"} {"ref-id":"A37913","pubmed-id":11501176,"citation":"Liu XQ, Ren YL, Qian ZY, Wang GJ: Enzyme kinetics and inhibition of nimodipine metabolism in human liver microsomes. Acta Pharmacol Sin. 2000 Aug;21(8):690-4.","parent_key":"BE0002638"} {"ref-id":"A184787","pubmed-id":16681041,"citation":"Choi JS, Burm JP: Enhanced nimodipine bioavailability after oral administration of nimodipine with morin, a flavonoid, in rabbits. Arch Pharm Res. 2006 Apr;29(4):333-8.","parent_key":"BE0002638"} {"ref-id":"A21030","pubmed-id":12538830,"citation":"Hukkanen J, Vaisanen T, Lassila A, Piipari R, Anttila S, Pelkonen O, Raunio H, Hakkola J: Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther. 2003 Feb;304(2):745-52.","parent_key":"BE0002362"} {"ref-id":"A21031","pubmed-id":23512537,"citation":"Roberts JK, Moore CD, Ward RM, Yost GS, Reilly CA: Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. J Pharmacol Exp Ther. 2013 May;345(2):308-16. doi: 10.1124/jpet.112.202556. Epub 2013 Mar 19.","parent_key":"BE0002362"} {"ref-id":"A21031","pubmed-id":23512537,"citation":"Roberts JK, Moore CD, Ward RM, Yost GS, Reilly CA: Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. J Pharmacol Exp Ther. 2013 May;345(2):308-16. doi: 10.1124/jpet.112.202556. Epub 2013 Mar 19.","parent_key":"BE0002638"} {"ref-id":"A38616","pubmed-id":12835613,"citation":"Bramness JG, Skurtveit S, Fauske L, Grung M, Molven A, Morland J, Steen VM: Association between blood carisoprodol:meprobamate concentration ratios and CYP2C19 genotype in carisoprodol-drugged drivers: decreased metabolic capacity in heterozygous CYP2C19*1/CYP2C19*2 subjects? Pharmacogenetics. 2003 Jul;13(7):383-8. doi: 10.1097/01.fpc.0000054098.48725.88.","parent_key":"BE0003536"} {"ref-id":"A38871","pubmed-id":28520382,"citation":"Dean L: Carisoprodol Therapy and CYP2C19 Genotype .","parent_key":"BE0003536"} {"ref-id":"A175795","pubmed-id":28949811,"citation":"Quinney SK, Benjamin T, Zheng X, Patil AS: Characterization of Maternal and Fetal CYP3A-Mediated Progesterone Metabolism. Fetal Pediatr Pathol. 2017 Oct;36(5):400-411. doi: 10.1080/15513815.2017.1354411. Epub 2017 Sep 26.","parent_key":"BE0002362"} {"ref-id":"A35859","pubmed-id":28522317,"citation":"Bustos ML, Caritis SN, Jablonski KA, Reddy UM, Sorokin Y, Manuck T, Varner MW, Wapner RJ, Iams JD, Carpenter MW, Peaceman AM, Mercer BM, Sciscione A, Rouse DJ, Ramin SM: The association among cytochrome P450 3A, progesterone receptor polymorphisms, plasma 17-alpha hydroxyprogesterone caproate concentrations, and spontaneous preterm birth. Am J Obstet Gynecol. 2017 Sep;217(3):369.e1-369.e9. doi: 10.1016/j.ajog.2017.05.019. Epub 2017 May 15.","parent_key":"BE0002362"} {"ref-id":"A38674","pubmed-id":9328296,"citation":"Yamazaki H, Shimada T: Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997 Oct 1;346(1):161-9. doi: 10.1006/abbi.1997.0302.","parent_key":"BE0002793"} {"ref-id":"A175795","pubmed-id":28949811,"citation":"Quinney SK, Benjamin T, Zheng X, Patil AS: Characterization of Maternal and Fetal CYP3A-Mediated Progesterone Metabolism. Fetal Pediatr Pathol. 2017 Oct;36(5):400-411. doi: 10.1080/15513815.2017.1354411. Epub 2017 Sep 26.","parent_key":"BE0003612"} {"ref-id":"A175798","pubmed-id":20097724,"citation":"Sharma S, Ellis EC, Dorko K, Zhang S, Mattison DR, Caritis SN, Venkataramanan R, Strom SC: Metabolism of 17alpha-hydroxyprogesterone caproate, an agent for preventing preterm birth, by fetal hepatocytes. Drug Metab Dispos. 2010 May;38(5):723-7. doi: 10.1124/dmd.109.029918. Epub 2010 Jan 22.","parent_key":"BE0003612"} {"ref-id":"A14755","pubmed-id":11259318,"citation":"Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, Rushmore TH, Shou M: Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos. 2001 Apr;29(4 Pt 1):368-74.","parent_key":"BE0003536"} {"ref-id":"A38674","pubmed-id":9328296,"citation":"Yamazaki H, Shimada T: Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997 Oct 1;346(1):161-9. doi: 10.1006/abbi.1997.0302.","parent_key":"BE0003536"} {"ref-id":"A175783","pubmed-id":18957504,"citation":"Gomes LG, Huang N, Agrawal V, Mendonca BB, Bachega TA, Miller WL: Extraadrenal 21-hydroxylation by CYP2C19 and CYP3A4: effect on 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2009 Jan;94(1):89-95. doi: 10.1210/jc.2008-1174. Epub 2008 Oct 28.","parent_key":"BE0003536"} {"ref-id":"A175789","pubmed-id":16751594,"citation":"Mitsuda M, Iwasaki M, Asahi S: Cynomolgus monkey cytochrome P450 2C43: cDNA cloning, heterologous expression, purification and characterization. J Biochem. 2006 May;139(5):865-72. doi: 10.1093/jb/mvj093.","parent_key":"BE0003536"} {"ref-id":"A175792","pubmed-id":7487078,"citation":"Richardson TH, Jung F, Griffin KJ, Wester M, Raucy JL, Kemper B, Bornheim LM, Hassett C, Omiecinski CJ, Johnson EF: A universal approach to the expression of human and rabbit cytochrome P450s of the 2C subfamily in Escherichia coli. Arch Biochem Biophys. 1995 Oct 20;323(1):87-96. doi: 10.1006/abbi.1995.0013.","parent_key":"BE0003536"} {"ref-id":"A175762","pubmed-id":8765473,"citation":"Jang GR, Wrighton SA, Benet LZ: Identification of CYP3A4 as the principal enzyme catalyzing mifepristone (RU 486) oxidation in human liver microsomes. Biochem Pharmacol. 1996 Sep 13;52(5):753-61.","parent_key":"BE0002638"} {"ref-id":"A175765","pubmed-id":23018626,"citation":"Sevrioukova IF, Poulos TL: Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Trans. 2013 Mar 7;42(9):3116-26. doi: 10.1039/c2dt31833d. Epub 2012 Sep 27.","parent_key":"BE0002638"} {"ref-id":"A175768","pubmed-id":28339191,"citation":"Polic V, Auclair K: Allosteric Activation of Cytochrome P450 3A4 via Progesterone Bioconjugation. Bioconjug Chem. 2017 Apr 19;28(4):885-889. doi: 10.1021/acs.bioconjchem.6b00604. Epub 2017 Mar 29.","parent_key":"BE0002638"} {"ref-id":"A107830","pubmed-id":15256616,"citation":"Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H: Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science. 2004 Jul 30;305(5684):683-6. Epub 2004 Jul 15.","parent_key":"BE0002638"} {"ref-id":"A175771","pubmed-id":11301566,"citation":"Tsunoda SM, Harris RZ, Mroczkowski PJ, Benet LZ: Preliminary evaluation of progestins as inducers of cytochrome P450 3A4 activity in postmenopausal women. J Clin Pharmacol. 1998 Dec;38(12):1137-43.","parent_key":"BE0002638"} {"ref-id":"A21236","pubmed-id":22837389,"citation":"Choi SY, Koh KH, Jeong H: Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9. doi: 10.1124/dmd.112.046276. Epub 2012 Jul 26.","parent_key":"BE0002638"} {"ref-id":"A175822","pubmed-id":1875914,"citation":"Kossor DC, Kominami S, Takemori S, Colby HD: Role of the steroid 17 alpha-hydroxylase in spironolactone-mediated destruction of adrenal cytochrome P-450. Mol Pharmacol. 1991 Aug;40(2):321-5.","parent_key":"BE0000344"} {"ref-id":"A175825","pubmed-id":8070426,"citation":"Kater CE, Biglieri EG: Disorders of steroid 17 alpha-hydroxylase deficiency. Endocrinol Metab Clin North Am. 1994 Jun;23(2):341-57.","parent_key":"BE0000344"} {"ref-id":"A175828","pubmed-id":25301938,"citation":"Petrunak EM, DeVore NM, Porubsky PR, Scott EE: Structures of human steroidogenic cytochrome P450 17A1 with substrates. J Biol Chem. 2014 Nov 21;289(47):32952-64. doi: 10.1074/jbc.M114.610998. Epub 2014 Oct 9.","parent_key":"BE0000344"} {"ref-id":"A175810","pubmed-id":10975606,"citation":"Schwarz D, Kisselev P, Schunck WH, Chernogolov A, Boidol W, Cascorbi I, Roots I: Allelic variants of human cytochrome P450 1A1 (CYP1A1): effect of T461N and I462V substitutions on steroid hydroxylase specificity. Pharmacogenetics. 2000 Aug;10(6):519-30.","parent_key":"BE0003543"} {"ref-id":"A175813","pubmed-id":9667077,"citation":"Niwa T, Yabusaki Y, Honma K, Matsuo N, Tatsuta K, Ishibashi F, Katagiri M: Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998 Jun;28(6):539-47. doi: 10.1080/004982598239290 .","parent_key":"BE0003543"} {"ref-id":"A78763","pubmed-id":10426814,"citation":"Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM, Inoue K: Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis. 1999 Aug;20(8):1607-13. doi: 10.1093/carcin/20.8.1607.","parent_key":"BE0001111"} {"ref-id":"A175816","pubmed-id":28322972,"citation":"Li F, Zhu W, Gonzalez FJ: Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol Ther. 2017 Oct;178:18-30. doi: 10.1016/j.pharmthera.2017.03.007. Epub 2017 Mar 16.","parent_key":"BE0001111"} {"ref-id":"A175819","pubmed-id":11740343,"citation":"Jansson I, Stoilov I, Sarfarazi M, Schenkman JB: Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics. 2001 Dec;11(9):793-801.","parent_key":"BE0001111"} {"ref-id":"A21236","pubmed-id":22837389,"citation":"Choi SY, Koh KH, Jeong H: Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9. doi: 10.1124/dmd.112.046276. Epub 2012 Jul 26.","parent_key":"BE0003336"} {"ref-id":"A175801","pubmed-id":15469888,"citation":"Niwa T, Hiroi T, Tsuzuki D, Yamamoto S, Narimatsu S, Fukuda T, Azuma J, Funae Y: Effect of genetic polymorphism on the metabolism of endogenous neuroactive substances, progesterone and p-tyramine, catalyzed by CYP2D6. Brain Res Mol Brain Res. 2004 Oct 22;129(1-2):117-23. doi: 10.1016/j.molbrainres.2004.06.030.","parent_key":"BE0002363"} {"ref-id":"A175804","pubmed-id":18310890,"citation":"Niwa T, Okada K, Hiroi T, Imaoka S, Narimatsu S, Funae Y: Effect of psychotropic drugs on the 21-hydroxylation of neurosteroids, progesterone and allopregnanolone, catalyzed by rat CYP2D4 and human CYP2D6 in the brain. Biol Pharm Bull. 2008 Mar;31(3):348-51.","parent_key":"BE0002363"} {"ref-id":"A175807","pubmed-id":24611668,"citation":"Miller RT, Miksys S, Hoffmann E, Tyndale RF: Ethanol self-administration and nicotine treatment increase brain levels of CYP2D in African green monkeys. Br J Pharmacol. 2014 Jun;171(12):3077-88. doi: 10.1111/bph.12652.","parent_key":"BE0002363"} {"ref-id":"A39382","pubmed-id":28362716,"citation":"Gong L, Giacomini MM, Giacomini C, Maitland ML, Altman RB, Klein TE: PharmGKB summary: sorafenib pathways. Pharmacogenet Genomics. 2017 Jun;27(6):240-246. doi: 10.1097/FPC.0000000000000279.","parent_key":"BE0002793"} {"ref-id":"A39383","pubmed-id":23845193,"citation":"Holstein A, Kovacs P, Beil W: Severe hypoglycemia due to possible interaction between glibenclamide and sorafenib in a patient with hepatocellular carcinoma. Curr Drug Saf. 2013 Apr;8(2):148-52.","parent_key":"BE0002793"} {"ref-id":"A14791","pubmed-id":20706860,"citation":"Gomo C, Coriat R, Faivre L, Mir O, Ropert S, Billemont B, Dauphin A, Tod M, Goldwasser F, Blanchet B: Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. 2011 Dec;29(6):1511-4. doi: 10.1007/s10637-010-9514-3. Epub 2010 Aug 13.","parent_key":"BE0002638"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0002638"} {"ref-id":"A14793","pubmed-id":21350850,"citation":"Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, O'Dwyer PJ: Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8. doi: 10.1007/s00280-011-1585-0. Epub 2011 Feb 25.","parent_key":"BE0002638"} {"ref-id":"A38664","pubmed-id":21266595,"citation":"Sugiyama M, Fujita K, Murayama N, Akiyama Y, Yamazaki H, Sasaki Y: Sorafenib and sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1'-hydroxylation. Drug Metab Dispos. 2011 May;39(5):757-62. doi: 10.1124/dmd.110.037853. Epub 2011 Jan 25.","parent_key":"BE0002638"} {"ref-id":"A14793","pubmed-id":21350850,"citation":"Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, O'Dwyer PJ: Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8. doi: 10.1007/s00280-011-1585-0. Epub 2011 Feb 25.","parent_key":"BE0003549"} {"ref-id":"A14793","pubmed-id":21350850,"citation":"Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, O'Dwyer PJ: Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8. doi: 10.1007/s00280-011-1585-0. Epub 2011 Feb 25.","parent_key":"BE0002887"} {"ref-id":"A14793","pubmed-id":21350850,"citation":"Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, O'Dwyer PJ: Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8. doi: 10.1007/s00280-011-1585-0. Epub 2011 Feb 25.","parent_key":"BE0002433"} {"ref-id":"A39121","pubmed-id":22927483,"citation":"Zimmerman EI, Roberts JL, Li L, Finkelstein D, Gibson A, Chaudhry AS, Schuetz EG, Rubnitz JE, Inaba H, Baker SD: Ontogeny and sorafenib metabolism. Clin Cancer Res. 2012 Oct 15;18(20):5788-95. doi: 10.1158/1078-0432.CCR-12-1967. Epub 2012 Aug 27.","parent_key":"BE0002433"} {"ref-id":"A14793","pubmed-id":21350850,"citation":"Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, O'Dwyer PJ: Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8. doi: 10.1007/s00280-011-1585-0. Epub 2011 Feb 25.","parent_key":"BE0003536"} {"ref-id":"A14793","pubmed-id":21350850,"citation":"Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, O'Dwyer PJ: Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8. doi: 10.1007/s00280-011-1585-0. Epub 2011 Feb 25.","parent_key":"BE0002363"} {"ref-id":"A14791","pubmed-id":20706860,"citation":"Gomo C, Coriat R, Faivre L, Mir O, Ropert S, Billemont B, Dauphin A, Tod M, Goldwasser F, Blanchet B: Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. 2011 Dec;29(6):1511-4. doi: 10.1007/s10637-010-9514-3. Epub 2010 Aug 13.","parent_key":"BE0003538"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0003538"} {"ref-id":"A14794","pubmed-id":19228077,"citation":"Keating GM, Santoro A: Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs. 2009;69(2):223-40. doi: 10.2165/00003495-200969020-00006.","parent_key":"BE0003538"} {"ref-id":"A16882","pubmed-id":9029748,"citation":"Rasmussen BB, Jeppesen U, Gaist D, Brosen K: Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit. 1997 Feb;19(1):56-62.","parent_key":"BE0002433"} {"ref-id":"A15703","pubmed-id":18505790,"citation":"Yasuda K, Ranade A, Venkataramanan R, Strom S, Chupka J, Ekins S, Schuetz E, Bachmann K: A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos. 2008 Aug;36(8):1689-97. doi: 10.1124/dmd.108.020701. Epub 2008 May 27.","parent_key":"BE0002638"} {"ref-id":"A35367","pubmed-id":17655375,"citation":"Ohno Y, Hisaka A, Suzuki H: General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681-96. doi: 10.2165/00003088-200746080-00005.","parent_key":"BE0002638"} {"ref-id":"A184793","pubmed-id":24816159,"citation":"Yuan L, Jia P, Sun Y, Zhao C, Zhi X, Sheng N, Zhang L: Study of in vitro metabolism of m-nisoldipine in human liver microsomes and recombinant cytochrome P450 enzymes by liquid chromatography-mass spectrometry. J Pharm Biomed Anal. 2014 Aug;97:65-71. doi: 10.1016/j.jpba.2014.03.030. Epub 2014 Mar 28.","parent_key":"BE0002638"} {"ref-id":"A14795","pubmed-id":15039299,"citation":"Lalovic B, Phillips B, Risler LL, Howald W, Shen DD: Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004 Apr;32(4):447-54.","parent_key":"BE0002638"} {"ref-id":"A179641","pubmed-id":11274997,"citation":"Carlson JN, Haskew R, Wacker J, Maisonneuve IM, Glick SD, Jerussi TP: Sedative and anxiolytic effects of zopiclone's enantiomers and metabolite. Eur J Pharmacol. 2001 Mar;415(2-3):181-9. doi: 10.1016/s0014-2999(01)00851-2.","parent_key":"BE0002638"} {"ref-id":"A38605","pubmed-id":10460808,"citation":"Becquemont L, Mouajjah S, Escaffre O, Beaune P, Funck-Brentano C, Jaillon P: Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab Dispos. 1999 Sep;27(9):1068-73.","parent_key":"BE0002638"} {"ref-id":"A14795","pubmed-id":15039299,"citation":"Lalovic B, Phillips B, Risler LL, Howald W, Shen DD: Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004 Apr;32(4):447-54.","parent_key":"BE0002887"} {"ref-id":"A38605","pubmed-id":10460808,"citation":"Becquemont L, Mouajjah S, Escaffre O, Beaune P, Funck-Brentano C, Jaillon P: Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab Dispos. 1999 Sep;27(9):1068-73.","parent_key":"BE0002887"} {"ref-id":"A38666","pubmed-id":17200836,"citation":"Allqvist A, Miura J, Bertilsson L, Mirghani RA: Inhibition of CYP3A4 and CYP3A5 catalyzed metabolism of alprazolam and quinine by ketoconazole as racemate and four different enantiomers. Eur J Clin Pharmacol. 2007 Feb;63(2):173-9. doi: 10.1007/s00228-006-0230-z. Epub 2007 Jan 3.","parent_key":"BE0002362"} {"ref-id":"A184277","pubmed-id":16765147,"citation":"Park JY, Kim KA, Park PW, Lee OJ, Kang DK, Shon JH, Liu KH, Shin JG: Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin Pharmacol Ther. 2006 Jun;79(6):590-9. doi: 10.1016/j.clpt.2006.02.008.","parent_key":"BE0002362"} {"ref-id":"A184280","pubmed-id":11745908,"citation":"Hirota N, Ito K, Iwatsubo T, Green CE, Tyson CA, Shimada N, Suzuki H, Sugiyama Y: In vitro/in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans. Biopharm Drug Dispos. 2001 Mar;22(2):53-71.","parent_key":"BE0002362"} {"ref-id":"A39313","pubmed-id":10050706,"citation":"Marsh JC, Chowdry J, Parry-Jones N, Ellis SW, Muir KR, Gordon-Smith EC, Tucker GT: Study of the association between cytochromes P450 2D6 and 2E1 genotypes and the risk of drug and chemical induced idiosyncratic aplastic anaemia. Br J Haematol. 1999 Feb;104(2):266-70.","parent_key":"BE0002363"} {"ref-id":"A39401","pubmed-id":28074333,"citation":"Bazargan M, Foster DJ, Davey AK, Muhlhausler BS: Rosiglitazone Metabolism in Human Liver Microsomes Using a Substrate Depletion Method. Drugs R D. 2017 Mar;17(1):189-198. doi: 10.1007/s40268-016-0166-4.","parent_key":"BE0002887"} {"ref-id":"A184799","pubmed-id":17178266,"citation":"Kirchheiner J, Thomas S, Bauer S, Tomalik-Scharte D, Hering U, Doroshyenko O, Jetter A, Stehle S, Tsahuridu M, Meineke I, Brockmoller J, Fuhr U: Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin Pharmacol Ther. 2006 Dec;80(6):657-67. doi: 10.1016/j.clpt.2006.09.008.","parent_key":"BE0002887"} {"ref-id":"A184802","pubmed-id":15606443,"citation":"Hruska MW, Amico JA, Langaee TY, Ferrell RE, Fitzgerald SM, Frye RF: The effect of trimethoprim on CYP2C8 mediated rosiglitazone metabolism in human liver microsomes and healthy subjects. Br J Clin Pharmacol. 2005 Jan;59(1):70-9. doi: 10.1111/j.1365-2125.2005.02263.x.","parent_key":"BE0002887"} {"ref-id":"A39401","pubmed-id":28074333,"citation":"Bazargan M, Foster DJ, Davey AK, Muhlhausler BS: Rosiglitazone Metabolism in Human Liver Microsomes Using a Substrate Depletion Method. Drugs R D. 2017 Mar;17(1):189-198. doi: 10.1007/s40268-016-0166-4.","parent_key":"BE0002793"} {"ref-id":"A14965","pubmed-id":12642470,"citation":"Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46.","parent_key":"BE0002433"} {"ref-id":"A14965","pubmed-id":12642470,"citation":"Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46.","parent_key":"BE0003336"} {"ref-id":"A14965","pubmed-id":12642470,"citation":"Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46.","parent_key":"BE0002363"} {"ref-id":"A36627","pubmed-id":15900286,"citation":"Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ: Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther. 2005 May;77(5):404-14. doi: 10.1016/j.clpt.2004.12.266.","parent_key":"BE0002638"} {"ref-id":"A36662","pubmed-id":27092232,"citation":"May M, Schindler C: Clinically and pharmacologically relevant interactions of antidiabetic drugs. Ther Adv Endocrinol Metab. 2016 Apr;7(2):69-83. doi: 10.1177/2042018816638050. Epub 2016 Mar 31.","parent_key":"BE0002793"} {"ref-id":"A15671","pubmed-id":17558303,"citation":"Visser LE, van Schaik RH, Jan Danser AH, Hofman A, Witteman JC, van Duijn CM, Uitterlinden AG, Pols HA, Stricker BH: The risk of myocardial infarction in patients with reduced activity of cytochrome P450 2C9. Pharmacogenet Genomics. 2007 Jul;17(7):473-9.","parent_key":"BE0002793"} {"ref-id":"A23022","pubmed-id":14600250,"citation":"Chen Y, Ferguson SS, Negishi M, Goldstein JA: Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther. 2004 Feb;308(2):495-501. Epub 2003 Nov 4.","parent_key":"BE0002793"} {"ref-id":"A33266","pubmed-id":11181490,"citation":"Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, Daujat M, Waechter F, Fabre JM, Carrere N, Maurel P: Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos. 2001 Mar;29(3):242-51.","parent_key":"BE0002793"} {"ref-id":"A184124","pubmed-id":7924124,"citation":"Chan E, McLachlan A, O'Reilly R, Rowland M: Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic-pharmacodynamic model. Clin Pharmacol Ther. 1994 Sep;56(3):286-94. doi: 10.1038/clpt.1994.139.","parent_key":"BE0002793"} {"ref-id":"A15671","pubmed-id":17558303,"citation":"Visser LE, van Schaik RH, Jan Danser AH, Hofman A, Witteman JC, van Duijn CM, Uitterlinden AG, Pols HA, Stricker BH: The risk of myocardial infarction in patients with reduced activity of cytochrome P450 2C9. Pharmacogenet Genomics. 2007 Jul;17(7):473-9.","parent_key":"BE0002887"} {"ref-id":"A15654","pubmed-id":10064569,"citation":"Sakuma T, Ohtake M, Katsurayama Y, Jarukamjorn K, Nemoto N: Induction of CYP1A2 by phenobarbital in the livers of aryl hydrocarbon-responsive and -nonresponsive mice. Drug Metab Dispos. 1999 Mar;27(3):379-84.","parent_key":"BE0002433"} {"ref-id":"A39082","pubmed-id":9448747,"citation":"Zaher H, Yang TJ, Gelboin HV, Fernandez-Salguero P, Gonzalez FJ: Effect of phenobarbital on hepatic CYP1A1 and CYP1A2 in the Ahr-null mouse. Biochem Pharmacol. 1998 Jan 15;55(2):235-8.","parent_key":"BE0002433"} {"ref-id":"A38999","pubmed-id":12721102,"citation":"Wojcikowski J, Pichard-Garcia L, Maurel P, Daniel WA: Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Br J Pharmacol. 2003 Apr;138(8):1465-74. doi: 10.1038/sj.bjp.0705195.","parent_key":"BE0003536"} {"ref-id":"A15694","pubmed-id":20615392,"citation":"Wojcikowski J, Boksa J, Daniel WA: Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver--A comparison with other phenothiazines. Biochem Pharmacol. 2010 Oct 15;80(8):1252-9. doi: 10.1016/j.bcp.2010.06.045. Epub 2010 Jul 6.","parent_key":"BE0002433"} {"ref-id":"A38998","pubmed-id":14730101,"citation":"Daniel WA, Kot M, Wojcikowski J: Influence of classic and atypical neuroleptics on caffeine oxidation in rat liver microsomes. Pol J Pharmacol. 2003 Nov-Dec;55(6):1055-61.","parent_key":"BE0002433"} {"ref-id":"A38999","pubmed-id":12721102,"citation":"Wojcikowski J, Pichard-Garcia L, Maurel P, Daniel WA: Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Br J Pharmacol. 2003 Apr;138(8):1465-74. doi: 10.1038/sj.bjp.0705195.","parent_key":"BE0002433"} {"ref-id":"A38999","pubmed-id":12721102,"citation":"Wojcikowski J, Pichard-Garcia L, Maurel P, Daniel WA: Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Br J Pharmacol. 2003 Apr;138(8):1465-74. doi: 10.1038/sj.bjp.0705195.","parent_key":"BE0002638"} {"ref-id":"A38999","pubmed-id":12721102,"citation":"Wojcikowski J, Pichard-Garcia L, Maurel P, Daniel WA: Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Br J Pharmacol. 2003 Apr;138(8):1465-74. doi: 10.1038/sj.bjp.0705195.","parent_key":"BE0002793"} {"ref-id":"A38999","pubmed-id":12721102,"citation":"Wojcikowski J, Pichard-Garcia L, Maurel P, Daniel WA: Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Br J Pharmacol. 2003 Apr;138(8):1465-74. doi: 10.1038/sj.bjp.0705195.","parent_key":"BE0002363"} {"ref-id":"A16886","pubmed-id":976190,"citation":"Cheng SC, Suzuki K, Sadee W, Harding BW: Effects of spironolactone, canrenone and canrenoate-K on cytochrome P450, and 11beta- and 18-hydroxylation in bovine and human adrenal cortical mitochondria. Endocrinology. 1976 Oct;99(4):1097-106.","parent_key":"BE0000731"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0000731"} {"ref-id":"A175570","pubmed-id":20552178,"citation":"Cubala WJ, Wiglusz M, Burkiewicz A, Galuszko-Wegielnik M: Zolpidem pharmacokinetics and pharmacodynamics in metabolic interactions involving CYP3A: sex as a differentiating factor. Eur J Clin Pharmacol. 2010 Sep;66(9):955; author reply 957-8. doi: 10.1007/s00228-010-0854-x. Epub 2010 Jun 16.","parent_key":"BE0002638"} {"ref-id":"A175573","pubmed-id":25567214,"citation":"Galitz LA, Jayawardena S, Furey SA: Pharmacokinetic effects of simultaneous administration of single-dose gabapentin 500 mg and zolpidem tartrate 10 mg in healthy volunteers: a randomized, open-label, crossover trial. Drugs R D. 2015 Mar;15(1):71-7. doi: 10.1007/s40268-014-0079-z.","parent_key":"BE0002638"} {"ref-id":"A37210","pubmed-id":10383565,"citation":"Von Moltke LL, Greenblatt DJ, Granda BW, Duan SX, Grassi JM, Venkatakrishnan K, Harmatz JS, Shader RI: Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br J Clin Pharmacol. 1999 Jul;48(1):89-97.","parent_key":"BE0002433"} {"ref-id":"A38979","pubmed-id":21494350,"citation":"Inagaki T, Miyaoka T, Tsuji S, Inami Y, Nishida A, Horiguchi J: Adverse reactions to zolpidem: case reports and a review of the literature. Prim Care Companion J Clin Psychiatry. 2010;12(6). doi: 10.4088/PCC.09r00849bro.","parent_key":"BE0002433"} {"ref-id":"A175576","pubmed-id":30178440,"citation":"Byeon JY, Kim YH, Kim SH, Lee CM, Jung EH, Chae WK, Jang CG, Lee SY, Lee YJ: The influences of CYP2C9*1/*3 genotype on the pharmacokinetics of zolpidem. Arch Pharm Res. 2018 Sep;41(9):931-936. doi: 10.1007/s12272-018-1070-y. Epub 2018 Sep 3.","parent_key":"BE0002793"} {"ref-id":"A37210","pubmed-id":10383565,"citation":"Von Moltke LL, Greenblatt DJ, Granda BW, Duan SX, Grassi JM, Venkatakrishnan K, Harmatz JS, Shader RI: Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br J Clin Pharmacol. 1999 Jul;48(1):89-97.","parent_key":"BE0002793"} {"ref-id":"A38636","pubmed-id":17515707,"citation":"Barkin RL: Zolpidem extended-release: a single insomnia treatment option for sleep induction and sleep maintenance symptoms. Am J Ther. 2007 May-Jun;14(3):299-305. doi: 10.1097/MJT.0b013e31804c7292.","parent_key":"BE0003536"} {"ref-id":"A37210","pubmed-id":10383565,"citation":"Von Moltke LL, Greenblatt DJ, Granda BW, Duan SX, Grassi JM, Venkatakrishnan K, Harmatz JS, Shader RI: Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br J Clin Pharmacol. 1999 Jul;48(1):89-97.","parent_key":"BE0003536"} {"ref-id":"A175576","pubmed-id":30178440,"citation":"Byeon JY, Kim YH, Kim SH, Lee CM, Jung EH, Chae WK, Jang CG, Lee SY, Lee YJ: The influences of CYP2C9*1/*3 genotype on the pharmacokinetics of zolpidem. Arch Pharm Res. 2018 Sep;41(9):931-936. doi: 10.1007/s12272-018-1070-y. Epub 2018 Sep 3.","parent_key":"BE0003536"} {"ref-id":"A175576","pubmed-id":30178440,"citation":"Byeon JY, Kim YH, Kim SH, Lee CM, Jung EH, Chae WK, Jang CG, Lee SY, Lee YJ: The influences of CYP2C9*1/*3 genotype on the pharmacokinetics of zolpidem. Arch Pharm Res. 2018 Sep;41(9):931-936. doi: 10.1007/s12272-018-1070-y. Epub 2018 Sep 3.","parent_key":"BE0002363"} {"ref-id":"A19485","pubmed-id":8591727,"citation":"Pichard L, Gillet G, Bonfils C, Domergue J, Thenot JP, Maurel P: Oxidative metabolism of zolpidem by human liver cytochrome P450S. Drug Metab Dispos. 1995 Nov;23(11):1253-62.","parent_key":"BE0002363"} {"ref-id":"A14796","pubmed-id":9224775,"citation":"Rashidi MR, Smith JA, Clarke SE, Beedham C: In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Drug Metab Dispos. 1997 Jul;25(7):805-13.","parent_key":"BE0003539"} {"ref-id":"A14797","pubmed-id":12161167,"citation":"Al-Salmy HS: Inter-strain variability in aldehyde oxidase activity in the mouse. Comp Biochem Physiol C Toxicol Pharmacol. 2002 Jul;132(3):341-7.","parent_key":"BE0003539"} {"ref-id":"A17875","pubmed-id":15674819,"citation":"Choi YH, Lee AK, Bae SK, Kim SO, Lee MG: Pharmacokinetics of 5-fluorouracil in rats with diabetes mellitus induced by streptozotocin. Biopharm Drug Dispos. 2005 Apr;26(3):93-8.","parent_key":"BE0003543"} {"ref-id":"A17875","pubmed-id":15674819,"citation":"Choi YH, Lee AK, Bae SK, Kim SO, Lee MG: Pharmacokinetics of 5-fluorouracil in rats with diabetes mellitus induced by streptozotocin. Biopharm Drug Dispos. 2005 Apr;26(3):93-8.","parent_key":"BE0002433"} {"ref-id":"A17876","pubmed-id":15964029,"citation":"Kataoka S, Yasui H, Hiromura M, Sakurai H: Effect of insulin-mimetic vanadyl sulfate on cytochrome P450 2E1-dependent p-nitrophenol hydroxylation in the liver microsomes of streptozotocin-induced type 1 diabetic rats. Life Sci. 2005 Oct 14;77(22):2814-29.","parent_key":"BE0003533"} {"ref-id":"A39286","pubmed-id":15025745,"citation":"Davies SJ, Eayrs S, Pratt P, Lennard MS: Potential for drug interactions involving cytochromes P450 2D6 and 3A4 on general adult psychiatric and functional elderly psychiatric wards. Br J Clin Pharmacol. 2004 Apr;57(4):464-72. doi: 10.1111/j.1365-2125.2003.02040.x.","parent_key":"BE0002363"} {"ref-id":"A17760","pubmed-id":8621484,"citation":"Nakano R, Sato H, Watanabe A, Ito O, Shimizu T: Conserved Glu318 at the cytochrome P450 1A2 distal site is crucial in the nitric oxide complex stability. J Biol Chem. 1996 Apr 12;271(15):8570-4.","parent_key":"BE0002433"} {"ref-id":"A17761","pubmed-id":14622187,"citation":"Mulero-Navarro S, Santiago-Josefat B, Pozo-Guisado E, Merino JM, Fernandez-Salguero PM: Down-regulation of CYP1A2 induction during the maturation of mouse cerebellar granule cells in culture: role of nitric oxide accumulation. Eur J Neurosci. 2003 Oct;18(8):2265-72.","parent_key":"BE0002433"} {"ref-id":"A17762","pubmed-id":18206661,"citation":"Aitken AE, Lee CM, Morgan ET: Roles of nitric oxide in inflammatory downregulation of human cytochromes P450. Free Radic Biol Med. 2008 Mar 15;44(6):1161-8. doi: 10.1016/j.freeradbiomed.2007.12.010. Epub 2007 Dec 23.","parent_key":"BE0003549"} {"ref-id":"A39148","pubmed-id":28427998,"citation":"Lee CM, Tripathi S, Morgan ET: Nitric oxide-regulated proteolysis of human CYP2B6 via the ubiquitin-proteasome system. Free Radic Biol Med. 2017 Jul;108:478-486. doi: 10.1016/j.freeradbiomed.2017.04.015. Epub 2017 Apr 17.","parent_key":"BE0003549"} {"ref-id":"A17917","pubmed-id":14575816,"citation":"Watabe M, Isogai Y, Numazawa S, Yoshida T: Role of c-Myc in nitric oxide-mediated suppression of cytochrome P450 3A4. Life Sci. 2003 Nov 21;74(1):99-108.","parent_key":"BE0002638"} {"ref-id":"A664","pubmed-id":16507884,"citation":"Pacher P, Nivorozhkin A, Szabo C: Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006 Mar;58(1):87-114.","parent_key":"BE0002204"} {"ref-id":"A36705","pubmed-id":25314636,"citation":"Seth R, Kydd AS, Buchbinder R, Bombardier C, Edwards CJ: Allopurinol for chronic gout. Cochrane Database Syst Rev. 2014 Oct 14;(10):CD006077. doi: 10.1002/14651858.CD006077.pub3.","parent_key":"BE0002204"} {"ref-id":"A175945","pubmed-id":3536254,"citation":"Murrell GA, Rapeport WG: Clinical pharmacokinetics of allopurinol. Clin Pharmacokinet. 1986 Sep-Oct;11(5):343-53. doi: 10.2165/00003088-198611050-00001.","parent_key":"BE0002204"} {"ref-id":"A14736","pubmed-id":17178259,"citation":"Neuvonen PJ, Niemi M, Backman JT: Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006 Dec;80(6):565-81. doi: 10.1016/j.clpt.2006.09.003.","parent_key":"BE0002638"} {"ref-id":"A14737","pubmed-id":11523064,"citation":"Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64.","parent_key":"BE0002638"} {"ref-id":"A15319","pubmed-id":9172950,"citation":"Boberg M, Angerbauer R, Fey P, Kanhai WK, Karl W, Kern A, Ploschke J, Radtke M: Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P450 isozymes involved. Drug Metab Dispos. 1997 Mar;25(3):321-31.","parent_key":"BE0002638"} {"ref-id":"A14798","pubmed-id":12433802,"citation":"Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ: Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos. 2002 Dec;30(12):1352-6.","parent_key":"BE0002638"} {"ref-id":"A14736","pubmed-id":17178259,"citation":"Neuvonen PJ, Niemi M, Backman JT: Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006 Dec;80(6):565-81. doi: 10.1016/j.clpt.2006.09.003.","parent_key":"BE0002887"} {"ref-id":"A14798","pubmed-id":12433802,"citation":"Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ: Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos. 2002 Dec;30(12):1352-6.","parent_key":"BE0002887"} {"ref-id":"A14737","pubmed-id":11523064,"citation":"Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64.","parent_key":"BE0002363"} {"ref-id":"A14737","pubmed-id":11523064,"citation":"Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64.","parent_key":"BE0002793"} {"ref-id":"A20971","pubmed-id":15802384,"citation":"Kobayashi K, Yamanaka Y, Iwazaki N, Nakajo I, Hosokawa M, Negishi M, Chiba K: Identification of HMG-CoA reductase inhibitors as activators for human, mouse and rat constitutive androstane receptor. Drug Metab Dispos. 2005 Jul;33(7):924-9. Epub 2005 Mar 31.","parent_key":"BE0003549"} {"ref-id":"A33697","pubmed-id":12019187,"citation":"Wen X, Wang JS, Backman JT, Laitila J, Neuvonen PJ: Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab Dispos. 2002 Jun;30(6):631-5. doi: 10.1124/dmd.30.6.631.","parent_key":"BE0002793"} {"ref-id":"A191149","pubmed-id":26138612,"citation":"Goldman JL, Leeder JS, Van Haandel L, Pearce RE: In Vitro Hepatic Oxidative Biotransformation of Trimethoprim. Drug Metab Dispos. 2015 Sep;43(9):1372-80. doi: 10.1124/dmd.115.065193. Epub 2015 Jul 2.","parent_key":"BE0002793"} {"ref-id":"A191149","pubmed-id":26138612,"citation":"Goldman JL, Leeder JS, Van Haandel L, Pearce RE: In Vitro Hepatic Oxidative Biotransformation of Trimethoprim. Drug Metab Dispos. 2015 Sep;43(9):1372-80. doi: 10.1124/dmd.115.065193. Epub 2015 Jul 2.","parent_key":"BE0002638"} {"ref-id":"A191149","pubmed-id":26138612,"citation":"Goldman JL, Leeder JS, Van Haandel L, Pearce RE: In Vitro Hepatic Oxidative Biotransformation of Trimethoprim. Drug Metab Dispos. 2015 Sep;43(9):1372-80. doi: 10.1124/dmd.115.065193. Epub 2015 Jul 2.","parent_key":"BE0002433"} {"ref-id":"A33697","pubmed-id":12019187,"citation":"Wen X, Wang JS, Backman JT, Laitila J, Neuvonen PJ: Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab Dispos. 2002 Jun;30(6):631-5. doi: 10.1124/dmd.30.6.631.","parent_key":"BE0002887"} {"ref-id":"A192114","pubmed-id":22673009,"citation":"Matsunaga T, Maruyama M, Matsubara T, Nagata K, Yamazoe Y, Ohmori S: Mechanisms of CYP3A induction by glucocorticoids in human fetal liver cells. Drug Metab Pharmacokinet. 2012;27(6):653-7. doi: 10.2133/dmpk.dmpk-12-nt-018. Epub 2012 May 22.","parent_key":"BE0002638"} {"ref-id":"A192114","pubmed-id":22673009,"citation":"Matsunaga T, Maruyama M, Matsubara T, Nagata K, Yamazoe Y, Ohmori S: Mechanisms of CYP3A induction by glucocorticoids in human fetal liver cells. Drug Metab Pharmacokinet. 2012;27(6):653-7. doi: 10.2133/dmpk.dmpk-12-nt-018. Epub 2012 May 22.","parent_key":"BE0002362"} {"ref-id":"A192114","pubmed-id":22673009,"citation":"Matsunaga T, Maruyama M, Matsubara T, Nagata K, Yamazoe Y, Ohmori S: Mechanisms of CYP3A induction by glucocorticoids in human fetal liver cells. Drug Metab Pharmacokinet. 2012;27(6):653-7. doi: 10.2133/dmpk.dmpk-12-nt-018. Epub 2012 May 22.","parent_key":"BE0003612"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0003336"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0001111"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0003549"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0002887"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0002793"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0003536"} {"ref-id":"A38561","pubmed-id":11770832,"citation":"Baumhakel M, Kasel D, Rao-Schymanski RA, Bocker R, Beckurts KT, Zaigler M, Barthold D, Fuhr U: Screening for inhibitory effects of antineoplastic agents on CYP3A4 in human liver microsomes. Int J Clin Pharmacol Ther. 2001 Dec;39(12):517-28.","parent_key":"BE0002638"} {"ref-id":"A35714","pubmed-id":8114683,"citation":"Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR: O-demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol. 1994 Feb;45(2):352-8.","parent_key":"BE0002638"} {"ref-id":"A35714","pubmed-id":8114683,"citation":"Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR: O-demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol. 1994 Feb;45(2):352-8.","parent_key":"BE0002362"} {"ref-id":"A17747","pubmed-id":11302935,"citation":"Innocenti F, Iyer L, Ramirez J, Green MD, Ratain MJ: Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab Dispos. 2001 May;29(5):686-92.","parent_key":"BE0003679"} {"ref-id":"A17748","pubmed-id":16985101,"citation":"Zaya MJ, Hines RN, Stevens JC: Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos. 2006 Dec;34(12):2097-101. Epub 2006 Sep 19.","parent_key":"BE0003679"} {"ref-id":"A33244","pubmed-id":14576103,"citation":"Park JY, Kim KA, Kim SL: Chloramphenicol is a potent inhibitor of cytochrome P450 isoforms CYP2C19 and CYP3A4 in human liver microsomes. Antimicrob Agents Chemother. 2003 Nov;47(11):3464-9.","parent_key":"BE0002638"} {"ref-id":"A33244","pubmed-id":14576103,"citation":"Park JY, Kim KA, Kim SL: Chloramphenicol is a potent inhibitor of cytochrome P450 isoforms CYP2C19 and CYP3A4 in human liver microsomes. Antimicrob Agents Chemother. 2003 Nov;47(11):3464-9.","parent_key":"BE0003536"} {"ref-id":"A37122","pubmed-id":8169844,"citation":"Curi-Pedrosa R, Daujat M, Pichard L, Ourlin JC, Clair P, Gervot L, Lesca P, Domergue J, Joyeux H, Fourtanier G, et al.: Omeprazole and lansoprazole are mixed inducers of CYP1A and CYP3A in human hepatocytes in primary culture. J Pharmacol Exp Ther. 1994 Apr;269(1):384-92.","parent_key":"BE0003543"} {"ref-id":"A21048","pubmed-id":12623754,"citation":"Krusekopf S, Roots I, Hildebrandt AG, Kleeberg U: Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+ -ATPase inhibitors and other xenobiotics. Xenobiotica. 2003 Feb;33(2):107-18.","parent_key":"BE0003543"} {"ref-id":"A37135","pubmed-id":8627562,"citation":"Pearce RE, Rodrigues AD, Goldstein JA, Parkinson A: Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther. 1996 May;277(2):805-16.","parent_key":"BE0002887"} {"ref-id":"A37142","pubmed-id":7870052,"citation":"Pichard L, Curi-Pedrosa R, Bonfils C, Jacqz-Aigrain E, Domergue J, Joyeux H, Cosme J, Guengerich FP, Maurel P: Oxidative metabolism of lansoprazole by human liver cytochromes P450. Mol Pharmacol. 1995 Feb;47(2):410-8.","parent_key":"BE0002887"} {"ref-id":"A37239","pubmed-id":15537834,"citation":"Liu KH, Kim MJ, Jung WM, Kang W, Cha IJ, Shin JG: Lansoprazole enantiomer activates human liver microsomal CYP2C9 catalytic activity in a stereospecific and substrate-specific manner. Drug Metab Dispos. 2005 Feb;33(2):209-13. doi: 10.1124/dmd.104.001438. Epub 2004 Nov 10.","parent_key":"BE0002793"} {"ref-id":"A14770","pubmed-id":15258107,"citation":"Li XQ, Andersson TB, Ahlstrom M, Weidolf L: Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004 Aug;32(8):821-7.","parent_key":"BE0002793"} {"ref-id":"A37340","pubmed-id":15788366,"citation":"Liu KH, Kim MJ, Shon JH, Moon YS, Seol SY, Kang W, Cha IJ, Shin JG: Stereoselective inhibition of cytochrome P450 forms by lansoprazole and omeprazole in vitro. Xenobiotica. 2005 Jan;35(1):27-38. doi: 10.1080/00498250400026472 .","parent_key":"BE0002793"} {"ref-id":"A37252","pubmed-id":9224780,"citation":"Ko JW, Sukhova N, Thacker D, Chen P, Flockhart DA: Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos. 1997 Jul;25(7):853-62.","parent_key":"BE0002363"} {"ref-id":"A37284","pubmed-id":12975331,"citation":"Kim KA, Kim MJ, Park JY, Shon JH, Yoon YR, Lee SS, Liu KH, Chun JH, Hyun MH, Shin JG: Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab Dispos. 2003 Oct;31(10):1227-34. doi: 10.1124/dmd.31.10.1227.","parent_key":"BE0002638"} {"ref-id":"A37122","pubmed-id":8169844,"citation":"Curi-Pedrosa R, Daujat M, Pichard L, Ourlin JC, Clair P, Gervot L, Lesca P, Domergue J, Joyeux H, Fourtanier G, et al.: Omeprazole and lansoprazole are mixed inducers of CYP1A and CYP3A in human hepatocytes in primary culture. J Pharmacol Exp Ther. 1994 Apr;269(1):384-92.","parent_key":"BE0002638"} {"ref-id":"A37285","pubmed-id":9744552,"citation":"Masubuchi N, Li AP, Okazaki O: An evaluation of the cytochrome P450 induction potential of pantoprazole in primary human hepatocytes. Chem Biol Interact. 1998 Jul 3;114(1-2):1-13.","parent_key":"BE0002638"} {"ref-id":"A37135","pubmed-id":8627562,"citation":"Pearce RE, Rodrigues AD, Goldstein JA, Parkinson A: Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther. 1996 May;277(2):805-16.","parent_key":"BE0002638"} {"ref-id":"A37252","pubmed-id":9224780,"citation":"Ko JW, Sukhova N, Thacker D, Chen P, Flockhart DA: Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos. 1997 Jul;25(7):853-62.","parent_key":"BE0002638"} {"ref-id":"A37135","pubmed-id":8627562,"citation":"Pearce RE, Rodrigues AD, Goldstein JA, Parkinson A: Identification of the human P450 enzymes involved in lansoprazole metabolism. J Pharmacol Exp Ther. 1996 May;277(2):805-16.","parent_key":"BE0003536"} {"ref-id":"A37284","pubmed-id":12975331,"citation":"Kim KA, Kim MJ, Park JY, Shon JH, Yoon YR, Lee SS, Liu KH, Chun JH, Hyun MH, Shin JG: Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab Dispos. 2003 Oct;31(10):1227-34. doi: 10.1124/dmd.31.10.1227.","parent_key":"BE0003536"} {"ref-id":"A37340","pubmed-id":15788366,"citation":"Liu KH, Kim MJ, Shon JH, Moon YS, Seol SY, Kang W, Cha IJ, Shin JG: Stereoselective inhibition of cytochrome P450 forms by lansoprazole and omeprazole in vitro. Xenobiotica. 2005 Jan;35(1):27-38. doi: 10.1080/00498250400026472 .","parent_key":"BE0003536"} {"ref-id":"A37342","pubmed-id":12612455,"citation":"Kita T, Sakaeda T, Baba T, Aoyama N, Kakumoto M, Kurimoto Y, Kawahara Y, Okamura N, Kirita S, Kasuga M, Okumura K: Different contribution of CYP2C19 in the in vitro metabolism of three proton pump inhibitors. Biol Pharm Bull. 2003 Mar;26(3):386-90.","parent_key":"BE0003536"} {"ref-id":"A37343","pubmed-id":15496639,"citation":"Yasui-Furukori N, Saito M, Uno T, Takahata T, Sugawara K, Tateishi T: Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol. 2004 Nov;44(11):1223-9. doi: 10.1177/0091270004269015.","parent_key":"BE0003536"} {"ref-id":"A174244","pubmed-id":23350044,"citation":"Shin JM, Kim N: Pharmacokinetics and pharmacodynamics of the proton pump inhibitors. J Neurogastroenterol Motil. 2013 Jan;19(1):25-35. doi: 10.5056/jnm.2013.19.1.25. Epub 2013 Jan 8.","parent_key":"BE0003536"} {"ref-id":"A38567","pubmed-id":7838134,"citation":"Rane A, Liu Z, Henderson CJ, Wolf CR: Divergent regulation of cytochrome P450 enzymes by morphine and pethidine: a neuroendocrine mechanism? Mol Pharmacol. 1995 Jan;47(1):57-64.","parent_key":"BE0002638"} {"ref-id":"A38658","pubmed-id":22479158,"citation":"Buck ML: Is Meperidine the Drug That Just Won't Die? J Pediatr Pharmacol Ther. 2011 Jul;16(3):167-9. doi: 10.5863/1551-6776-16.3.167.","parent_key":"BE0002638"} {"ref-id":"A14802","pubmed-id":15319333,"citation":"Ramirez J, Innocenti F, Schuetz EG, Flockhart DA, Relling MV, Santucci R, Ratain MJ: CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab Dispos. 2004 Sep;32(9):930-6.","parent_key":"BE0003536"} {"ref-id":"A184841","pubmed-id":30902024,"citation":"Murray JL, Mercer SL, Jackson KD: Impact of cytochrome P450 variation on meperidine N-demethylation to the neurotoxic metabolite normeperidine. Xenobiotica. 2019 Mar 22:1-14. doi: 10.1080/00498254.2019.1599465.","parent_key":"BE0003536"} {"ref-id":"A14802","pubmed-id":15319333,"citation":"Ramirez J, Innocenti F, Schuetz EG, Flockhart DA, Relling MV, Santucci R, Ratain MJ: CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab Dispos. 2004 Sep;32(9):930-6.","parent_key":"BE0003549"} {"ref-id":"A14802","pubmed-id":15319333,"citation":"Ramirez J, Innocenti F, Schuetz EG, Flockhart DA, Relling MV, Santucci R, Ratain MJ: CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab Dispos. 2004 Sep;32(9):930-6.","parent_key":"BE0002363"} {"ref-id":"A38567","pubmed-id":7838134,"citation":"Rane A, Liu Z, Henderson CJ, Wolf CR: Divergent regulation of cytochrome P450 enzymes by morphine and pethidine: a neuroendocrine mechanism? Mol Pharmacol. 1995 Jan;47(1):57-64.","parent_key":"BE0002433"} {"ref-id":"A14803","pubmed-id":20159579,"citation":"Warzecha H, Ferme D, Peer M, Frank A, Unger M: Bioconversion of the antihistaminc drug loratadine by tobacco cell suspension cultures expressing human cytochrome P450 3A4. J Biosci Bioeng. 2010 Mar;109(3):288-90. doi: 10.1016/j.jbiosc.2009.09.001. Epub 2009 Sep 29.","parent_key":"BE0002638"} {"ref-id":"A14804","pubmed-id":20662320,"citation":"Li C, Lee MY, Choi JS: Effects of silybinin, CYP3A4 and P-glycoprotein inhibitor in vitro, on the bioavailability of loratadine in rats. Pharmazie. 2010 Jul;65(7):510-4.","parent_key":"BE0002638"} {"ref-id":"A15130","pubmed-id":11502723,"citation":"Barecki ME, Casciano CN, Johnson WW, Clement RP: In vitro characterization of the inhibition profile of loratadine, desloratadine, and 3-OH-desloratadine for five human cytochrome P-450 enzymes. Drug Metab Dispos. 2001 Sep;29(9):1173-5.","parent_key":"BE0002638"} {"ref-id":"A15130","pubmed-id":11502723,"citation":"Barecki ME, Casciano CN, Johnson WW, Clement RP: In vitro characterization of the inhibition profile of loratadine, desloratadine, and 3-OH-desloratadine for five human cytochrome P-450 enzymes. Drug Metab Dispos. 2001 Sep;29(9):1173-5.","parent_key":"BE0002363"} {"ref-id":"A39213","pubmed-id":8615885,"citation":"Yumibe N, Huie K, Chen KJ, Snow M, Clement RP, Cayen MN: Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem Pharmacol. 1996 Jan 26;51(2):165-72.","parent_key":"BE0002363"} {"ref-id":"A184322","pubmed-id":15932952,"citation":"Yin OQ, Shi XJ, Tomlinson B, Chow MS: Effect of cyp2d6*10 allele on the pharmacokinetics of loratadine in chinese subjects. Drug Metab Dispos. 2005 Sep;33(9):1283-7. doi: 10.1124/dmd.105.005025. Epub 2005 Jun 2.","parent_key":"BE0002363"} {"ref-id":"A38842","pubmed-id":19702548,"citation":"Ghosal A, Gupta S, Ramanathan R, Yuan Y, Lu X, Su AD, Alvarez N, Zbaida S, Chowdhury SK, Alton KB: Metabolism of loratadine and further characterization of its in vitro metabolites. Drug Metab Lett. 2009 Aug;3(3):162-70. Epub 2009 Aug 1.","parent_key":"BE0003543"} {"ref-id":"A185843","pubmed-id":27460981,"citation":"Aratyn-Schaus Y, Ramanathan R: Advances in high-resolution MS and hepatocyte models solve a long-standing metabolism challenge: the loratadine story. Bioanalysis. 2016 Aug;8(16):1645-62. doi: 10.4155/bio-2016-0094. Epub 2016 Jul 27.","parent_key":"BE0003543"} {"ref-id":"A15130","pubmed-id":11502723,"citation":"Barecki ME, Casciano CN, Johnson WW, Clement RP: In vitro characterization of the inhibition profile of loratadine, desloratadine, and 3-OH-desloratadine for five human cytochrome P-450 enzymes. Drug Metab Dispos. 2001 Sep;29(9):1173-5.","parent_key":"BE0003536"} {"ref-id":"A38842","pubmed-id":19702548,"citation":"Ghosal A, Gupta S, Ramanathan R, Yuan Y, Lu X, Su AD, Alvarez N, Zbaida S, Chowdhury SK, Alton KB: Metabolism of loratadine and further characterization of its in vitro metabolites. Drug Metab Lett. 2009 Aug;3(3):162-70. Epub 2009 Aug 1.","parent_key":"BE0003536"} {"ref-id":"A185843","pubmed-id":27460981,"citation":"Aratyn-Schaus Y, Ramanathan R: Advances in high-resolution MS and hepatocyte models solve a long-standing metabolism challenge: the loratadine story. Bioanalysis. 2016 Aug;8(16):1645-62. doi: 10.4155/bio-2016-0094. Epub 2016 Jul 27.","parent_key":"BE0003536"} {"ref-id":"A38842","pubmed-id":19702548,"citation":"Ghosal A, Gupta S, Ramanathan R, Yuan Y, Lu X, Su AD, Alvarez N, Zbaida S, Chowdhury SK, Alton KB: Metabolism of loratadine and further characterization of its in vitro metabolites. Drug Metab Lett. 2009 Aug;3(3):162-70. Epub 2009 Aug 1.","parent_key":"BE0002433"} {"ref-id":"A38842","pubmed-id":19702548,"citation":"Ghosal A, Gupta S, Ramanathan R, Yuan Y, Lu X, Su AD, Alvarez N, Zbaida S, Chowdhury SK, Alton KB: Metabolism of loratadine and further characterization of its in vitro metabolites. Drug Metab Lett. 2009 Aug;3(3):162-70. Epub 2009 Aug 1.","parent_key":"BE0003549"} {"ref-id":"A38842","pubmed-id":19702548,"citation":"Ghosal A, Gupta S, Ramanathan R, Yuan Y, Lu X, Su AD, Alvarez N, Zbaida S, Chowdhury SK, Alton KB: Metabolism of loratadine and further characterization of its in vitro metabolites. Drug Metab Lett. 2009 Aug;3(3):162-70. Epub 2009 Aug 1.","parent_key":"BE0002793"} {"ref-id":"A38842","pubmed-id":19702548,"citation":"Ghosal A, Gupta S, Ramanathan R, Yuan Y, Lu X, Su AD, Alvarez N, Zbaida S, Chowdhury SK, Alton KB: Metabolism of loratadine and further characterization of its in vitro metabolites. Drug Metab Lett. 2009 Aug;3(3):162-70. Epub 2009 Aug 1.","parent_key":"BE0002362"} {"ref-id":"A185843","pubmed-id":27460981,"citation":"Aratyn-Schaus Y, Ramanathan R: Advances in high-resolution MS and hepatocyte models solve a long-standing metabolism challenge: the loratadine story. Bioanalysis. 2016 Aug;8(16):1645-62. doi: 10.4155/bio-2016-0094. Epub 2016 Jul 27.","parent_key":"BE0003677"} {"ref-id":"A15131","pubmed-id":9316174,"citation":"Morinobu S, Tanaka T, Kawakatsu S, Totsuka S, Koyama E, Chiba K, Ishizaki T, Kubota T: Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosci. 1997 Aug;51(4):253-7.","parent_key":"BE0003536"} {"ref-id":"A15132","pubmed-id":9084457,"citation":"Madsen H, Rasmussen BB, Brosen K: Imipramine demethylation in vivo: impact of CYP1A2, CYP2C19, and CYP3A4. Clin Pharmacol Ther. 1997 Mar;61(3):319-24.","parent_key":"BE0003536"} {"ref-id":"A14805","pubmed-id":9190854,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997 Jun;281(3):1199-210.","parent_key":"BE0003536"} {"ref-id":"A14787","pubmed-id":12065442,"citation":"Obach RS, Reed-Hagen AE: Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos. 2002 Jul;30(7):831-7.","parent_key":"BE0003536"} {"ref-id":"A14805","pubmed-id":9190854,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997 Jun;281(3):1199-210.","parent_key":"BE0002363"} {"ref-id":"A39221","pubmed-id":15687478,"citation":"Nykamp DL, Blackmon CL, Schmidt PE, Roberson AG: QTc prolongation associated with combination therapy of levofloxacin, imipramine, and fluoxetine. Ann Pharmacother. 2005 Mar;39(3):543-6. doi: 10.1345/aph.1E513. Epub 2005 Feb 1.","parent_key":"BE0002363"} {"ref-id":"A14805","pubmed-id":9190854,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997 Jun;281(3):1199-210.","parent_key":"BE0002433"} {"ref-id":"A38892","pubmed-id":8502233,"citation":"Lemoine A, Gautier JC, Azoulay D, Kiffel L, Belloc C, Guengerich FP, Maurel P, Beaune P, Leroux JP: Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol. 1993 May;43(5):827-32.","parent_key":"BE0002433"} {"ref-id":"A14805","pubmed-id":9190854,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997 Jun;281(3):1199-210.","parent_key":"BE0002638"} {"ref-id":"A38891","pubmed-id":24782142,"citation":"Ramey K, Ma JD, Best BM, Atayee RS, Morello CM: Variability in metabolism of imipramine and desipramine using urinary excretion data. J Anal Toxicol. 2014 Jul-Aug;38(6):368-74. doi: 10.1093/jat/bku034. Epub 2014 Apr 29.","parent_key":"BE0002638"} {"ref-id":"A38902","pubmed-id":10534316,"citation":"Chen H, Brzezinski MR, Fantel AG, Juchau MR: Catalysis of drug oxidation during embryogenesis in human hepatic tissues using imipramine as a model substrate. Drug Metab Dispos. 1999 Nov;27(11):1306-8.","parent_key":"BE0003612"} {"ref-id":"A14805","pubmed-id":9190854,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997 Jun;281(3):1199-210.","parent_key":"BE0003549"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0003533"} {"ref-id":"A17750","pubmed-id":19204080,"citation":"Turpeinen M, Hofmann U, Klein K, Murdter T, Schwab M, Zanger UM: A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes. Drug Metab Dispos. 2009 May;37(5):1017-24. doi: 10.1124/dmd.108.025700. Epub 2009 Feb 9.","parent_key":"BE0002433"} {"ref-id":"A178918","pubmed-id":21532165,"citation":"Matsumoto K, Nemoto E, Hasegawa T, Akimoto M, Sugibayashi K: In vitro characterization of the cytochrome P450 isoforms involved in the metabolism of 6-methoxy-2-napthylacetic acid, an active metabolite of the prodrug nabumetone. Biol Pharm Bull. 2011;34(5):734-9.","parent_key":"BE0002793"} {"ref-id":"A178897","pubmed-id":24659525,"citation":"Matsumoto K, Hasegawa T, Koyanagi J, Takahashi T, Akimoto M, Sugibayashi K: Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes. Eur J Drug Metab Pharmacokinet. 2015 Jun;40(2):127-35. doi: 10.1007/s13318-014-0190-0.","parent_key":"BE0000329"} {"ref-id":"A176158","pubmed-id":27968707,"citation":"Kulo A, Smits A, Maleskic S, Van de Velde M, Van Calsteren K, De Hoon J, Verbesselt R, Deprest J, Allegaert K: Enantiomer-specific ketorolac pharmacokinetics in young women, including pregnancy and postpartum period. Bosn J Basic Med Sci. 2017 Feb 21;17(1):54-60. doi: 10.17305/bjbms.2016.1515.","parent_key":"BE0003679"} {"ref-id":"A176234","pubmed-id":28429492,"citation":"Valitalo PA, Kemppainen H, Kulo A, Smits A, van Calsteren K, Olkkola KT, de Hoon J, Knibbe CAJ, Allegaert K: Body weight, gender and pregnancy affect enantiomer-specific ketorolac pharmacokinetics. Br J Clin Pharmacol. 2017 Sep;83(9):1966-1975. doi: 10.1111/bcp.13311. Epub 2017 May 14.","parent_key":"BE0003679"} {"ref-id":"A176234","pubmed-id":28429492,"citation":"Valitalo PA, Kemppainen H, Kulo A, Smits A, van Calsteren K, Olkkola KT, de Hoon J, Knibbe CAJ, Allegaert K: Body weight, gender and pregnancy affect enantiomer-specific ketorolac pharmacokinetics. Br J Clin Pharmacol. 2017 Sep;83(9):1966-1975. doi: 10.1111/bcp.13311. Epub 2017 May 14.","parent_key":"BE0002887"} {"ref-id":"A176234","pubmed-id":28429492,"citation":"Valitalo PA, Kemppainen H, Kulo A, Smits A, van Calsteren K, Olkkola KT, de Hoon J, Knibbe CAJ, Allegaert K: Body weight, gender and pregnancy affect enantiomer-specific ketorolac pharmacokinetics. Br J Clin Pharmacol. 2017 Sep;83(9):1966-1975. doi: 10.1111/bcp.13311. Epub 2017 May 14.","parent_key":"BE0002793"} {"ref-id":"A17787","pubmed-id":7575510,"citation":"Sadar MD, Ash R, Andersson TB: Picrotoxin is a CYP1A1 inducer in rainbow trout hepatocytes. Biochem Biophys Res Commun. 1995 Sep 25;214(3):1060-6.","parent_key":"BE0003543"} {"ref-id":"A17788","pubmed-id":8954111,"citation":"Sadar MD, Westlind A, Blomstrand F, Andersson TB: Induction of CYP1A1 by GABA receptor ligands. Biochem Biophys Res Commun. 1996 Dec 4;229(1):231-7.","parent_key":"BE0003543"} {"ref-id":"A39049","pubmed-id":10096258,"citation":"Kinzig-Schippers M, Fuhr U, Zaigler M, Dammeyer J, Rusing G, Labedzki A, Bulitta J, Sorgel F: Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther. 1999 Mar;65(3):262-74. doi: 10.1016/S0009-9236(99)70105-0.","parent_key":"BE0002433"} {"ref-id":"A38978","pubmed-id":10579472,"citation":"Mirghani RA, Hellgren U, Westerberg PA, Ericsson O, Bertilsson L, Gustafsson LL: The roles of cytochrome P450 3A4 and 1A2 in the 3-hydroxylation of quinine in vivo. Clin Pharmacol Ther. 1999 Nov;66(5):454-60. doi: 10.1016/S0009-9236(99)70008-1.","parent_key":"BE0002433"} {"ref-id":"A14806","pubmed-id":8968357,"citation":"Zhao XJ, Yokoyama H, Chiba K, Wanwimolruk S, Ishizaki T: Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther. 1996 Dec;279(3):1327-34.","parent_key":"BE0002793"} {"ref-id":"A4466","pubmed-id":11159893,"citation":"Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33.","parent_key":"BE0003536"} {"ref-id":"A14806","pubmed-id":8968357,"citation":"Zhao XJ, Yokoyama H, Chiba K, Wanwimolruk S, Ishizaki T: Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther. 1996 Dec;279(3):1327-34.","parent_key":"BE0003536"} {"ref-id":"A20498","pubmed-id":12451431,"citation":"Bapiro TE, Andersson TB, Otter C, Hasler JA, Masimirembwa CM: Cytochrome P450 1A1/2 induction by antiparasitic drugs: dose-dependent increase in ethoxyresorufin O-deethylase activity and mRNA caused by quinine, primaquine and albendazole in HepG2 cells. Eur J Clin Pharmacol. 2002 Nov;58(8):537-42. Epub 2002 Oct 2.","parent_key":"BE0003543"} {"ref-id":"A37822","pubmed-id":11765139,"citation":"Ching MS, Blake CL, Malek NA, Angus PW, Ghabrial H: Differential inhibition of human CYP1A1 and CYP1A2 by quinidine and quinine. Xenobiotica. 2001 Nov;31(11):757-67. doi: 10.1080/00498250110065603 .","parent_key":"BE0003543"} {"ref-id":"A14806","pubmed-id":8968357,"citation":"Zhao XJ, Yokoyama H, Chiba K, Wanwimolruk S, Ishizaki T: Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther. 1996 Dec;279(3):1327-34.","parent_key":"BE0002638"} {"ref-id":"A38666","pubmed-id":17200836,"citation":"Allqvist A, Miura J, Bertilsson L, Mirghani RA: Inhibition of CYP3A4 and CYP3A5 catalyzed metabolism of alprazolam and quinine by ketoconazole as racemate and four different enantiomers. Eur J Clin Pharmacol. 2007 Feb;63(2):173-9. doi: 10.1007/s00228-006-0230-z. Epub 2007 Jan 3.","parent_key":"BE0002638"} {"ref-id":"A184100","pubmed-id":12920491,"citation":"Mirghani RA, Hellgren U, Bertilsson L, Gustafsson LL, Ericsson O: Metabolism and elimination of quinine in healthy volunteers. Eur J Clin Pharmacol. 2003 Sep;59(5-6):423-7. doi: 10.1007/s00228-003-0637-8. Epub 2003 Aug 12.","parent_key":"BE0002638"} {"ref-id":"A184103","pubmed-id":27716084,"citation":"Just JM, Weckbecker K, Just KS: Quinine induced simvastatin toxicity through cytochrome inhibition - a case report. BMC Geriatr. 2016 Oct 1;16(1):168. doi: 10.1186/s12877-016-0337-8.","parent_key":"BE0002638"} {"ref-id":"A39298","pubmed-id":9431830,"citation":"Kirkwood LC, Nation RL, Somogyi AA: Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine. Br J Clin Pharmacol. 1997 Dec;44(6):549-55.","parent_key":"BE0002363"} {"ref-id":"A37175","pubmed-id":12703961,"citation":"Hutzler JM, Walker GS, Wienkers LC: Inhibition of cytochrome P450 2D6: structure-activity studies using a series of quinidine and quinine analogues. Chem Res Toxicol. 2003 Apr;16(4):450-9. doi: 10.1021/tx025674x.","parent_key":"BE0002363"} {"ref-id":"A39479","pubmed-id":15229460,"citation":"Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G: CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther. 2004 Jul;76(1):18-26. doi: 10.1016/j.clpt.2004.03.002.","parent_key":"BE0002793"} {"ref-id":"A14816","pubmed-id":16118328,"citation":"Rodrigues AD: Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab Dispos. 2005 Nov;33(11):1567-75. Epub 2005 Aug 23.","parent_key":"BE0002793"} {"ref-id":"A184094","pubmed-id":16112652,"citation":"Bland TM, Haining RL, Tracy TS, Callery PS: CYP2C-catalyzed delta9-tetrahydrocannabinol metabolism: kinetics, pharmacogenetics and interaction with phenytoin. Biochem Pharmacol. 2005 Oct 1;70(7):1096-103. doi: 10.1016/j.bcp.2005.07.007.","parent_key":"BE0002793"} {"ref-id":"A184097","pubmed-id":19005461,"citation":"Sachse-Seeboth C, Pfeil J, Sehrt D, Meineke I, Tzvetkov M, Bruns E, Poser W, Vormfelde SV, Brockmoller J: Interindividual variation in the pharmacokinetics of Delta9-tetrahydrocannabinol as related to genetic polymorphisms in CYP2C9. Clin Pharmacol Ther. 2009 Mar;85(3):273-6. doi: 10.1038/clpt.2008.213. Epub 2008 Nov 12.","parent_key":"BE0002793"} {"ref-id":"A38757","pubmed-id":15608135,"citation":"Walsky RL, Obach RS, Gaman EA, Gleeson JP, Proctor WR: Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab Dispos. 2005 Mar;33(3):413-8. doi: 10.1124/dmd.104.002766. Epub 2004 Dec 17.","parent_key":"BE0002887"} {"ref-id":"A39263","pubmed-id":26374173,"citation":"Cardoso Jde O, Oliveira RV, Lu JB, Desta Z: In Vitro Metabolism of Montelukast by Cytochrome P450s and UDP-Glucuronosyltransferases. Drug Metab Dispos. 2015 Dec;43(12):1905-16. doi: 10.1124/dmd.115.065763.","parent_key":"BE0002793"} {"ref-id":"A38558","pubmed-id":11270912,"citation":"Harvey AT, Preskorn SH: Fluoxetine pharmacokinetics and effect on CYP2C19 in young and elderly volunteers. J Clin Psychopharmacol. 2001 Apr;21(2):161-6.","parent_key":"BE0003536"} {"ref-id":"A38663","pubmed-id":11453896,"citation":"Liu ZQ, Cheng ZN, Huang SL, Chen XP, Ou-Yang DS, Jiang CH, Zhou HH: Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol. 2001 Jul;52(1):96-9.","parent_key":"BE0003536"} {"ref-id":"A16881","pubmed-id":10997938,"citation":"Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Oct;28(10):1187-91.","parent_key":"BE0003536"} {"ref-id":"A16881","pubmed-id":10997938,"citation":"Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Oct;28(10):1187-91.","parent_key":"BE0002363"} {"ref-id":"A16881","pubmed-id":10997938,"citation":"Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Oct;28(10):1187-91.","parent_key":"BE0002793"} {"ref-id":"A37099","pubmed-id":19442216,"citation":"Wang JF, Yan JY, Wei DQ, Chou KC: Binding of CYP2C9 with diverse drugs and its implications for metabolic mechanism. Med Chem. 2009 May;5(3):263-70.","parent_key":"BE0002793"} {"ref-id":"A38981","pubmed-id":9384467,"citation":"Schmider J, Greenblatt DJ, von Moltke LL, Karsov D, Shader RI: Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol. 1997 Nov;44(5):495-8. doi: 10.1046/j.1365-2125.1997.00601.x.","parent_key":"BE0002793"} {"ref-id":"A38981","pubmed-id":9384467,"citation":"Schmider J, Greenblatt DJ, von Moltke LL, Karsov D, Shader RI: Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol. 1997 Nov;44(5):495-8. doi: 10.1046/j.1365-2125.1997.00601.x.","parent_key":"BE0002433"} {"ref-id":"A38982","pubmed-id":22707017,"citation":"English BA, Dortch M, Ereshefsky L, Jhee S: Clinically significant psychotropic drug-drug interactions in the primary care setting. Curr Psychiatry Rep. 2012 Aug;14(4):376-90. doi: 10.1007/s11920-012-0284-9.","parent_key":"BE0002433"} {"ref-id":"A16881","pubmed-id":10997938,"citation":"Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Oct;28(10):1187-91.","parent_key":"BE0002433"} {"ref-id":"A14972","pubmed-id":14709940,"citation":"DeVane CL, Donovan JL, Liston HL, Markowitz JS, Cheng KT, Risch SC, Willard L: Comparative CYP3A4 inhibitory effects of venlafaxine, fluoxetine, sertraline, and nefazodone in healthy volunteers. J Clin Psychopharmacol. 2004 Feb;24(1):4-10.","parent_key":"BE0002638"} {"ref-id":"A16881","pubmed-id":10997938,"citation":"Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Oct;28(10):1187-91.","parent_key":"BE0002638"} {"ref-id":"A16881","pubmed-id":10997938,"citation":"Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Oct;28(10):1187-91.","parent_key":"BE0003549"} {"ref-id":"A16881","pubmed-id":10997938,"citation":"Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000 Oct;28(10):1187-91.","parent_key":"BE0002362"} {"ref-id":"A14807","pubmed-id":21366359,"citation":"Knadler MP, Lobo E, Chappell J, Bergstrom R: Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet. 2011 May;50(5):281-94. doi: 10.2165/11539240-000000000-00000.","parent_key":"BE0002433"} {"ref-id":"A14808","pubmed-id":18307373,"citation":"Lobo ED, Bergstrom RF, Reddy S, Quinlan T, Chappell J, Hong Q, Ring B, Knadler MP: In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet. 2008;47(3):191-202.","parent_key":"BE0002433"} {"ref-id":"A14809","pubmed-id":17121211,"citation":"Authors unspecified: Duloxetine: new indication. Depression and diabetic neuropathy: too many adverse effects. Prescrire Int. 2006 Oct;15(85):168-72.","parent_key":"BE0002433"} {"ref-id":"A709","pubmed-id":19480470,"citation":"Carter NJ, McCormack PL: Duloxetine: a review of its use in the treatment of generalized anxiety disorder. CNS Drugs. 2009;23(6):523-41. doi: 10.2165/00023210-200923060-00006.","parent_key":"BE0002433"} {"ref-id":"A14807","pubmed-id":21366359,"citation":"Knadler MP, Lobo E, Chappell J, Bergstrom R: Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet. 2011 May;50(5):281-94. doi: 10.2165/11539240-000000000-00000.","parent_key":"BE0002363"} {"ref-id":"A14810","pubmed-id":19057238,"citation":"Preskorn SH, Nichols AI, Paul J, Patroneva AL, Helzner EC, Guico-Pabia CJ: Effect of desvenlafaxine on the cytochrome P450 2D6 enzyme system. J Psychiatr Pract. 2008 Nov;14(6):368-78. doi: 10.1097/01.pra.0000341891.43501.6b.","parent_key":"BE0002363"} {"ref-id":"A14809","pubmed-id":17121211,"citation":"Authors unspecified: Duloxetine: new indication. Depression and diabetic neuropathy: too many adverse effects. Prescrire Int. 2006 Oct;15(85):168-72.","parent_key":"BE0002363"} {"ref-id":"A709","pubmed-id":19480470,"citation":"Carter NJ, McCormack PL: Duloxetine: a review of its use in the treatment of generalized anxiety disorder. CNS Drugs. 2009;23(6):523-41. doi: 10.2165/00023210-200923060-00006.","parent_key":"BE0002363"} {"ref-id":"A14807","pubmed-id":21366359,"citation":"Knadler MP, Lobo E, Chappell J, Bergstrom R: Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet. 2011 May;50(5):281-94. doi: 10.2165/11539240-000000000-00000.","parent_key":"BE0002793"} {"ref-id":"A14722","pubmed-id":16910628,"citation":"Micallef J, Fakra E, Blin O: [Use of antidepressant drugs in schizophrenic patients with depression]. Encephale. 2006 Mar-Apr;32(2 Pt 1):263-9.","parent_key":"BE0002363"} {"ref-id":"A14811","pubmed-id":10688273,"citation":"Otani K, Aoshima T: Pharmacogenetics of classical and new antipsychotic drugs. Ther Drug Monit. 2000 Feb;22(1):118-21.","parent_key":"BE0002363"} {"ref-id":"A14812","pubmed-id":10901285,"citation":"Yoshii K, Kobayashi K, Tsumuji M, Tani M, Shimada N, Chiba K: Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci. 2000;67(2):175-84.","parent_key":"BE0002363"} {"ref-id":"A14812","pubmed-id":10901285,"citation":"Yoshii K, Kobayashi K, Tsumuji M, Tani M, Shimada N, Chiba K: Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci. 2000;67(2):175-84.","parent_key":"BE0002433"} {"ref-id":"A184424","pubmed-id":10608490,"citation":"Tateishi T, Kumai T, Watanabe M, Tanaka M, Kobayashi S: A comparison of the effect of five phenothiazines on hepatic CYP isoenzymes in rats. Pharmacol Toxicol. 1999 Nov;85(5):252-6.","parent_key":"BE0002638"} {"ref-id":"A184427","pubmed-id":23406751,"citation":"Wojcikowski J, Haduch A, Daniel WA: Effect of classic and atypical neuroleptics on cytochrome P450 3A (CYP3A) in rat liver. Pharmacol Rep. 2012;64(6):1411-8.","parent_key":"BE0002638"} {"ref-id":"A184157","pubmed-id":22859722,"citation":"VandenBrink BM, Davis JA, Pearson JT, Foti RS, Wienkers LC, Rock DA: Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation. Mol Pharmacol. 2012 Nov;82(5):835-42. doi: 10.1124/mol.112.080739. Epub 2012 Aug 2.","parent_key":"BE0002887"} {"ref-id":"A15054","pubmed-id":14709625,"citation":"Obach RS: Potent inhibition of human liver aldehyde oxidase by raloxifene. Drug Metab Dispos. 2004 Jan;32(1):89-97.","parent_key":"BE0003539"} {"ref-id":"A15055","pubmed-id":14681337,"citation":"Obach RS, Huynh P, Allen MC, Beedham C: Human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol. 2004 Jan;44(1):7-19.","parent_key":"BE0003539"} {"ref-id":"A15056","pubmed-id":19356090,"citation":"Sahi J, Khan KK, Black CB: Aldehyde oxidase activity and inhibition in hepatocytes and cytosolic fractions from mouse, rat, monkey and human. Drug Metab Lett. 2008 Aug;2(3):176-83.","parent_key":"BE0003539"} {"ref-id":"A38602","pubmed-id":20405834,"citation":"Moore CD, Reilly CA, Yost GS: CYP3A4-Mediated oxygenation versus dehydrogenation of raloxifene. Biochemistry. 2010 Jun 1;49(21):4466-75. doi: 10.1021/bi902213r.","parent_key":"BE0002638"} {"ref-id":"A184157","pubmed-id":22859722,"citation":"VandenBrink BM, Davis JA, Pearson JT, Foti RS, Wienkers LC, Rock DA: Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation. Mol Pharmacol. 2012 Nov;82(5):835-42. doi: 10.1124/mol.112.080739. Epub 2012 Aug 2.","parent_key":"BE0002638"} {"ref-id":"A34124","pubmed-id":22336956,"citation":"Gong L, Thorn CF, Bertagnolli MM, Grosser T, Altman RB, Klein TE: Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012 Apr;22(4):310-8. doi: 10.1097/FPC.0b013e32834f94cb.","parent_key":"BE0002638"} {"ref-id":"A14814","pubmed-id":10749518,"citation":"Davies NM, McLachlan AJ, Day RO, Williams KM: Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet. 2000 Mar;38(3):225-42. doi: 10.2165/00003088-200038030-00003.","parent_key":"BE0002793"} {"ref-id":"A14815","pubmed-id":20167001,"citation":"Mo SL, Zhou ZW, Yang LP, Wei MQ, Zhou SF: New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126.","parent_key":"BE0002793"} {"ref-id":"A14755","pubmed-id":11259318,"citation":"Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, Rushmore TH, Shou M: Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos. 2001 Apr;29(4 Pt 1):368-74.","parent_key":"BE0002793"} {"ref-id":"A15181","pubmed-id":12891223,"citation":"Werner U, Werner D, Rau T, Fromm MF, Hinz B, Brune K: Celecoxib inhibits metabolism of cytochrome P450 2D6 substrate metoprolol in humans. Clin Pharmacol Ther. 2003 Aug;74(2):130-7.","parent_key":"BE0002363"} {"ref-id":"A181379","pubmed-id":30219715,"citation":"Siu YA, Hao MH, Dixit V, Lai WG: Celecoxib is a substrate of CYP2D6: Impact on celecoxib metabolism in individuals with CYP2C9*3 variants. Drug Metab Pharmacokinet. 2018 Oct;33(5):219-227. doi: 10.1016/j.dmpk.2018.06.001. Epub 2018 Jun 19.","parent_key":"BE0002363"} {"ref-id":"A34124","pubmed-id":22336956,"citation":"Gong L, Thorn CF, Bertagnolli MM, Grosser T, Altman RB, Klein TE: Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012 Apr;22(4):310-8. doi: 10.1097/FPC.0b013e32834f94cb.","parent_key":"BE0002363"} {"ref-id":"A181382","pubmed-id":16003301,"citation":"Molden E, Braathen P: Celecoxib is often combined with cytochrome P450 2D6 substrates in general clinical practice. Clin Pharmacol Ther. 2005 Jul;78(1):93. doi: 10.1016/j.clpt.2005.04.009.","parent_key":"BE0002363"} {"ref-id":"A14817","pubmed-id":8905918,"citation":"Acheampong AA, Chien DS, Lam S, Vekich S, Breau A, Usansky J, Harcourt D, Munk SA, Nguyen H, Garst M, Tang-Liu D: Characterization of brimonidine metabolism with rat, rabbit, dog, monkey and human liver fractions and rabbit liver aldehyde oxidase. Xenobiotica. 1996 Oct;26(10):1035-55.","parent_key":"BE0003539"} {"ref-id":"A39048","pubmed-id":1510417,"citation":"Fuhr U, Anders EM, Mahr G, Sorgel F, Staib AH: Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob Agents Chemother. 1992 May;36(5):942-8.","parent_key":"BE0002433"} {"ref-id":"A40204","pubmed-id":12110375,"citation":"Labedzki A, Buters J, Jabrane W, Fuhr U: Differences in caffeine and paraxanthine metabolism between human and murine CYP1A2. Biochem Pharmacol. 2002 Jun 15;63(12):2159-67.","parent_key":"BE0002433"} {"ref-id":"A14818","pubmed-id":15640381,"citation":"Zhu M, Zhao W, Jimenez H, Zhang D, Yeola S, Dai R, Vachharajani N, Mitroka J: Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos. 2005 Apr;33(4):500-7. Epub 2005 Jan 7.","parent_key":"BE0002638"} {"ref-id":"A181796","pubmed-id":9578186,"citation":"Lamberg TS, Kivisto KT, Neuvonen PJ: Concentrations and effects of buspirone are considerably reduced by rifampicin. Br J Clin Pharmacol. 1998 Apr;45(4):381-5. doi: 10.1046/j.1365-2125.1998.t01-1-00698.x.","parent_key":"BE0002638"} {"ref-id":"A14818","pubmed-id":15640381,"citation":"Zhu M, Zhao W, Jimenez H, Zhang D, Yeola S, Dai R, Vachharajani N, Mitroka J: Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos. 2005 Apr;33(4):500-7. Epub 2005 Jan 7.","parent_key":"BE0002362"} {"ref-id":"A14818","pubmed-id":15640381,"citation":"Zhu M, Zhao W, Jimenez H, Zhang D, Yeola S, Dai R, Vachharajani N, Mitroka J: Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos. 2005 Apr;33(4):500-7. Epub 2005 Jan 7.","parent_key":"BE0002363"} {"ref-id":"A184391","pubmed-id":15185539,"citation":"Jagestedt M, von Bahr C: [Combination of serotonergic agents resulted in severe adverse effects]. Lakartidningen. 2004 Apr 29;101(18):1618-9.","parent_key":"BE0002363"} {"ref-id":"A15208","pubmed-id":11038168,"citation":"Lautala P, Ethell BT, Taskinen J, Burchell B: The specificity of glucuronidation of entacapone and tolcapone by recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos. 2000 Nov;28(11):1385-9.","parent_key":"BE0003538"} {"ref-id":"A15209","pubmed-id":12435745,"citation":"Kurkela M, Garcia-Horsman JA, Luukkanen L, Morsky S, Taskinen J, Baumann M, Kostiainen R, Hirvonen J, Finel M: Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs). UGT1A9 is more resistant to detergent inhibition than other UGTs and was purified as an active dimeric enzyme. J Biol Chem. 2003 Feb 7;278(6):3536-44. Epub 2002 Nov 14.","parent_key":"BE0003538"} {"ref-id":"A15210","pubmed-id":15802387,"citation":"Luukkanen L, Taskinen J, Kurkela M, Kostiainen R, Hirvonen J, Finel M: Kinetic characterization of the 1A subfamily of recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos. 2005 Jul;33(7):1017-26. Epub 2005 Mar 31.","parent_key":"BE0003538"} {"ref-id":"A182912","pubmed-id":9660999,"citation":"Fayz S, Inaba T: Zidovudine azido-reductase in human liver microsomes: activation by ethacrynic acid, dipyridamole, and indomethacin and inhibition by human immunodeficiency virus protease inhibitors. Antimicrob Agents Chemother. 1998 Jul;42(7):1654-8.","parent_key":"BE0003336"} {"ref-id":"A183263","pubmed-id":10417493,"citation":"Gallicano KD, Sahai J, Shukla VK, Seguin I, Pakuts A, Kwok D, Foster BC, Cameron DW: Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol. 1999 Aug;48(2):168-79. doi: 10.1046/j.1365-2125.1999.00987.x.","parent_key":"BE0002638"} {"ref-id":"A751","pubmed-id":12920168,"citation":"Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, Greenblatt DJ: Evaluation of 3'-azido-3'-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos. 2003 Sep;31(9):1125-33.","parent_key":"BE0003679"} {"ref-id":"A14819","pubmed-id":16584282,"citation":"Skerjanec A: The clinical pharmacokinetics of darifenacin. Clin Pharmacokinet. 2006;45(4):325-50.","parent_key":"BE0002638"} {"ref-id":"A14819","pubmed-id":16584282,"citation":"Skerjanec A: The clinical pharmacokinetics of darifenacin. Clin Pharmacokinet. 2006;45(4):325-50.","parent_key":"BE0002363"} {"ref-id":"A14795","pubmed-id":15039299,"citation":"Lalovic B, Phillips B, Risler LL, Howald W, Shen DD: Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004 Apr;32(4):447-54.","parent_key":"BE0002363"} {"ref-id":"A178639","pubmed-id":26227254,"citation":"DePriest AZ, Puet BL, Holt AC, Roberts A, Cone EJ: Metabolism and Disposition of Prescription Opioids: A Review. Forensic Sci Rev. 2015 Jul;27(2):115-45.","parent_key":"BE0002363"} {"ref-id":"A184091","pubmed-id":23555934,"citation":"Stamer UM, Zhang L, Book M, Lehmann LE, Stuber F, Musshoff F: CYP2D6 genotype dependent oxycodone metabolism in postoperative patients. PLoS One. 2013;8(3):e60239. doi: 10.1371/journal.pone.0060239. Epub 2013 Mar 28.","parent_key":"BE0002363"} {"ref-id":"A178639","pubmed-id":26227254,"citation":"DePriest AZ, Puet BL, Holt AC, Roberts A, Cone EJ: Metabolism and Disposition of Prescription Opioids: A Review. Forensic Sci Rev. 2015 Jul;27(2):115-45.","parent_key":"BE0002638"} {"ref-id":"A14795","pubmed-id":15039299,"citation":"Lalovic B, Phillips B, Risler LL, Howald W, Shen DD: Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004 Apr;32(4):447-54.","parent_key":"BE0002362"} {"ref-id":"A178639","pubmed-id":26227254,"citation":"DePriest AZ, Puet BL, Holt AC, Roberts A, Cone EJ: Metabolism and Disposition of Prescription Opioids: A Review. Forensic Sci Rev. 2015 Jul;27(2):115-45.","parent_key":"BE0002362"} {"ref-id":"A184823","pubmed-id":21209234,"citation":"Naito T, Takashina Y, Yamamoto K, Tashiro M, Ohnishi K, Kagawa Y, Kawakami J: CYP3A5*3 affects plasma disposition of noroxycodone and dose escalation in cancer patients receiving oxycodone. J Clin Pharmacol. 2011 Nov;51(11):1529-38. doi: 10.1177/0091270010388033. Epub 2011 Jan 5.","parent_key":"BE0002362"} {"ref-id":"A38845","pubmed-id":17403914,"citation":"Kang P, Dalvie D, Smith E, Zhou S, Deese A: Identification of a novel glutathione conjugate of flutamide in incubations with human liver microsomes. Drug Metab Dispos. 2007 Jul;35(7):1081-8. doi: 10.1124/dmd.107.014860. Epub 2007 Apr 2.","parent_key":"BE0002638"} {"ref-id":"A14820","pubmed-id":9351907,"citation":"Shet MS, McPhaul M, Fisher CW, Stallings NR, Estabrook RW: Metabolism of the antiandrogenic drug (Flutamide) by human CYP1A2. Drug Metab Dispos. 1997 Nov;25(11):1298-303.","parent_key":"BE0002638"} {"ref-id":"A14820","pubmed-id":9351907,"citation":"Shet MS, McPhaul M, Fisher CW, Stallings NR, Estabrook RW: Metabolism of the antiandrogenic drug (Flutamide) by human CYP1A2. Drug Metab Dispos. 1997 Nov;25(11):1298-303.","parent_key":"BE0002433"} {"ref-id":"A38905","pubmed-id":26265743,"citation":"Blobaum AL, Byers FW, Bridges TM, Locuson CW, Conn PJ, Lindsley CW, Daniels JS: A Screen of Approved Drugs Identifies the Androgen Receptor Antagonist Flutamide and Its Pharmacologically Active Metabolite 2-Hydroxy-Flutamide as Heterotropic Activators of Cytochrome P450 3A In Vitro and In Vivo. Drug Metab Dispos. 2015 Nov;43(11):1718-26. doi: 10.1124/dmd.115.064006. Epub 2015 Aug 11.","parent_key":"BE0002433"} {"ref-id":"A182762","pubmed-id":11160641,"citation":"Rochat B, Morsman JM, Murray GI, Figg WD, McLeod HL: Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther. 2001 Feb;296(2):537-41.","parent_key":"BE0003543"} {"ref-id":"A182762","pubmed-id":11160641,"citation":"Rochat B, Morsman JM, Murray GI, Figg WD, McLeod HL: Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther. 2001 Feb;296(2):537-41.","parent_key":"BE0001111"} {"ref-id":"A1","pubmed-id":16244762,"citation":"Smythe MA, Stephens JL, Koerber JM, Mattson JC: A comparison of lepirudin and argatroban outcomes. Clin Appl Thromb Hemost. 2005 Oct;11(4):371-4.","parent_key":"BE0003536"} {"ref-id":"A38845","pubmed-id":17403914,"citation":"Kang P, Dalvie D, Smith E, Zhou S, Deese A: Identification of a novel glutathione conjugate of flutamide in incubations with human liver microsomes. Drug Metab Dispos. 2007 Jul;35(7):1081-8. doi: 10.1124/dmd.107.014860. Epub 2007 Apr 2.","parent_key":"BE0002362"} {"ref-id":"A14820","pubmed-id":9351907,"citation":"Shet MS, McPhaul M, Fisher CW, Stallings NR, Estabrook RW: Metabolism of the antiandrogenic drug (Flutamide) by human CYP1A2. Drug Metab Dispos. 1997 Nov;25(11):1298-303.","parent_key":"BE0002362"} {"ref-id":"A38435","pubmed-id":10223772,"citation":"Martinez C, Albet C, Agundez JA, Herrero E, Carrillo JA, Marquez M, Benitez J, Ortiz JA: Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther. 1999 Apr;65(4):369-76. doi: 10.1016/S0009-9236(99)70129-3.","parent_key":"BE0002433"} {"ref-id":"A15650","pubmed-id":10385678,"citation":"Grundemann D, Liebich G, Kiefer N, Koster S, Schomig E: Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol. 1999 Jul;56(1):1-10.","parent_key":"BE0003536"} {"ref-id":"A37504","pubmed-id":11334262,"citation":"Furuta S, Kamada E, Suzuki T, Sugimoto T, Kawabata Y, Shinozaki Y, Sano H: Inhibition of drug metabolism in human liver microsomes by nizatidine, cimetidine and omeprazole. Xenobiotica. 2001 Jan;31(1):1-10. doi: 10.1080/00498250110035615.","parent_key":"BE0003536"} {"ref-id":"A38436","pubmed-id":11067738,"citation":"Satoh T, Fujita KI, Munakata H, Itoh S, Nakamura K, Kamataki T, Itoh S, Yoshizawa I: Studies on the interactions between drugs and estrogen: analytical method for prediction system of gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase. Anal Biochem. 2000 Nov 15;286(2):179-86. doi: 10.1006/abio.1999.4775.","parent_key":"BE0003536"} {"ref-id":"A37509","pubmed-id":16276979,"citation":"Park EJ, Cho HY, Lee YB: Effect of Cimetidine and Phenobarbital on metabolite kinetics of Omeprazole in rats. Arch Pharm Res. 2005 Oct;28(10):1196-202.","parent_key":"BE0003536"} {"ref-id":"A15651","pubmed-id":12130709,"citation":"Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002 Aug;302(2):510-5.","parent_key":"BE0002638"} {"ref-id":"A38436","pubmed-id":11067738,"citation":"Satoh T, Fujita KI, Munakata H, Itoh S, Nakamura K, Kamataki T, Itoh S, Yoshizawa I: Studies on the interactions between drugs and estrogen: analytical method for prediction system of gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase. Anal Biochem. 2000 Nov 15;286(2):179-86. doi: 10.1006/abio.1999.4775.","parent_key":"BE0002638"} {"ref-id":"A38435","pubmed-id":10223772,"citation":"Martinez C, Albet C, Agundez JA, Herrero E, Carrillo JA, Marquez M, Benitez J, Ortiz JA: Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther. 1999 Apr;65(4):369-76. doi: 10.1016/S0009-9236(99)70129-3.","parent_key":"BE0002638"} {"ref-id":"A38435","pubmed-id":10223772,"citation":"Martinez C, Albet C, Agundez JA, Herrero E, Carrillo JA, Marquez M, Benitez J, Ortiz JA: Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther. 1999 Apr;65(4):369-76. doi: 10.1016/S0009-9236(99)70129-3.","parent_key":"BE0002362"} {"ref-id":"A38435","pubmed-id":10223772,"citation":"Martinez C, Albet C, Agundez JA, Herrero E, Carrillo JA, Marquez M, Benitez J, Ortiz JA: Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther. 1999 Apr;65(4):369-76. doi: 10.1016/S0009-9236(99)70129-3.","parent_key":"BE0002363"} {"ref-id":"A38437","pubmed-id":8063004,"citation":"Orishiki M, Matsuo Y, Nishioka M, Ichikawa Y: In vivo administration of H2 blockers, cimetidine and ranitidine, reduced the contents of the cytochrome P450IID (CYP2D) subfamily and their activities in rat liver microsomes. Int J Biochem. 1994 Jun;26(6):751-8.","parent_key":"BE0002363"} {"ref-id":"A38438","pubmed-id":10664926,"citation":"Ishii Y, Nakamura K, Tsutsumi K, Kotegawa T, Nakano S, Nakatsuka K: Drug interaction between cimetidine and timolol ophthalmic solution: effect on heart rate and intraocular pressure in healthy Japanese volunteers. J Clin Pharmacol. 2000 Feb;40(2):193-9.","parent_key":"BE0002363"} {"ref-id":"A38439","pubmed-id":3023203,"citation":"Kenyon CJ, Fraser R, Birnie GG, Connell JM, Lever AF: Dose related in vitro effects of ranitidine and cimetidine on basal and ACTH-stimulated steroidogenesis. Gut. 1986 Oct;27(10):1143-6.","parent_key":"BE0000731"} {"ref-id":"A37504","pubmed-id":11334262,"citation":"Furuta S, Kamada E, Suzuki T, Sugimoto T, Kawabata Y, Shinozaki Y, Sano H: Inhibition of drug metabolism in human liver microsomes by nizatidine, cimetidine and omeprazole. Xenobiotica. 2001 Jan;31(1):1-10. doi: 10.1080/00498250110035615.","parent_key":"BE0002793"} {"ref-id":"A38441","pubmed-id":8126258,"citation":"Ohashi K, Sakamoto K, Sudo T, Tateishi T, Fujimura A, Shiga T, Ebihara A: Effects of diltiazem and cimetidine on theophylline oxidative metabolism. J Clin Pharmacol. 1993 Dec;33(12):1233-7.","parent_key":"BE0003533"} {"ref-id":"A38442","pubmed-id":1955133,"citation":"Knodell RG, Browne DG, Gwozdz GP, Brian WR, Guengerich FP: Differential inhibition of individual human liver cytochromes P-450 by cimetidine. Gastroenterology. 1991 Dec;101(6):1680-91.","parent_key":"BE0003533"} {"ref-id":"A17558","pubmed-id":11465082,"citation":"Cashman JR: Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr Drug Metab. 2000 Sep;1(2):181-91.","parent_key":"BE0003606"} {"ref-id":"A17559","pubmed-id":7720103,"citation":"Cashman JR, Park SB, Berkman CE, Cashman LE: Role of hepatic flavin-containing monooxygenase 3 in drug and chemical metabolism in adult humans. Chem Biol Interact. 1995 Apr 28;96(1):33-46.","parent_key":"BE0003606"} {"ref-id":"A17560","pubmed-id":19283698,"citation":"Hai X, Adams E, Hoogmartens J, Van Schepdael A: Enantioselective in-line and off-line CE methods for the kinetic study on cimetidine and its chiral metabolites with reference to flavin-containing monooxygenase genetic isoforms. Electrophoresis. 2009 Apr;30(7):1248-57. doi: 10.1002/elps.200800604.","parent_key":"BE0003606"} {"ref-id":"A17560","pubmed-id":19283698,"citation":"Hai X, Adams E, Hoogmartens J, Van Schepdael A: Enantioselective in-line and off-line CE methods for the kinetic study on cimetidine and its chiral metabolites with reference to flavin-containing monooxygenase genetic isoforms. Electrophoresis. 2009 Apr;30(7):1248-57. doi: 10.1002/elps.200800604.","parent_key":"BE0003609"} {"ref-id":"A17558","pubmed-id":11465082,"citation":"Cashman JR: Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr Drug Metab. 2000 Sep;1(2):181-91.","parent_key":"BE0003609"} {"ref-id":"A15647","pubmed-id":12584149,"citation":"Kalgutkar AS, Taylor TJ, Venkatakrishnan K, Isin EM: Assessment of the contributions of CYP3A4 and CYP3A5 in the metabolism of the antipsychotic agent haloperidol to its potentially neurotoxic pyridinium metabolite and effect of antidepressants on the bioactivation pathway. Drug Metab Dispos. 2003 Mar;31(3):243-9.","parent_key":"BE0002362"} {"ref-id":"A14821","pubmed-id":11133003,"citation":"Tateishi T, Watanabe M, Kumai T, Tanaka M, Moriya H, Yamaguchi S, Satoh T, Kobayashi S: CYP3A is responsible for N-dealkylation of haloperidol and bromperidol and oxidation of their reduced forms by human liver microsomes. Life Sci. 2000 Nov 3;67(24):2913-20.","parent_key":"BE0002433"} {"ref-id":"A38906","pubmed-id":11717183,"citation":"Fang J, McKay G, Song J, Remillrd A, Li X, Midha K: In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes. Drug Metab Dispos. 2001 Dec;29(12):1638-43.","parent_key":"BE0002433"} {"ref-id":"A32346","pubmed-id":10628896,"citation":"Kudo S, Ishizaki T: Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999 Dec;37(6):435-56. doi: 10.2165/00003088-199937060-00001.","parent_key":"BE0002363"} {"ref-id":"A15647","pubmed-id":12584149,"citation":"Kalgutkar AS, Taylor TJ, Venkatakrishnan K, Isin EM: Assessment of the contributions of CYP3A4 and CYP3A5 in the metabolism of the antipsychotic agent haloperidol to its potentially neurotoxic pyridinium metabolite and effect of antidepressants on the bioactivation pathway. Drug Metab Dispos. 2003 Mar;31(3):243-9.","parent_key":"BE0002638"} {"ref-id":"A32346","pubmed-id":10628896,"citation":"Kudo S, Ishizaki T: Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999 Dec;37(6):435-56. doi: 10.2165/00003088-199937060-00001.","parent_key":"BE0002638"} {"ref-id":"A31244","pubmed-id":9140699,"citation":"Fang J, Baker GB, Silverstone PH, Coutts RT: Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol. Cell Mol Neurobiol. 1997 Apr;17(2):227-33.","parent_key":"BE0002638"} {"ref-id":"A14862","pubmed-id":12433827,"citation":"Galetin A, Clarke SE, Houston JB: Quinidine and haloperidol as modifiers of CYP3A4 activity: multisite kinetic model approach. Drug Metab Dispos. 2002 Dec;30(12):1512-22.","parent_key":"BE0002638"} {"ref-id":"A38906","pubmed-id":11717183,"citation":"Fang J, McKay G, Song J, Remillrd A, Li X, Midha K: In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes. Drug Metab Dispos. 2001 Dec;29(12):1638-43.","parent_key":"BE0003536"} {"ref-id":"A38906","pubmed-id":11717183,"citation":"Fang J, McKay G, Song J, Remillrd A, Li X, Midha K: In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes. Drug Metab Dispos. 2001 Dec;29(12):1638-43.","parent_key":"BE0002793"} {"ref-id":"A38906","pubmed-id":11717183,"citation":"Fang J, McKay G, Song J, Remillrd A, Li X, Midha K: In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes. Drug Metab Dispos. 2001 Dec;29(12):1638-43.","parent_key":"BE0003543"} {"ref-id":"A19648","pubmed-id":20937904,"citation":"Sevrioukova IF, Poulos TL: Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18422-7. doi: 10.1073/pnas.1010693107. Epub 2010 Oct 11.","parent_key":"BE0002638"} {"ref-id":"A33209","pubmed-id":9549640,"citation":"von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Duan SX, Fogelman SM, Daily JP, Harmatz JS, Shader RI: Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol. 1998 Feb;38(2):106-11.","parent_key":"BE0002363"} {"ref-id":"A181355","pubmed-id":8960344,"citation":"Bremner RM, DeMeester TR: Current management of patients with esophageal motor abnormalities. Adv Surg. 1996;30:349-84.","parent_key":"BE0002363"} {"ref-id":"A181358","pubmed-id":18183034,"citation":"Wyen C, Fuhr U, Frank D, Aarnoutse RE, Klaassen T, Lazar A, Seeringer A, Doroshyenko O, Kirchheiner JC, Abdulrazik F, Schmeisser N, Lehmann C, Hein W, Schomig E, Burger DM, Fatkenheuer G, Jetter A: Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther. 2008 Jul;84(1):75-82. doi: 10.1038/sj.clpt.6100452. Epub 2008 Jan 9.","parent_key":"BE0002363"} {"ref-id":"A34234","pubmed-id":18577765,"citation":"Foisy MM, Yakiwchuk EM, Hughes CA: Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008 Jul;42(7):1048-59. doi: 10.1345/aph.1K615. Epub 2008 Jun 24.","parent_key":"BE0002793"} {"ref-id":"A33187","pubmed-id":16639344,"citation":"Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ Jr, Klein CE, Rublein JC, Kashuba AD: Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006 May;42(1):52-60. doi: 10.1097/01.qai.0000219774.20174.64.","parent_key":"BE0002793"} {"ref-id":"A38405","pubmed-id":17698824,"citation":"Hughes CA, Freitas A, Miedzinski LJ: Interaction between lopinavir/ritonavir and warfarin. CMAJ. 2007 Aug 14;177(4):357-9. doi: 10.1503/cmaj.061284.","parent_key":"BE0003536"} {"ref-id":"A33924","pubmed-id":28627229,"citation":"Tseng A, Hughes CA, Wu J, Seet J, Phillips EJ: Cobicistat Versus Ritonavir: Similar Pharmacokinetic Enhancers But Some Important Differences. Ann Pharmacother. 2017 Nov;51(11):1008-1022. doi: 10.1177/1060028017717018. Epub 2017 Jun 19.","parent_key":"BE0003536"} {"ref-id":"A33209","pubmed-id":9549640,"citation":"von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Duan SX, Fogelman SM, Daily JP, Harmatz JS, Shader RI: Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol. 1998 Feb;38(2):106-11.","parent_key":"BE0003536"} {"ref-id":"A33187","pubmed-id":16639344,"citation":"Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ Jr, Klein CE, Rublein JC, Kashuba AD: Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006 May;42(1):52-60. doi: 10.1097/01.qai.0000219774.20174.64.","parent_key":"BE0003536"} {"ref-id":"A39155","pubmed-id":27422672,"citation":"Fahmi OA, Shebley M, Palamanda J, Sinz MW, Ramsden D, Einolf HJ, Chen L, Wang H: Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective. Drug Metab Dispos. 2016 Oct;44(10):1720-30. doi: 10.1124/dmd.116.071076. Epub 2016 Jul 15.","parent_key":"BE0003549"} {"ref-id":"A183968","pubmed-id":23886699,"citation":"Lin HL, D'Agostino J, Kenaan C, Calinski D, Hollenberg PF: The effect of ritonavir on human CYP2B6 catalytic activity: heme modification contributes to the mechanism-based inactivation of CYP2B6 and CYP3A4 by ritonavir. Drug Metab Dispos. 2013 Oct;41(10):1813-24. doi: 10.1124/dmd.113.053108. Epub 2013 Jul 25.","parent_key":"BE0003549"} {"ref-id":"A184163","pubmed-id":26945713,"citation":"Marzolini C, Gibbons S, Khoo S, Back D: Cobicistat versus ritonavir boosting and differences in the drug-drug interaction profiles with co-medications. J Antimicrob Chemother. 2016 Jul;71(7):1755-8. doi: 10.1093/jac/dkw032. Epub 2016 Mar 5.","parent_key":"BE0002887"} {"ref-id":"A184169","pubmed-id":28411400,"citation":"Shebley M, Fu W, Badri P, Bow D, Fischer V: Physiologically Based Pharmacokinetic Modeling Suggests Limited Drug-Drug Interaction Between Clopidogrel and Dasabuvir. Clin Pharmacol Ther. 2017 Oct;102(4):679-687. doi: 10.1002/cpt.689. Epub 2017 Jun 3.","parent_key":"BE0002887"} {"ref-id":"A35826","pubmed-id":17542771,"citation":"Vourvahis M, Kashuba AD: Mechanisms of pharmacokinetic and pharmacodynamic drug interactions associated with ritonavir-enhanced tipranavir. Pharmacotherapy. 2007 Jun;27(6):888-909. doi: 10.1592/phco.27.6.888.","parent_key":"BE0002433"} {"ref-id":"A39081","pubmed-id":9278209,"citation":"Eagling VA, Back DJ, Barry MG: Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997 Aug;44(2):190-4.","parent_key":"BE0002433"} {"ref-id":"A37601","pubmed-id":21930825,"citation":"Kirby BJ, Collier AC, Kharasch ED, Dixit V, Desai P, Whittington D, Thummel KE, Unadkat JD: Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metab Dispos. 2011 Dec;39(12):2329-37. doi: 10.1124/dmd.111.038646. Epub 2011 Sep 19.","parent_key":"BE0002433"} {"ref-id":"A33924","pubmed-id":28627229,"citation":"Tseng A, Hughes CA, Wu J, Seet J, Phillips EJ: Cobicistat Versus Ritonavir: Similar Pharmacokinetic Enhancers But Some Important Differences. Ann Pharmacother. 2017 Nov;51(11):1008-1022. doi: 10.1177/1060028017717018. Epub 2017 Jun 19.","parent_key":"BE0009758"} {"ref-id":"A17734","pubmed-id":2502880,"citation":"Subramanyam B, Callery PS, Geelhaar LA, Egorin MJ: A cyclic imine intermediate in the in vitro metabolic conversion of 1,6-diaminohexane to 6-aminohexanoic acid and caprolactam. Xenobiotica. 1989 Jan;19(1):33-42.","parent_key":"BE0003539"} {"ref-id":"A14822","pubmed-id":12401364,"citation":"Zhang T, Zhu Y, Gunaratna C: Rapid and quantitative determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography-electrospray ionization-ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Nov 25;780(2):371-9.","parent_key":"BE0002363"} {"ref-id":"A14823","pubmed-id":11602530,"citation":"Yu A, Haining RL: Comparative contribution to dextromethorphan metabolism by cytochrome P450 isoforms in vitro: can dextromethorphan be used as a dual probe for both CTP2D6 and CYP3A activities? Drug Metab Dispos. 2001 Nov;29(11):1514-20.","parent_key":"BE0002363"} {"ref-id":"A184088","pubmed-id":9690700,"citation":"Zawertailo LA, Kaplan HL, Busto UE, Tyndale RF, Sellers EM: Psychotropic effects of dextromethorphan are altered by the CYP2D6 polymorphism: a pilot study. J Clin Psychopharmacol. 1998 Aug;18(4):332-7.","parent_key":"BE0002363"} {"ref-id":"A39156","pubmed-id":12433797,"citation":"Yuan R, Madani S, Wei XX, Reynolds K, Huang SM: Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos. 2002 Dec;30(12):1311-9.","parent_key":"BE0002363"} {"ref-id":"A14823","pubmed-id":11602530,"citation":"Yu A, Haining RL: Comparative contribution to dextromethorphan metabolism by cytochrome P450 isoforms in vitro: can dextromethorphan be used as a dual probe for both CTP2D6 and CYP3A activities? Drug Metab Dispos. 2001 Nov;29(11):1514-20.","parent_key":"BE0002638"} {"ref-id":"A184265","pubmed-id":10760842,"citation":"Wang Y, Unadkat JD: Enzymes in addition to CYP3A4 and 3A5 mediate N-demethylation of dextromethorphan in human liver microsomes. Biopharm Drug Dispos. 1999 Oct;20(7):341-6.","parent_key":"BE0002638"} {"ref-id":"A214466","pubmed-id":9113345,"citation":"Schmider J, Greenblatt DJ, Fogelman SM, von Moltke LL, Shader RI: Metabolism of dextromethorphan in vitro: involvement of cytochromes P450 2D6 and 3A3/4, with a possible role of 2E1. Biopharm Drug Dispos. 1997 Apr;18(3):227-40. doi: 10.1002/(sici)1099-081x(199704)18:3<227::aid-bdd18>3.0.co;2-l.","parent_key":"BE0002638"} {"ref-id":"A183272","pubmed-id":8043020,"citation":"Gorski JC, Jones DR, Wrighton SA, Hall SD: Characterization of dextromethorphan N-demethylation by human liver microsomes. Contribution of the cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol. 1994 Jul 5;48(1):173-82. doi: 10.1016/0006-2952(94)90237-2.","parent_key":"BE0003612"} {"ref-id":"A14823","pubmed-id":11602530,"citation":"Yu A, Haining RL: Comparative contribution to dextromethorphan metabolism by cytochrome P450 isoforms in vitro: can dextromethorphan be used as a dual probe for both CTP2D6 and CYP3A activities? Drug Metab Dispos. 2001 Nov;29(11):1514-20.","parent_key":"BE0003549"} {"ref-id":"A182900","pubmed-id":9811160,"citation":"von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Venkatakrishnan K, Schmider J, Harmatz JS, Shader RI: Multiple human cytochromes contribute to biotransformation of dextromethorphan in-vitro: role of CYP2C9, CYP2C19, CYP2D6, and CYP3A. J Pharm Pharmacol. 1998 Sep;50(9):997-1004. doi: 10.1111/j.2042-7158.1998.tb06914.x.","parent_key":"BE0003536"} {"ref-id":"A182900","pubmed-id":9811160,"citation":"von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Venkatakrishnan K, Schmider J, Harmatz JS, Shader RI: Multiple human cytochromes contribute to biotransformation of dextromethorphan in-vitro: role of CYP2C9, CYP2C19, CYP2D6, and CYP3A. J Pharm Pharmacol. 1998 Sep;50(9):997-1004. doi: 10.1111/j.2042-7158.1998.tb06914.x.","parent_key":"BE0002793"} {"ref-id":"A17795","pubmed-id":15986578,"citation":"Yilmaz HR, Sogut S, Ozyurt B, Ozugurlu F, Sahin S, Isik B, Uz E, Ozyurt H: The activities of liver adenosine deaminase, xanthine oxidase, catalase, superoxide dismutase enzymes and the levels of malondialdehyde and nitric oxide after cisplatin toxicity in rats: protective effect of caffeic acid phenethyl ester. Toxicol Ind Health. 2005 May;21(3-4):67-73.","parent_key":"BE0002204"} {"ref-id":"A17796","pubmed-id":16158393,"citation":"Cetin R, Devrim E, Kilicoglu B, Avci A, Candir O, Durak I: Cisplatin impairs antioxidant system and causes oxidation in rat kidney tissues: possible protective roles of natural antioxidant foods. J Appl Toxicol. 2006 Jan-Feb;26(1):42-6.","parent_key":"BE0002204"} {"ref-id":"A17793","pubmed-id":19818462,"citation":"Erdogan S, Tosyali E, Duzguner V, Kucukgul A, Aslantas O, Celik S: Cisplatin reduces Brucella melitensis-infected cell number by inducing apoptosis, oxidant and pro-inflammatory cytokine production. Res Vet Sci. 2010 Apr;88(2):218-26. doi: 10.1016/j.rvsc.2009.09.002. Epub 2009 Oct 8.","parent_key":"BE0002204"} {"ref-id":"A17800","pubmed-id":9523352,"citation":"Nakamura M, Imaoka S, Tanaka E, Misawa S, Funae Y: cis-Diamminedichloroplatinum induces peroxisomes as well as CYP4A1 in rat kidney. Res Commun Mol Pathol Pharmacol. 1998 Jan;99(1):23-32.","parent_key":"BE0000421"} {"ref-id":"A17798","pubmed-id":19378397,"citation":"Masek V, Anzenbacherova E, Machova M, Brabec V, Anzenbacher P: Interaction of antitumor platinum complexes with human liver microsomal cytochromes P450. Anticancer Drugs. 2009 Jun;20(5):305-11.","parent_key":"BE0002793"} {"ref-id":"A17798","pubmed-id":19378397,"citation":"Masek V, Anzenbacherova E, Machova M, Brabec V, Anzenbacher P: Interaction of antitumor platinum complexes with human liver microsomal cytochromes P450. Anticancer Drugs. 2009 Jun;20(5):305-11.","parent_key":"BE0003549"} {"ref-id":"A39003","pubmed-id":11137466,"citation":"Asteinza J, Camacho-Carranza R, Reyes-Reyes RE, Dorado-Gonzalez V V, Espinosa-Aguirre JJ: Induction of cytochrome P450 enzymes by albendazole treatment in the rat. Environ Toxicol Pharmacol. 2000 Dec;9(1-2):31-37.","parent_key":"BE0003543"} {"ref-id":"A39003","pubmed-id":11137466,"citation":"Asteinza J, Camacho-Carranza R, Reyes-Reyes RE, Dorado-Gonzalez V V, Espinosa-Aguirre JJ: Induction of cytochrome P450 enzymes by albendazole treatment in the rat. Environ Toxicol Pharmacol. 2000 Dec;9(1-2):31-37.","parent_key":"BE0002433"} {"ref-id":"A20498","pubmed-id":12451431,"citation":"Bapiro TE, Andersson TB, Otter C, Hasler JA, Masimirembwa CM: Cytochrome P450 1A1/2 induction by antiparasitic drugs: dose-dependent increase in ethoxyresorufin O-deethylase activity and mRNA caused by quinine, primaquine and albendazole in HepG2 cells. Eur J Clin Pharmacol. 2002 Nov;58(8):537-42. Epub 2002 Oct 2.","parent_key":"BE0002433"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0002638"} {"ref-id":"A182909","pubmed-id":10759686,"citation":"Rawden HC, Kokwaro GO, Ward SA, Edwards G: Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes. Br J Clin Pharmacol. 2000 Apr;49(4):313-22. doi: 10.1046/j.1365-2125.2000.00170.x.","parent_key":"BE0002638"} {"ref-id":"A38540","pubmed-id":26048912,"citation":"Lee E, Wu Z, Shon JC, Liu KH: Danazol Inhibits Cytochrome P450 2J2 Activity in a Substrate-independent Manner. Drug Metab Dispos. 2015 Aug;43(8):1250-3. doi: 10.1124/dmd.115.064345. Epub 2015 Jun 5.","parent_key":"BE0003536"} {"ref-id":"A8362","pubmed-id":23959307,"citation":"Wu Z, Lee D, Joo J, Shin JH, Kang W, Oh S, Lee do Y, Lee SJ, Yea SS, Lee HS, Lee T, Liu KH: CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems. Antimicrob Agents Chemother. 2013 Nov;57(11):5448-56. doi: 10.1128/AAC.00843-13. Epub 2013 Aug 19.","parent_key":"BE0003536"} {"ref-id":"A38370","pubmed-id":15204103,"citation":"Colburn DE, Giles FJ, Oladovich D, Smith JA: In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin. Hematology. 2004 Jun;9(3):217-21. doi: 10.1080/10245330410001701585.","parent_key":"BE0002638"} {"ref-id":"A14824","pubmed-id":9342584,"citation":"Kudo S, Uchida M, Odomi M: Metabolism of carteolol by cDNA-expressed human cytochrome P450. Eur J Clin Pharmacol. 1997;52(6):479-85.","parent_key":"BE0002363"} {"ref-id":"A34303","pubmed-id":9681669,"citation":"Kudo S, Odomi M: Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. Eur J Clin Pharmacol. 1998 May;54(3):253-9.","parent_key":"BE0002363"} {"ref-id":"A37924","pubmed-id":11963641,"citation":"Klotz U: Interaction potential of lercanidipine, a new vasoselective dihydropyridine calcium antagonist. Arzneimittelforschung. 2002;52(3):155-61. doi: 10.1055/s-0031-1299873.","parent_key":"BE0002638"} {"ref-id":"A185060","pubmed-id":17319103,"citation":"Borghi C: Lercanidipine in hypertension. Vasc Health Risk Manag. 2005;1(3):173-82.","parent_key":"BE0002638"} {"ref-id":"A14825","pubmed-id":16166415,"citation":"Johnson JR, Cohen M, Sridhara R, Chen YF, Williams GM, Duan J, Gobburu J, Booth B, Benson K, Leighton J, Hsieh LS, Chidambaram N, Zimmerman P, Pazdur R: Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin Cancer Res. 2005 Sep 15;11(18):6414-21.","parent_key":"BE0002638"} {"ref-id":"A14826","pubmed-id":17575239,"citation":"Li J, Zhao M, He P, Hidalgo M, Baker SD: Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007 Jun 15;13(12):3731-7.","parent_key":"BE0002638"} {"ref-id":"A14827","pubmed-id":16609030,"citation":"Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, Cagnoni PJ: Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2166-71.","parent_key":"BE0002638"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0002362"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0002433"} {"ref-id":"A17278","pubmed-id":16890575,"citation":"Lu JF, Eppler SM, Wolf J, Hamilton M, Rakhit A, Bruno R, Lum BL: Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther. 2006 Aug;80(2):136-45.","parent_key":"BE0002433"} {"ref-id":"A14825","pubmed-id":16166415,"citation":"Johnson JR, Cohen M, Sridhara R, Chen YF, Williams GM, Duan J, Gobburu J, Booth B, Benson K, Leighton J, Hsieh LS, Chidambaram N, Zimmerman P, Pazdur R: Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin Cancer Res. 2005 Sep 15;11(18):6414-21.","parent_key":"BE0002433"} {"ref-id":"A14826","pubmed-id":17575239,"citation":"Li J, Zhao M, He P, Hidalgo M, Baker SD: Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007 Jun 15;13(12):3731-7.","parent_key":"BE0002433"} {"ref-id":"A14827","pubmed-id":16609030,"citation":"Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, Cagnoni PJ: Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2166-71.","parent_key":"BE0002433"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0003543"} {"ref-id":"A14825","pubmed-id":16166415,"citation":"Johnson JR, Cohen M, Sridhara R, Chen YF, Williams GM, Duan J, Gobburu J, Booth B, Benson K, Leighton J, Hsieh LS, Chidambaram N, Zimmerman P, Pazdur R: Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin Cancer Res. 2005 Sep 15;11(18):6414-21.","parent_key":"BE0003543"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0002363"} {"ref-id":"A14826","pubmed-id":17575239,"citation":"Li J, Zhao M, He P, Hidalgo M, Baker SD: Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007 Jun 15;13(12):3731-7.","parent_key":"BE0002363"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0002887"} {"ref-id":"A14827","pubmed-id":16609030,"citation":"Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, Cagnoni PJ: Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2166-71.","parent_key":"BE0002887"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0001111"} {"ref-id":"A14826","pubmed-id":17575239,"citation":"Li J, Zhao M, He P, Hidalgo M, Baker SD: Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007 Jun 15;13(12):3731-7.","parent_key":"BE0001111"} {"ref-id":"A14828","pubmed-id":12136253,"citation":"Preiss R, Schmidt R, Baumann F, Hanschmann H, Hauss J, Geissler F, Pahlig H, Ratzewiss B: Measurement of 4-hydroxylation of ifosfamide in human liver microsomes using the estimation of free and protein-bound acrolein and codetermination of keto- and carboxyifosfamide. J Cancer Res Clin Oncol. 2002 Jul;128(7):385-92. Epub 2002 Jun 11.","parent_key":"BE0002638"} {"ref-id":"A184211","pubmed-id":29129847,"citation":"Yang L, Yan C, Zhang F, Jiang B, Gao S, Liang Y, Huang L, Chen W: Effects of ketoconazole on cyclophosphamide metabolism: evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models. Exp Anim. 2018 Feb 9;67(1):71-82. doi: 10.1538/expanim.17-0048. Epub 2017 Nov 13.","parent_key":"BE0002638"} {"ref-id":"A184214","pubmed-id":12065440,"citation":"Lindley C, Hamilton G, McCune JS, Faucette S, Shord SS, Hawke RL, Wang H, Gilbert D, Jolley S, Yan B, LeCluyse EL: The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos. 2002 Jul;30(7):814-22. doi: 10.1124/dmd.30.7.814.","parent_key":"BE0002638"} {"ref-id":"A14828","pubmed-id":12136253,"citation":"Preiss R, Schmidt R, Baumann F, Hanschmann H, Hauss J, Geissler F, Pahlig H, Ratzewiss B: Measurement of 4-hydroxylation of ifosfamide in human liver microsomes using the estimation of free and protein-bound acrolein and codetermination of keto- and carboxyifosfamide. J Cancer Res Clin Oncol. 2002 Jul;128(7):385-92. Epub 2002 Jun 11.","parent_key":"BE0003549"} {"ref-id":"A184082","pubmed-id":12629583,"citation":"Xie HJ, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A: Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J. 2003;3(1):53-61. doi: 10.1038/sj.tpj.6500157.","parent_key":"BE0003549"} {"ref-id":"A184085","pubmed-id":18781911,"citation":"Wang H, Tompkins LM: CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab. 2008 Sep;9(7):598-610.","parent_key":"BE0003549"} {"ref-id":"A184214","pubmed-id":12065440,"citation":"Lindley C, Hamilton G, McCune JS, Faucette S, Shord SS, Hawke RL, Wang H, Gilbert D, Jolley S, Yan B, LeCluyse EL: The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos. 2002 Jul;30(7):814-22. doi: 10.1124/dmd.30.7.814.","parent_key":"BE0003549"} {"ref-id":"A38623","pubmed-id":9331082,"citation":"Ren S, Yang JS, Kalhorn TF, Slattery JT: Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res. 1997 Oct 1;57(19):4229-35.","parent_key":"BE0003536"} {"ref-id":"A38858","pubmed-id":21175440,"citation":"Helsby NA, Hui CY, Goldthorpe MA, Coller JK, Soh MC, Gow PJ, De Zoysa JZ, Tingle MD: The combined impact of CYP2C19 and CYP2B6 pharmacogenetics on cyclophosphamide bioactivation. Br J Clin Pharmacol. 2010 Dec;70(6):844-53. doi: 10.1111/j.1365-2125.2010.03789.x.","parent_key":"BE0003536"} {"ref-id":"A184259","pubmed-id":18854824,"citation":"Helsby NA, Lo WY, Sharples K, Riley G, Murray M, Spells K, Dzhelai M, Simpson A, Findlay M: CYP2C19 pharmacogenetics in advanced cancer: compromised function independent of genotype. Br J Cancer. 2008 Oct 21;99(8):1251-5. doi: 10.1038/sj.bjc.6604699.","parent_key":"BE0003536"} {"ref-id":"A14986","pubmed-id":10348794,"citation":"Roy P, Yu LJ, Crespi CL, Waxman DJ: Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos. 1999 Jun;27(6):655-66.","parent_key":"BE0003336"} {"ref-id":"A182927","pubmed-id":9241661,"citation":"Chang TK, Yu L, Goldstein JA, Waxman DJ: Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics. 1997 Jun;7(3):211-21.","parent_key":"BE0002887"} {"ref-id":"A15139","pubmed-id":8242617,"citation":"Chang TK, Weber GF, Crespi CL, Waxman DJ: Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 1993 Dec 1;53(23):5629-37.","parent_key":"BE0002887"} {"ref-id":"A182936","pubmed-id":9157990,"citation":"Chang TK, Yu L, Maurel P, Waxman DJ: Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res. 1997 May 15;57(10):1946-54.","parent_key":"BE0002887"} {"ref-id":"A18031","pubmed-id":18496131,"citation":"Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD: Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics. 2008 Jun;18(6):515-23. doi: 10.1097/FPC.0b013e3282fc9766.","parent_key":"BE0002362"} {"ref-id":"A14822","pubmed-id":12401364,"citation":"Zhang T, Zhu Y, Gunaratna C: Rapid and quantitative determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography-electrospray ionization-ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Nov 25;780(2):371-9.","parent_key":"BE0003536"} {"ref-id":"A15179","pubmed-id":9131945,"citation":"Ghahramani P, Ellis SW, Lennard MS, Ramsay LE, Tucker GT: Cytochromes P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol. 1997 Feb;43(2):137-44.","parent_key":"BE0003536"} {"ref-id":"A14829","pubmed-id":11996013,"citation":"Lewis DF, Modi S, Dickins M: Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002 Feb-May;34(1-2):69-82.","parent_key":"BE0003549"} {"ref-id":"A14830","pubmed-id":8886603,"citation":"Heyn H, White RB, Stevens JC: Catalytic role of cytochrome P4502B6 in the N-demethylation of S-mephenytoin. Drug Metab Dispos. 1996 Sep;24(9):948-54.","parent_key":"BE0003549"} {"ref-id":"A15154","pubmed-id":10417492,"citation":"Coller JK, Somogyi AA, Bochner F: Comparison of (S)-mephenytoin and proguanil oxidation in vitro: contribution of several CYP isoforms. Br J Clin Pharmacol. 1999 Aug;48(2):158-67.","parent_key":"BE0002433"} {"ref-id":"A39090","pubmed-id":16934051,"citation":"Backman JT, Karjalainen MJ, Neuvonen M, Laitila J, Neuvonen PJ: Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br J Clin Pharmacol. 2006 Sep;62(3):345-57. doi: 10.1111/j.1365-2125.2006.02653.x.","parent_key":"BE0002433"} {"ref-id":"A36908","pubmed-id":7619673,"citation":"Batty KT, Davis TM, Ilett KF, Dusci LJ, Langton SR: The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol. 1995 Mar;39(3):305-11.","parent_key":"BE0002433"} {"ref-id":"A184079","pubmed-id":15592331,"citation":"Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ: Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin Pharmacol Ther. 2004 Dec;76(6):598-606. doi: 10.1016/j.clpt.2004.08.018.","parent_key":"BE0002433"} {"ref-id":"A39085","pubmed-id":19026171,"citation":"Zhang L, Wei MJ, Zhao CY, Qi HM: Determination of the inhibitory potential of 6 fluoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacol Sin. 2008 Dec;29(12):1507-14. doi: 10.1111/j.1745-7254.2008.00908.x.","parent_key":"BE0002433"} {"ref-id":"A36611","pubmed-id":8894516,"citation":"McLellan RA, Drobitch RK, Monshouwer M, Renton KW: Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human. Drug Metab Dispos. 1996 Oct;24(10):1134-8.","parent_key":"BE0002638"} {"ref-id":"A825","pubmed-id":16503765,"citation":"Taneja SS, Smith MR, Dalton JT, Raghow S, Barnette G, Steiner M, Veverka KA: Toremifene--a promising therapy for the prevention of prostate cancer and complications of androgen deprivation therapy. Expert Opin Investig Drugs. 2006 Mar;15(3):293-305.","parent_key":"BE0002638"} {"ref-id":"A14831","pubmed-id":9871429,"citation":"Kivisto KT, Villikka K, Nyman L, Anttila M, Neuvonen PJ: Tamoxifen and toremifene concentrations in plasma are greatly decreased by rifampin. Clin Pharmacol Ther. 1998 Dec;64(6):648-54.","parent_key":"BE0002638"} {"ref-id":"A31359","pubmed-id":8204106,"citation":"Berthou F, Dreano Y, Belloc C, Kangas L, Gautier JC, Beaune P: Involvement of cytochrome P450 3A enzyme family in the major metabolic pathways of toremifene in human liver microsomes. Biochem Pharmacol. 1994 May 18;47(10):1883-95.","parent_key":"BE0002638"} {"ref-id":"A184076","pubmed-id":21726172,"citation":"Kim J, Peraire C, Sola J, Johanning KM, Dalton JT, Veverka KA: Drug interaction potential of toremifene and N-desmethyltoremifene with multiple cytochrome P450 isoforms. Xenobiotica. 2011 Oct;41(10):851-62. doi: 10.3109/00498254.2011.590546. Epub 2011 Jul 5.","parent_key":"BE0002638"} {"ref-id":"A31359","pubmed-id":8204106,"citation":"Berthou F, Dreano Y, Belloc C, Kangas L, Gautier JC, Beaune P: Involvement of cytochrome P450 3A enzyme family in the major metabolic pathways of toremifene in human liver microsomes. Biochem Pharmacol. 1994 May 18;47(10):1883-95.","parent_key":"BE0003543"} {"ref-id":"A15182","pubmed-id":10354960,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. J Clin Pharmacol. 1999 Jun;39(6):567-77.","parent_key":"BE0002363"} {"ref-id":"A14832","pubmed-id":9193876,"citation":"Olesen OV, Linnet K: Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997 Jun;25(6):740-4.","parent_key":"BE0002363"} {"ref-id":"A174919","pubmed-id":28296334,"citation":"Ryu S, Park S, Lee JH, Kim YR, Na HS, Lim HS, Choi HY, Hwang IY, Lee JG, Park ZW, Oh WY, Kim JM, Choi SE: A Study on CYP2C19 and CYP2D6 Polymorphic Effects on Pharmacokinetics and Pharmacodynamics of Amitriptyline in Healthy Koreans. Clin Transl Sci. 2017 Mar;10(2):93-101. doi: 10.1111/cts.12451. Epub 2017 Mar 14.","parent_key":"BE0002363"} {"ref-id":"A15182","pubmed-id":10354960,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. J Clin Pharmacol. 1999 Jun;39(6):567-77.","parent_key":"BE0002638"} {"ref-id":"A14832","pubmed-id":9193876,"citation":"Olesen OV, Linnet K: Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997 Jun;25(6):740-4.","parent_key":"BE0002433"} {"ref-id":"A14832","pubmed-id":9193876,"citation":"Olesen OV, Linnet K: Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997 Jun;25(6):740-4.","parent_key":"BE0003536"} {"ref-id":"A183998","pubmed-id":28697165,"citation":"Kayilioglu H, Kocak U, Kan Karaer D, Percin EF, Sal E, Tekkesin F, Isik M, Oner N, Belen FB, Yilmaz Keskin E, Okur A, Albayrak M, Kaya Z, Pinarli FG, Yenicesu I, Karadeniz C, Oguz A, Gursel T: Association of CYP3A5 Expression and Vincristine Neurotoxicity in Pediatric Malignancies in Turkish Population. J Pediatr Hematol Oncol. 2017 Aug;39(6):458-462. doi: 10.1097/MPH.0000000000000910.","parent_key":"BE0002362"} {"ref-id":"A34884","pubmed-id":8452560,"citation":"Zhou XJ, Zhou-Pan XR, Gauthier T, Placidi M, Maurel P, Rahmani R: Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Metabolic drug interactions. Biochem Pharmacol. 1993 Feb 24;45(4):853-61.","parent_key":"BE0002638"} {"ref-id":"A34422","pubmed-id":21225912,"citation":"Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR, Quinney SK, Li L, McCammack KC, Hall SD, Renbarger JL: Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011 Mar;56(3):361-7. doi: 10.1002/pbc.22845. Epub 2010 Nov 11.","parent_key":"BE0002638"} {"ref-id":"A183998","pubmed-id":28697165,"citation":"Kayilioglu H, Kocak U, Kan Karaer D, Percin EF, Sal E, Tekkesin F, Isik M, Oner N, Belen FB, Yilmaz Keskin E, Okur A, Albayrak M, Kaya Z, Pinarli FG, Yenicesu I, Karadeniz C, Oguz A, Gursel T: Association of CYP3A5 Expression and Vincristine Neurotoxicity in Pediatric Malignancies in Turkish Population. J Pediatr Hematol Oncol. 2017 Aug;39(6):458-462. doi: 10.1097/MPH.0000000000000910.","parent_key":"BE0002638"} {"ref-id":"A15655","pubmed-id":19746353,"citation":"Shin HC, Kim HR, Cho HJ, Yi H, Cho SM, Lee DG, Abd El-Aty AM, Kim JS, Sun D, Amidon GL: Comparative gene expression of intestinal metabolizing enzymes. Biopharm Drug Dispos. 2009 Nov;30(8):411-21. doi: 10.1002/bdd.675.","parent_key":"BE0002363"} {"ref-id":"A181313","pubmed-id":24294487,"citation":"Reeves KC, Virk S, Niedermier J, Duchemin AM: Addition of amoxapine improves positive and negative symptoms in a patient with schizophrenia. Ther Adv Psychopharmacol. 2013 Dec;3(6):340-2. doi: 10.1177/2045125313499363.","parent_key":"BE0002363"} {"ref-id":"A38368","pubmed-id":23218233,"citation":"Gudin J: Opioid therapies and cytochrome p450 interactions. J Pain Symptom Manage. 2012 Dec;44(6 Suppl):S4-14. doi: 10.1016/j.jpainsymman.2012.08.013.","parent_key":"BE0002363"} {"ref-id":"A37953","pubmed-id":11095583,"citation":"Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T: Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.","parent_key":"BE0002433"} {"ref-id":"A39050","pubmed-id":11353746,"citation":"Yamazaki H, Komatsu T, Takemoto K, Shimada N, Nakajima M, Yokoi T: Rat cytochrome p450 1A and 3A enzymes involved in bioactivation of tegafur to 5-fluorouracil and autoinduced by tegafur in liver microsomes. Drug Metab Dispos. 2001 Jun;29(6):794-7.","parent_key":"BE0002433"} {"ref-id":"A33221","pubmed-id":25505563,"citation":"Yamamiya I, Yoshisue K, Ishii Y, Yamada H, Yoshida K: Enantioselectivity in the cytochrome P450-dependent conversion of tegafur to 5-fluorouracil in human liver microsomes. Pharmacol Res Perspect. 2013 Oct;1(1):e00009. doi: 10.1002/prp2.9. Epub 2013 Oct 23.","parent_key":"BE0003336"} {"ref-id":"A37953","pubmed-id":11095583,"citation":"Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T: Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.","parent_key":"BE0002887"} {"ref-id":"A14833","pubmed-id":9600717,"citation":"Venkatakrishnan K, von Moltke LL, Duan SX, Fleishaker JC, Shader RI, Greenblatt DJ: Kinetic characterization and identification of the enzymes responsible for the hepatic biotransformation of adinazolam and N-desmethyladinazolam in man. J Pharm Pharmacol. 1998 Mar;50(3):265-74.","parent_key":"BE0003536"} {"ref-id":"A14833","pubmed-id":9600717,"citation":"Venkatakrishnan K, von Moltke LL, Duan SX, Fleishaker JC, Shader RI, Greenblatt DJ: Kinetic characterization and identification of the enzymes responsible for the hepatic biotransformation of adinazolam and N-desmethyladinazolam in man. J Pharm Pharmacol. 1998 Mar;50(3):265-74.","parent_key":"BE0002638"} {"ref-id":"A37114","pubmed-id":11888331,"citation":"Dekhuijzen PN, Koopmans PP: Pharmacokinetic profile of zafirlukast. Clin Pharmacokinet. 2002;41(2):105-14. doi: 10.2165/00003088-200241020-00003.","parent_key":"BE0002793"} {"ref-id":"A183683","pubmed-id":27377818,"citation":"Lee HJ, Kim YH, Kim SH, Lee CM, Yang AY, Jang CG, Lee SY, Bae JW, Choi CI: Effects of CYP2C9 genetic polymorphisms on the pharmacokinetics of zafirlukast. Arch Pharm Res. 2016 Jul;39(7):1013-9. doi: 10.1007/s12272-016-0785-x. Epub 2016 Jul 4.","parent_key":"BE0002793"} {"ref-id":"A183956","pubmed-id":16670899,"citation":"Jaakkola T, Backman JT, Neuvonen M, Niemi M, Neuvonen PJ: Montelukast and zafirlukast do not affect the pharmacokinetics of the CYP2C8 substrate pioglitazone. Eur J Clin Pharmacol. 2006 Jul;62(7):503-9. doi: 10.1007/s00228-006-0136-9. Epub 2006 May 3.","parent_key":"BE0002887"} {"ref-id":"A14964","pubmed-id":16867170,"citation":"Jaakkola T, Laitila J, Neuvonen PJ, Backman JT: Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol. 2006 Jul;99(1):44-51. doi: 10.1111/j.1742-7843.2006.pto_437.x.","parent_key":"BE0002887"} {"ref-id":"A184331","pubmed-id":10223928,"citation":"Garey KW, Peloquin CA, Godo PG, Nafziger AN, Amsden GW: Lack of effect of zafirlukast on the pharmacokinetics of azithromycin, clarithromycin, and 14-hydroxyclarithromycin in healthy volunteers. Antimicrob Agents Chemother. 1999 May;43(5):1152-5.","parent_key":"BE0002638"} {"ref-id":"A184334","pubmed-id":16167835,"citation":"Kassahun K, Skordos K, McIntosh I, Slaughter D, Doss GA, Baillie TA, Yost GS: Zafirlukast metabolism by cytochrome P450 3A4 produces an electrophilic alpha,beta-unsaturated iminium species that results in the selective mechanism-based inactivation of the enzyme. Chem Res Toxicol. 2005 Sep;18(9):1427-37. doi: 10.1021/tx050092b.","parent_key":"BE0002638"} {"ref-id":"A184337","pubmed-id":22108774,"citation":"Karonen T, Laitila J, Niemi M, Neuvonen PJ, Backman JT: Fluconazole but not the CYP3A4 inhibitor, itraconazole, increases zafirlukast plasma concentrations. Eur J Clin Pharmacol. 2012 May;68(5):681-8. doi: 10.1007/s00228-011-1158-5. Epub 2011 Nov 23.","parent_key":"BE0002638"} {"ref-id":"A39469","pubmed-id":15370959,"citation":"Liu KH, Lee YM, Shon JH, Kim MJ, Lee SS, Yoon YR, Cha IJ, Shin JG: Potential of pranlukast and zafirlukast in the inhibition of human liver cytochrome P450 enzymes. Xenobiotica. 2004 May;34(5):429-38. doi: 10.1080/00498250410001691253 .","parent_key":"BE0002638"} {"ref-id":"A36531","pubmed-id":10870095,"citation":"Shader RI, Granda BW, von Moltke LL, Giancarlo GM, Greenblatt DJ: Inhibition of human cytochrome P450 isoforms in vitro by zafirlukast. Biopharm Drug Dispos. 1999 Nov;20(8):385-8.","parent_key":"BE0002433"} {"ref-id":"A36531","pubmed-id":10870095,"citation":"Shader RI, Granda BW, von Moltke LL, Giancarlo GM, Greenblatt DJ: Inhibition of human cytochrome P450 isoforms in vitro by zafirlukast. Biopharm Drug Dispos. 1999 Nov;20(8):385-8.","parent_key":"BE0003536"} {"ref-id":"A36531","pubmed-id":10870095,"citation":"Shader RI, Granda BW, von Moltke LL, Giancarlo GM, Greenblatt DJ: Inhibition of human cytochrome P450 isoforms in vitro by zafirlukast. Biopharm Drug Dispos. 1999 Nov;20(8):385-8.","parent_key":"BE0003533"} {"ref-id":"A37558","pubmed-id":15183118,"citation":"Wang WD, Wang Y, Wen HJ, Buhler DR, Hu CH: Phenylthiourea as a weak activator of aryl hydrocarbon receptor inhibiting 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 transcription in zebrafish embryo. Biochem Pharmacol. 2004 Jul 1;68(1):63-71. doi: 10.1016/j.bcp.2004.03.010.","parent_key":"BE0003543"} {"ref-id":"A39098","pubmed-id":11353760,"citation":"Zhang W, Kilicarslan T, Tyndale RF, Sellers EM: Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos. 2001 Jun;29(6):897-902.","parent_key":"BE0002433"} {"ref-id":"A39098","pubmed-id":11353760,"citation":"Zhang W, Kilicarslan T, Tyndale RF, Sellers EM: Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos. 2001 Jun;29(6):897-902.","parent_key":"BE0003336"} {"ref-id":"A184007","pubmed-id":14633670,"citation":"Takeuchi H, Saoo K, Yokohira M, Ikeda M, Maeta H, Miyazaki M, Yamazaki H, Kamataki T, Imaida K: Pretreatment with 8-methoxypsoralen, a potent human CYP2A6 inhibitor, strongly inhibits lung tumorigenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in female A/J mice. Cancer Res. 2003 Nov 15;63(22):7581-3.","parent_key":"BE0003336"} {"ref-id":"A184013","pubmed-id":24859605,"citation":"Bagdas D, Muldoon PP, Zhu AZ, Tyndale RF, Damaj MI: Effects of methoxsalen, a CYP2A5/6 inhibitor, on nicotine dependence behaviors in mice. Neuropharmacology. 2014 Oct;85:67-72. doi: 10.1016/j.neuropharm.2014.05.006. Epub 2014 May 21.","parent_key":"BE0003336"} {"ref-id":"A14734","pubmed-id":9890159,"citation":"Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H: Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998 Dec;28(12):1203-53.","parent_key":"BE0002793"} {"ref-id":"A182906","pubmed-id":28740425,"citation":"Calvo AM, Zupelari-Goncalves P, Dionisio TJ, Brozoski DT, Faria FA, Santos CF: Efficacy of piroxicam for postoperative pain after lower third molar surgery associated with CYP2C8*3 and CYP2C9. J Pain Res. 2017 Jul 6;10:1581-1589. doi: 10.2147/JPR.S138147. eCollection 2017.","parent_key":"BE0002887"} {"ref-id":"A15173","pubmed-id":19845433,"citation":"Argikar UA, Senekeo-Effenberger K, Larson EE, Tukey RH, Remmel RP: Studies on induction of lamotrigine metabolism in transgenic UGT1 mice. Xenobiotica. 2009 Nov;39(11):826-35. doi: 10.3109/00498250903188985.","parent_key":"BE0009758"} {"ref-id":"A15174","pubmed-id":19546240,"citation":"Chen H, Yang K, Choi S, Fischer JH, Jeong H: Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos. 2009 Sep;37(9):1841-7. doi: 10.1124/dmd.109.026609. Epub 2009 Jun 22.","parent_key":"BE0009758"} {"ref-id":"A15175","pubmed-id":19387891,"citation":"Argikar UA, Remmel RP: Variation in glucuronidation of lamotrigine in human liver microsomes. Xenobiotica. 2009 May;39(5):355-63. doi: 10.1080/00498250902745082.","parent_key":"BE0009758"} {"ref-id":"A34242","pubmed-id":15304429,"citation":"Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE: Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8. doi: 10.1124/dmd.104.000794. Epub 2004 Aug 10.","parent_key":"BE0009758"} {"ref-id":"A192027","pubmed-id":27096250,"citation":"Milosheska D, Lorber B, Vovk T, Kastelic M, Dolzan V, Grabnar I: Pharmacokinetics of lamotrigine and its metabolite N-2-glucuronide: Influence of polymorphism of UDP-glucuronosyltransferases and drug transporters. Br J Clin Pharmacol. 2016 Aug;82(2):399-411. doi: 10.1111/bcp.12984. Epub 2016 May 29.","parent_key":"BE0009758"} {"ref-id":"A14834","pubmed-id":9616188,"citation":"Hamelin BA, Bouayad A, Drolet B, Gravel A, Turgeon J: In vitro characterization of cytochrome P450 2D6 inhibition by classic histamine H1 receptor antagonists. Drug Metab Dispos. 1998 Jun;26(6):536-9.","parent_key":"BE0002363"} {"ref-id":"A14835","pubmed-id":12603176,"citation":"Dingemanse J, Schaarschmidt D, van Giersbergen PL: Investigation of the mutual pharmacokinetic interactions between bosentan, a dual endothelin receptor antagonist, and simvastatin. Clin Pharmacokinet. 2003;42(3):293-301.","parent_key":"BE0002638"} {"ref-id":"A14836","pubmed-id":15568889,"citation":"Dingemanse J, van Giersbergen PL: Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet. 2004;43(15):1089-115.","parent_key":"BE0002638"} {"ref-id":"A39325","pubmed-id":26502773,"citation":"Matsunaga N, Kaneko N, Staub AY, Nakanishi T, Nunoya K, Imawaka H, Tamai I: Analysis of the Metabolic Pathway of Bosentan and of the Cytotoxicity of Bosentan Metabolites Based on a Quantitative Modeling of Metabolism and Transport in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos. 2016 Jan;44(1):16-27. doi: 10.1124/dmd.115.067074. Epub 2015 Oct 26.","parent_key":"BE0002793"} {"ref-id":"A39326","pubmed-id":12713683,"citation":"Cheng JW: Bosentan. Heart Dis. 2003 Mar-Apr;5(2):161-9.","parent_key":"BE0002793"} {"ref-id":"A39327","pubmed-id":12047483,"citation":"van Giersbergen PL, Halabi A, Dingemanse J: Single- and multiple-dose pharmacokinetics of bosentan and its interaction with ketoconazole. Br J Clin Pharmacol. 2002 Jun;53(6):589-95.","parent_key":"BE0002793"} {"ref-id":"A39328","pubmed-id":23674888,"citation":"Elshaboury SM, Anderson JR: Ambrisentan for the treatment of pulmonary arterial hypertension: improving outcomes. Patient Prefer Adherence. 2013 May 8;7:401-9. doi: 10.2147/PPA.S30949. Print 2013.","parent_key":"BE0002793"} {"ref-id":"A14837","pubmed-id":20444863,"citation":"Zientek M, Jiang Y, Youdim K, Obach RS: In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos. 2010 Aug;38(8):1322-7. doi: 10.1124/dmd.110.033555. Epub 2010 May 5.","parent_key":"BE0003539"} {"ref-id":"A14838","pubmed-id":19644884,"citation":"Baggott JE, Morgan SL: Methotrexate catabolism to 7-hydroxymethotrexate in rheumatoid arthritis alters drug efficacy and retention and is reduced by folic acid supplementation. Arthritis Rheum. 2009 Aug;60(8):2257-61. doi: 10.1002/art.24685.","parent_key":"BE0003539"} {"ref-id":"A14839","pubmed-id":10385213,"citation":"Jordan CG, Rashidi MR, Laljee H, Clarke SE, Brown JE, Beedham C: Aldehyde oxidase-catalysed oxidation of methotrexate in the liver of guinea-pig, rabbit and man. J Pharm Pharmacol. 1999 Apr;51(4):411-8.","parent_key":"BE0003539"} {"ref-id":"A33689","pubmed-id":12849118,"citation":"Vecht CJ, Wagner GL, Wilms EB: Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurol. 2003 Jul;2(7):404-9.","parent_key":"BE0002638"} {"ref-id":"A1118","pubmed-id":18537577,"citation":"Urichuk L, Prior TI, Dursun S, Baker G: Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab. 2008 Jun;9(5):410-8.","parent_key":"BE0002638"} {"ref-id":"A14743","pubmed-id":8806399,"citation":"Levy RH: Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia. 1995;36 Suppl 5:S8-13.","parent_key":"BE0002638"} {"ref-id":"A14840","pubmed-id":14651727,"citation":"Cazali N, Tran A, Treluyer JM, Rey E, d'Athis P, Vincent J, Pons G: Inhibitory effect of stiripentol on carbamazepine and saquinavir metabolism in human. Br J Clin Pharmacol. 2003 Nov;56(5):526-36.","parent_key":"BE0002638"} {"ref-id":"A33254","pubmed-id":26315684,"citation":"Chen L, Boinpally R, Gad N, Greenberg WM, Wangsa J, Periclou A, Ghahramani P: Evaluation of Cytochrome P450 (CYP) 3A4-Based Interactions of Levomilnacipran with Ketoconazole, Carbamazepine or Alprazolam in Healthy Subjects. Clin Drug Investig. 2015 Oct;35(10):601-12. doi: 10.1007/s40261-015-0318-2.","parent_key":"BE0002638"} {"ref-id":"A33260","pubmed-id":22332980,"citation":"de Leon J, Santoro V, D'Arrigo C, Spina E: Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012 Mar;8(3):311-34. doi: 10.1517/17425255.2012.660918. Epub 2012 Feb 15.","parent_key":"BE0002638"} {"ref-id":"A14840","pubmed-id":14651727,"citation":"Cazali N, Tran A, Treluyer JM, Rey E, d'Athis P, Vincent J, Pons G: Inhibitory effect of stiripentol on carbamazepine and saquinavir metabolism in human. Br J Clin Pharmacol. 2003 Nov;56(5):526-36.","parent_key":"BE0002887"} {"ref-id":"A33251","pubmed-id":10907977,"citation":"Kato Y, Fujii T, Mizoguchi N, Takata N, Ueda K, Feldman MD, Kayser SR: Potential interaction between ritonavir and carbamazepine. Pharmacotherapy. 2000 Jul;20(7):851-4.","parent_key":"BE0002887"} {"ref-id":"A33252","pubmed-id":10096433,"citation":"Mesdjian E, Seree E, Charvet B, Mirrione A, Bourgarel-Rey V, Desobry A, Barra Y: Metabolism of carbamazepine by CYP3A6: a model for in vitro drug interactions studies. Life Sci. 1999;64(10):827-35.","parent_key":"BE0002887"} {"ref-id":"A33253","pubmed-id":25712654,"citation":"Liu A, Wang C, Hehir M, Zhou T, Yang J: In vivo induction of CYP in mice by carbamazepine is independent on PXR. Pharmacol Rep. 2015 Apr;67(2):299-304. doi: 10.1016/j.pharep.2014.10.002. Epub 2014 Oct 18.","parent_key":"BE0002887"} {"ref-id":"A33260","pubmed-id":22332980,"citation":"de Leon J, Santoro V, D'Arrigo C, Spina E: Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012 Mar;8(3):311-34. doi: 10.1517/17425255.2012.660918. Epub 2012 Feb 15.","parent_key":"BE0002887"} {"ref-id":"A33260","pubmed-id":22332980,"citation":"de Leon J, Santoro V, D'Arrigo C, Spina E: Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012 Mar;8(3):311-34. doi: 10.1517/17425255.2012.660918. Epub 2012 Feb 15.","parent_key":"BE0002433"} {"ref-id":"A39095","pubmed-id":11760814,"citation":"Masubuchi Y, Nakano T, Ose A, Horie T: Differential selectivity in carbamazepine-induced inactivation of cytochrome P450 enzymes in rat and human liver. Arch Toxicol. 2001 Nov;75(9):538-43.","parent_key":"BE0002433"} {"ref-id":"A31372","pubmed-id":7974626,"citation":"Jerling M, Lindstrom L, Bondesson U, Bertilsson L: Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit. 1994 Aug;16(4):368-74.","parent_key":"BE0002433"} {"ref-id":"A33260","pubmed-id":22332980,"citation":"de Leon J, Santoro V, D'Arrigo C, Spina E: Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012 Mar;8(3):311-34. doi: 10.1517/17425255.2012.660918. Epub 2012 Feb 15.","parent_key":"BE0002793"} {"ref-id":"A33182","pubmed-id":12458024,"citation":"Lakehal F, Wurden CJ, Kalhorn TF, Levy RH: Carbamazepine and oxcarbazepine decrease phenytoin metabolism through inhibition of CYP2C19. Epilepsy Res. 2002 Dec;52(2):79-83.","parent_key":"BE0003536"} {"ref-id":"A33260","pubmed-id":22332980,"citation":"de Leon J, Santoro V, D'Arrigo C, Spina E: Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012 Mar;8(3):311-34. doi: 10.1517/17425255.2012.660918. Epub 2012 Feb 15.","parent_key":"BE0003536"} {"ref-id":"A33183","pubmed-id":12386121,"citation":"Pearce RE, Vakkalagadda GR, Leeder JS: Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos. 2002 Nov;30(11):1170-9.","parent_key":"BE0003549"} {"ref-id":"A33260","pubmed-id":22332980,"citation":"de Leon J, Santoro V, D'Arrigo C, Spina E: Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012 Mar;8(3):311-34. doi: 10.1517/17425255.2012.660918. Epub 2012 Feb 15.","parent_key":"BE0003549"} {"ref-id":"A184415","pubmed-id":15673597,"citation":"Hidaka M, Okumura M, Fujita K, Ogikubo T, Yamasaki K, Iwakiri T, Setoguchi N, Arimori K: Effects of pomegranate juice on human cytochrome p450 3A (CYP3A) and carbamazepine pharmacokinetics in rats. Drug Metab Dispos. 2005 May;33(5):644-8. doi: 10.1124/dmd.104.002824. Epub 2005 Jan 26.","parent_key":"BE0002362"} {"ref-id":"A184418","pubmed-id":18420779,"citation":"Henshall J, Galetin A, Harrison A, Houston JB: Comparative analysis of CYP3A heteroactivation by steroid hormones and flavonoids in different in vitro systems and potential in vivo implications. Drug Metab Dispos. 2008 Jul;36(7):1332-40. doi: 10.1124/dmd.108.021279. Epub 2008 Apr 17.","parent_key":"BE0002362"} {"ref-id":"A38833","pubmed-id":19744012,"citation":"Park PW, Seo YH, Ahn JY, Kim KA, Park JY: Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J Clin Pharm Ther. 2009 Oct;34(5):569-74. doi: 10.1111/j.1365-2710.2009.01057.x.","parent_key":"BE0002362"} {"ref-id":"A866","pubmed-id":15292462,"citation":"Staines AG, Coughtrie MW, Burchell B: N-glucuronidation of carbamazepine in human tissues is mediated by UGT2B7. J Pharmacol Exp Ther. 2004 Dec;311(3):1131-7. Epub 2004 Aug 3.","parent_key":"BE0003679"} {"ref-id":"A180412","pubmed-id":23252947,"citation":"Puranik YG, Birnbaum AK, Marino SE, Ahmed G, Cloyd JC, Remmel RP, Leppik IE, Lamba JK: Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics. 2013 Jan;14(1):35-45. doi: 10.2217/pgs.12.180.","parent_key":"BE0003679"} {"ref-id":"A184241","pubmed-id":8323546,"citation":"Narimatsu S, Kariya S, Isozaki S, Ohmori S, Kitada M, Hosokawa S, Masubuchi Y, Suzuki T: Involvement of CYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1262-8. doi: 10.1006/bbrc.1993.1761.","parent_key":"BE0002363"} {"ref-id":"A37589","pubmed-id":8951176,"citation":"Kariya S, Isozaki S, Uchino K, Suzuki T, Narimatsu S: Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull. 1996 Nov;19(11):1511-4. doi: 10.1248/bpb.19.1511.","parent_key":"BE0002793"} {"ref-id":"A37589","pubmed-id":8951176,"citation":"Kariya S, Isozaki S, Uchino K, Suzuki T, Narimatsu S: Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull. 1996 Nov;19(11):1511-4. doi: 10.1248/bpb.19.1511.","parent_key":"BE0002433"} {"ref-id":"A37589","pubmed-id":8951176,"citation":"Kariya S, Isozaki S, Uchino K, Suzuki T, Narimatsu S: Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull. 1996 Nov;19(11):1511-4. doi: 10.1248/bpb.19.1511.","parent_key":"BE0003549"} {"ref-id":"A37589","pubmed-id":8951176,"citation":"Kariya S, Isozaki S, Uchino K, Suzuki T, Narimatsu S: Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull. 1996 Nov;19(11):1511-4. doi: 10.1248/bpb.19.1511.","parent_key":"BE0003336"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003543"} {"ref-id":"A37589","pubmed-id":8951176,"citation":"Kariya S, Isozaki S, Uchino K, Suzuki T, Narimatsu S: Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull. 1996 Nov;19(11):1511-4. doi: 10.1248/bpb.19.1511.","parent_key":"BE0003543"} {"ref-id":"A36271","pubmed-id":22039822,"citation":"Uesawa Y, Takeuchi T, Mohri K: Integrated analysis on the physicochemical properties of dihydropyridine calcium channel blockers in grapefruit juice interactions. Curr Pharm Biotechnol. 2012 Jul;13(9):1705-17.","parent_key":"BE0002638"} {"ref-id":"A183119","pubmed-id":1487547,"citation":"Tateishi T, Ohashi K, Fujimura A, Ebihara A: The influence of diltiazem versus cimetidine on propranolol metabolism. J Clin Pharmacol. 1992 Dec;32(12):1099-104.","parent_key":"BE0002362"} {"ref-id":"A14841","pubmed-id":7640150,"citation":"Yoshimoto K, Echizen H, Chiba K, Tani M, Ishizaki T: Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers--N-desisopropylation is mediated mainly by CYP1A2. Br J Clin Pharmacol. 1995 Apr;39(4):421-31.","parent_key":"BE0002363"} {"ref-id":"A14829","pubmed-id":11996013,"citation":"Lewis DF, Modi S, Dickins M: Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002 Feb-May;34(1-2):69-82.","parent_key":"BE0002363"} {"ref-id":"A14842","pubmed-id":7895609,"citation":"Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, Narimatsu S: Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994 Nov-Dec;22(6):909-15.","parent_key":"BE0002363"} {"ref-id":"A184139","pubmed-id":7946944,"citation":"Rowland K, Yeo WW, Ellis SW, Chadwick IG, Haq I, Lennard MS, Jackson PR, Ramsay LE, Tucker GT: Inhibition of CYP2D6 activity by treatment with propranolol and the role of 4-hydroxy propranolol. Br J Clin Pharmacol. 1994 Jul;38(1):9-14. doi: 10.1111/j.1365-2125.1994.tb04315.x.","parent_key":"BE0002363"} {"ref-id":"A183119","pubmed-id":1487547,"citation":"Tateishi T, Ohashi K, Fujimura A, Ebihara A: The influence of diltiazem versus cimetidine on propranolol metabolism. J Clin Pharmacol. 1992 Dec;32(12):1099-104.","parent_key":"BE0003612"} {"ref-id":"A14841","pubmed-id":7640150,"citation":"Yoshimoto K, Echizen H, Chiba K, Tani M, Ishizaki T: Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers--N-desisopropylation is mediated mainly by CYP1A2. Br J Clin Pharmacol. 1995 Apr;39(4):421-31.","parent_key":"BE0002433"} {"ref-id":"A14842","pubmed-id":7895609,"citation":"Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, Narimatsu S: Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994 Nov-Dec;22(6):909-15.","parent_key":"BE0002433"} {"ref-id":"A15129","pubmed-id":11038161,"citation":"McGinnity DF, Parker AJ, Soars M, Riley RJ: Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos. 2000 Nov;28(11):1327-34.","parent_key":"BE0002433"} {"ref-id":"A39088","pubmed-id":16790556,"citation":"Usmani KA, Cho TM, Rose RL, Hodgson E: Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals. Drug Metab Dispos. 2006 Sep;34(9):1606-14. doi: 10.1124/dmd.106.010439. Epub 2006 Jun 21.","parent_key":"BE0002433"} {"ref-id":"A14842","pubmed-id":7895609,"citation":"Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, Narimatsu S: Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994 Nov-Dec;22(6):909-15.","parent_key":"BE0003536"} {"ref-id":"A15673","pubmed-id":11678778,"citation":"Goldstein JA: Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol. 2001 Oct;52(4):349-55.","parent_key":"BE0003536"} {"ref-id":"A183119","pubmed-id":1487547,"citation":"Tateishi T, Ohashi K, Fujimura A, Ebihara A: The influence of diltiazem versus cimetidine on propranolol metabolism. J Clin Pharmacol. 1992 Dec;32(12):1099-104.","parent_key":"BE0002638"} {"ref-id":"A14842","pubmed-id":7895609,"citation":"Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, Narimatsu S: Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994 Nov-Dec;22(6):909-15.","parent_key":"BE0002638"} {"ref-id":"A14843","pubmed-id":9825834,"citation":"Haritos VS, Ching MS, Ghabrial H, Gross AS, Taavitsainen P, Pelkonen O, Battaglia SE, Smallwood RA, Ahokas JT: Metabolism of dexfenfluramine in human liver microsomes and by recombinant enzymes: role of CYP2D6 and 1A2. Pharmacogenetics. 1998 Oct;8(5):423-32.","parent_key":"BE0002363"} {"ref-id":"A38943","pubmed-id":9690701,"citation":"von Moltke LL, Greenblatt DJ, Ciraulo DA, Grassi JM, Granda BW, Duan SX, Harmatz JS, Shader RI: Appetite suppressant drugs as inhibitors of human cytochromes P450: in vitro inhibition of P450-2D6 by D- and L-fenfluramine, but not phentermine. J Clin Psychopharmacol. 1998 Aug;18(4):338-41.","parent_key":"BE0002363"} {"ref-id":"A14844","pubmed-id":20570945,"citation":"Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF: CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010 Sep;38(9):1393-6. doi: 10.1124/dmd.110.033878. Epub 2010 Jun 22.","parent_key":"BE0002363"} {"ref-id":"A14844","pubmed-id":20570945,"citation":"Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF: CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010 Sep;38(9):1393-6. doi: 10.1124/dmd.110.033878. Epub 2010 Jun 22.","parent_key":"BE0002433"} {"ref-id":"A14844","pubmed-id":20570945,"citation":"Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF: CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010 Sep;38(9):1393-6. doi: 10.1124/dmd.110.033878. Epub 2010 Jun 22.","parent_key":"BE0002638"} {"ref-id":"A14844","pubmed-id":20570945,"citation":"Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF: CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010 Sep;38(9):1393-6. doi: 10.1124/dmd.110.033878. Epub 2010 Jun 22.","parent_key":"BE0003543"} {"ref-id":"A14844","pubmed-id":20570945,"citation":"Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF: CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010 Sep;38(9):1393-6. doi: 10.1124/dmd.110.033878. Epub 2010 Jun 22.","parent_key":"BE0002362"} {"ref-id":"A18384","pubmed-id":12657846,"citation":"Ibrahim AE, Feldman J, Karim A, Kharasch ED: Simultaneous assessment of drug interactions with low- and high-extraction opioids: application to parecoxib effects on the pharmacokinetics and pharmacodynamics of fentanyl and alfentanil. Anesthesiology. 2003 Apr;98(4):853-61.","parent_key":"BE0002638"} {"ref-id":"A38675","pubmed-id":19422321,"citation":"Agundez JA, Garcia-Martin E, Martinez C: Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol. 2009 Jun;5(6):607-20. doi: 10.1517/17425250902970998 .","parent_key":"BE0002793"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003609"} {"ref-id":"A28629","pubmed-id":19029318,"citation":"Jeong S, Nguyen PD, Desta Z: Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 2009 Feb;53(2):541-51. doi: 10.1128/AAC.01123-08. Epub 2008 Nov 24.","parent_key":"BE0002362"} {"ref-id":"A38778","pubmed-id":20565450,"citation":"Yamazaki H, Nakamoto M, Shimizu M, Murayama N, Niwa T: Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles. Br J Clin Pharmacol. 2010 Jun;69(6):593-7. doi: 10.1111/j.1365-2125.2010.03656.x.","parent_key":"BE0002362"} {"ref-id":"A28629","pubmed-id":19029318,"citation":"Jeong S, Nguyen PD, Desta Z: Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 2009 Feb;53(2):541-51. doi: 10.1128/AAC.01123-08. Epub 2008 Nov 24.","parent_key":"BE0003612"} {"ref-id":"A38617","pubmed-id":12695341,"citation":"Hyland R, Jones BC, Smith DA: Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003 May;31(5):540-7.","parent_key":"BE0003536"} {"ref-id":"A38618","pubmed-id":17433262,"citation":"Murayama N, Imai N, Nakane T, Shimizu M, Yamazaki H: Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol. 2007 Jun 15;73(12):2020-6. doi: 10.1016/j.bcp.2007.03.012. Epub 2007 Mar 19.","parent_key":"BE0003536"} {"ref-id":"A28629","pubmed-id":19029318,"citation":"Jeong S, Nguyen PD, Desta Z: Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 2009 Feb;53(2):541-51. doi: 10.1128/AAC.01123-08. Epub 2008 Nov 24.","parent_key":"BE0003536"} {"ref-id":"A28629","pubmed-id":19029318,"citation":"Jeong S, Nguyen PD, Desta Z: Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 2009 Feb;53(2):541-51. doi: 10.1128/AAC.01123-08. Epub 2008 Nov 24.","parent_key":"BE0002638"} {"ref-id":"A14787","pubmed-id":12065442,"citation":"Obach RS, Reed-Hagen AE: Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos. 2002 Jul;30(7):831-7.","parent_key":"BE0002793"} {"ref-id":"A14845","pubmed-id":8417277,"citation":"Leemann T, Transon C, Dayer P: Cytochrome P450TB (CYP2C): a major monooxygenase catalyzing diclofenac 4'-hydroxylation in human liver. Life Sci. 1993;52(1):29-34.","parent_key":"BE0002793"} {"ref-id":"A39386","pubmed-id":16928789,"citation":"Kumar V, Rock DA, Warren CJ, Tracy TS, Wahlstrom JL: Enzyme source effects on CYP2C9 kinetics and inhibition. Drug Metab Dispos. 2006 Nov;34(11):1903-8. doi: 10.1124/dmd.106.010249. Epub 2006 Aug 23.","parent_key":"BE0002793"} {"ref-id":"A39387","pubmed-id":2534640,"citation":"Roth H: Planning information services in the disability field: some essential steps. Int J Rehabil Res. 1989;12(4):439-48.","parent_key":"BE0002793"} {"ref-id":"A31196","pubmed-id":10449188,"citation":"Bort R, Mace K, Boobis A, Gomez-Lechon MJ, Pfeifer A, Castell J: Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol. 1999 Sep 1;58(5):787-96.","parent_key":"BE0003536"} {"ref-id":"A182882","pubmed-id":10572000,"citation":"Mancy A, Antignac M, Minoletti C, Dijols S, Mouries V, Duong NT, Battioni P, Dansette PM, Mansuy D: Diclofenac and its derivatives as tools for studying human cytochromes P450 active sites: particular efficiency and regioselectivity of P450 2Cs. Biochemistry. 1999 Oct 26;38(43):14264-70. doi: 10.1021/bi991195u.","parent_key":"BE0003536"} {"ref-id":"A31189","pubmed-id":18816299,"citation":"Karjalainen MJ, Neuvonen PJ, Backman JT: In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions. Basic Clin Pharmacol Toxicol. 2008 Aug;103(2):157-65. doi: 10.1111/j.1742-7843.2008.00252.x.","parent_key":"BE0002433"} {"ref-id":"A38942","pubmed-id":27034690,"citation":"Ma Z, Shi X, Zhang G, Guo F, Shan L, Cai J: Metabolism and Metabolic Inhibition of Xanthotoxol in Human Liver Microsomes. Evid Based Complement Alternat Med. 2016;2016:5416509. doi: 10.1155/2016/5416509. Epub 2016 Mar 10.","parent_key":"BE0002433"} {"ref-id":"A31196","pubmed-id":10449188,"citation":"Bort R, Mace K, Boobis A, Gomez-Lechon MJ, Pfeifer A, Castell J: Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol. 1999 Sep 1;58(5):787-96.","parent_key":"BE0002887"} {"ref-id":"A182882","pubmed-id":10572000,"citation":"Mancy A, Antignac M, Minoletti C, Dijols S, Mouries V, Duong NT, Battioni P, Dansette PM, Mansuy D: Diclofenac and its derivatives as tools for studying human cytochromes P450 active sites: particular efficiency and regioselectivity of P450 2Cs. Biochemistry. 1999 Oct 26;38(43):14264-70. doi: 10.1021/bi991195u.","parent_key":"BE0002887"} {"ref-id":"A182891","pubmed-id":15581350,"citation":"Melet A, Marques-Soares C, Schoch GA, Macherey AC, Jaouen M, Dansette PM, Sari MA, Johnson EF, Mansuy D: Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants. Biochemistry. 2004 Dec 14;43(49):15379-92. doi: 10.1021/bi0489309.","parent_key":"BE0002887"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003679"} {"ref-id":"A31847","pubmed-id":15843492,"citation":"Kuehl GE, Lampe JW, Potter JD, Bigler J: Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes. Drug Metab Dispos. 2005 Jul;33(7):1027-35. doi: 10.1124/dmd.104.002527. Epub 2005 Apr 20.","parent_key":"BE0003679"} {"ref-id":"A184343","pubmed-id":10950847,"citation":"Ngui JS, Tang W, Stearns RA, Shou M, Miller RR, Zhang Y, Lin JH, Baillie TA: Cytochrome P450 3A4-mediated interaction of diclofenac and quinidine. Drug Metab Dispos. 2000 Sep;28(9):1043-50.","parent_key":"BE0002638"} {"ref-id":"A184346","pubmed-id":12871048,"citation":"Tang W: The metabolism of diclofenac--enzymology and toxicology perspectives. Curr Drug Metab. 2003 Aug;4(4):319-29.","parent_key":"BE0002638"} {"ref-id":"A184349","pubmed-id":12228192,"citation":"Masubuchi Y, Ose A, Horie T: Diclofenac-induced inactivation of CYP3A4 and its stimulation by quinidine. Drug Metab Dispos. 2002 Oct;30(10):1143-8. doi: 10.1124/dmd.30.10.1143.","parent_key":"BE0002638"} {"ref-id":"A31196","pubmed-id":10449188,"citation":"Bort R, Mace K, Boobis A, Gomez-Lechon MJ, Pfeifer A, Castell J: Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol. 1999 Sep 1;58(5):787-96.","parent_key":"BE0003549"} {"ref-id":"A31847","pubmed-id":15843492,"citation":"Kuehl GE, Lampe JW, Potter JD, Bigler J: Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes. Drug Metab Dispos. 2005 Jul;33(7):1027-35. doi: 10.1124/dmd.104.002527. Epub 2005 Apr 20.","parent_key":"BE0003677"} {"ref-id":"A31847","pubmed-id":15843492,"citation":"Kuehl GE, Lampe JW, Potter JD, Bigler J: Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes. Drug Metab Dispos. 2005 Jul;33(7):1027-35. doi: 10.1124/dmd.104.002527. Epub 2005 Apr 20.","parent_key":"BE0003538"} {"ref-id":"A31847","pubmed-id":15843492,"citation":"Kuehl GE, Lampe JW, Potter JD, Bigler J: Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes. Drug Metab Dispos. 2005 Jul;33(7):1027-35. doi: 10.1124/dmd.104.002527. Epub 2005 Apr 20.","parent_key":"BE0003681"} {"ref-id":"A14846","pubmed-id":16565171,"citation":"Pearce RE, Leeder JS, Kearns GL: Biotransformation of fluticasone: in vitro characterization. Drug Metab Dispos. 2006 Jun;34(6):1035-40. Epub 2006 Mar 24.","parent_key":"BE0002638"} {"ref-id":"A14847","pubmed-id":20707410,"citation":"Murai T, Reilly CA, Ward RM, Yost GS: The inhaled glucocorticoid fluticasone propionate efficiently inactivates cytochrome P450 3A5, a predominant lung P450 enzyme. Chem Res Toxicol. 2010 Aug 16;23(8):1356-64. doi: 10.1021/tx100124k.","parent_key":"BE0002638"} {"ref-id":"A14846","pubmed-id":16565171,"citation":"Pearce RE, Leeder JS, Kearns GL: Biotransformation of fluticasone: in vitro characterization. Drug Metab Dispos. 2006 Jun;34(6):1035-40. Epub 2006 Mar 24.","parent_key":"BE0002362"} {"ref-id":"A14847","pubmed-id":20707410,"citation":"Murai T, Reilly CA, Ward RM, Yost GS: The inhaled glucocorticoid fluticasone propionate efficiently inactivates cytochrome P450 3A5, a predominant lung P450 enzyme. Chem Res Toxicol. 2010 Aug 16;23(8):1356-64. doi: 10.1021/tx100124k.","parent_key":"BE0002362"} {"ref-id":"A14846","pubmed-id":16565171,"citation":"Pearce RE, Leeder JS, Kearns GL: Biotransformation of fluticasone: in vitro characterization. Drug Metab Dispos. 2006 Jun;34(6):1035-40. Epub 2006 Mar 24.","parent_key":"BE0003612"} {"ref-id":"A184874","pubmed-id":28273839,"citation":"Cacabelos R: Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci. 2017 Mar 4;18(3). pii: ijms18030551. doi: 10.3390/ijms18030551.","parent_key":"BE0002638"} {"ref-id":"A34646","pubmed-id":24092799,"citation":"Hammond KP, Nielsen C, Linnebur SA, Langness JA, Ray G, Maroni P, Kiser JJ: Priapism induced by boceprevir-CYP3A4 inhibition and alpha-adrenergic blockade: case report. Clin Infect Dis. 2014 Jan;58(1):e35-8. doi: 10.1093/cid/cit673. Epub 2013 Oct 2.","parent_key":"BE0003536"} {"ref-id":"A34646","pubmed-id":24092799,"citation":"Hammond KP, Nielsen C, Linnebur SA, Langness JA, Ray G, Maroni P, Kiser JJ: Priapism induced by boceprevir-CYP3A4 inhibition and alpha-adrenergic blockade: case report. Clin Infect Dis. 2014 Jan;58(1):e35-8. doi: 10.1093/cid/cit673. Epub 2013 Oct 2.","parent_key":"BE0002363"} {"ref-id":"A34646","pubmed-id":24092799,"citation":"Hammond KP, Nielsen C, Linnebur SA, Langness JA, Ray G, Maroni P, Kiser JJ: Priapism induced by boceprevir-CYP3A4 inhibition and alpha-adrenergic blockade: case report. Clin Infect Dis. 2014 Jan;58(1):e35-8. doi: 10.1093/cid/cit673. Epub 2013 Oct 2.","parent_key":"BE0002638"} {"ref-id":"A35818","pubmed-id":23143891,"citation":"Moore CD, Roberts JK, Orton CR, Murai T, Fidler TP, Reilly CA, Ward RM, Yost GS: Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos. 2013 Feb;41(2):379-89. doi: 10.1124/dmd.112.046318. Epub 2012 Nov 9.","parent_key":"BE0002638"} {"ref-id":"A39312","pubmed-id":15228152,"citation":"Maurer HH, Kraemer T, Springer D, Staack RF: Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis. Ther Drug Monit. 2004 Apr;26(2):127-31.","parent_key":"BE0002363"} {"ref-id":"A31794","pubmed-id":12637244,"citation":"Bachmann K, He Y, Sarver JG, Peng N: Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of ethosuximide by human hepatic microsomal enzymes. Xenobiotica. 2003 Mar;33(3):265-76. doi: 10.1080/0049825021000061606 .","parent_key":"BE0003533"} {"ref-id":"A31794","pubmed-id":12637244,"citation":"Bachmann K, He Y, Sarver JG, Peng N: Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of ethosuximide by human hepatic microsomal enzymes. Xenobiotica. 2003 Mar;33(3):265-76. doi: 10.1080/0049825021000061606 .","parent_key":"BE0002638"} {"ref-id":"A183689","pubmed-id":9443857,"citation":"Sarver JG, Bachmann KA, Zhu D, Klis WA: Ethosuximide is primarily metabolized by CYP3A when incubated with isolated rat liver microsomes. Drug Metab Dispos. 1998 Jan;26(1):78-82.","parent_key":"BE0002638"} {"ref-id":"A31794","pubmed-id":12637244,"citation":"Bachmann K, He Y, Sarver JG, Peng N: Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of ethosuximide by human hepatic microsomal enzymes. Xenobiotica. 2003 Mar;33(3):265-76. doi: 10.1080/0049825021000061606 .","parent_key":"BE0004866"} {"ref-id":"A39266","pubmed-id":1613128,"citation":"Hermann DJ, Krol TF, Dukes GE, Hussey EK, Danis M, Han YH, Powell JR, Hak LJ: Comparison of verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol. 1992 Feb;32(2):176-83.","parent_key":"BE0002363"} {"ref-id":"A34498","pubmed-id":17542770,"citation":"Shin J, Johnson JA: Pharmacogenetics of beta-blockers. Pharmacotherapy. 2007 Jun;27(6):874-87. doi: 10.1592/phco.27.6.874.","parent_key":"BE0002363"} {"ref-id":"A181895","pubmed-id":18098064,"citation":"Jeong H, Choi S, Song JW, Chen H, Fischer JH: Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica. 2008 Jan;38(1):62-75. doi: 10.1080/00498250701744633 .","parent_key":"BE0003679"} {"ref-id":"A181895","pubmed-id":18098064,"citation":"Jeong H, Choi S, Song JW, Chen H, Fischer JH: Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica. 2008 Jan;38(1):62-75. doi: 10.1080/00498250701744633 .","parent_key":"BE0003538"} {"ref-id":"A38753","pubmed-id":9784924,"citation":"Hoebel BG, Steyrer E, Graier WF: Origin and function of epoxyeicosatrienoic acids in vascular endothelial cells: more than just endothelium-derived hyperpolarizing factor? Clin Exp Pharmacol Physiol. 1998 Oct;25(10):826-30.","parent_key":"BE0004866"} {"ref-id":"A37394","pubmed-id":9574819,"citation":"Zeng Z, Andrew NW, Arison BH, Luffer-Atlas D, Wang RW: Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes. Xenobiotica. 1998 Mar;28(3):313-21. doi: 10.1080/004982598239597 .","parent_key":"BE0002638"} {"ref-id":"A37393","pubmed-id":20630055,"citation":"Kudzi W, Dodoo AN, Mills JJ: Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans? BMC Med Genet. 2010 Jul 14;11:111. doi: 10.1186/1471-2350-11-111.","parent_key":"BE0002638"} {"ref-id":"A184544","pubmed-id":29511601,"citation":"Juarez M, Schcolnik-Cabrera A, Duenas-Gonzalez A: The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 2018 Feb 1;8(2):317-331. eCollection 2018.","parent_key":"BE0002638"} {"ref-id":"A184547","pubmed-id":11551531,"citation":"Skalova L, Szotakova B, Machala M, Neca J, Soucek P, Havlasova J, Wsol V, Kridova L, Kvasnickova E, Lamka J: Effect of ivermectin on activities of cytochrome P450 isoenzymes in mouflon (Ovis musimon) and fallow deer (Dama dama). Chem Biol Interact. 2001 Aug 31;137(2):155-67. doi: 10.1016/s0009-2797(01)00227-7.","parent_key":"BE0002638"} {"ref-id":"A14848","pubmed-id":18725509,"citation":"Zhang JW, Liu Y, Zhao JY, Wang LM, Ge GB, Gao Y, Li W, Liu HT, Liu HX, Zhang YY, Sun J, Yang L: Metabolic profiling and cytochrome P450 reaction phenotyping of medroxyprogesterone acetate. Drug Metab Dispos. 2008 Nov;36(11):2292-8. doi: 10.1124/dmd.108.022525. Epub 2008 Aug 25.","parent_key":"BE0002638"} {"ref-id":"A183692","pubmed-id":14561525,"citation":"Mimura N, Kobayashi K, Nakamura Y, Shimada N, Hosokawa M, Chiba K: Metabolism of medroxyprogesterone acetate (MPA) via CYP enzymes in vitro and effect of MPA on bleeding time in female rats in dependence on CYP activity in vivo. Life Sci. 2003 Nov 7;73(25):3201-12. doi: 10.1016/j.lfs.2003.05.004.","parent_key":"BE0002638"} {"ref-id":"A39466","pubmed-id":16645869,"citation":"Zhang JW, Liu Y, Li W, Hao DC, Yang L: Inhibitory effect of medroxyprogesterone acetate on human liver cytochrome P450 enzymes. Eur J Clin Pharmacol. 2006 Jul;62(7):497-502. doi: 10.1007/s00228-006-0128-9. Epub 2006 Apr 28.","parent_key":"BE0002887"} {"ref-id":"A39466","pubmed-id":16645869,"citation":"Zhang JW, Liu Y, Li W, Hao DC, Yang L: Inhibitory effect of medroxyprogesterone acetate on human liver cytochrome P450 enzymes. Eur J Clin Pharmacol. 2006 Jul;62(7):497-502. doi: 10.1007/s00228-006-0128-9. Epub 2006 Apr 28.","parent_key":"BE0002793"} {"ref-id":"A39467","pubmed-id":12899669,"citation":"Laine K, Yasar U, Widen J, Tybring G: A screening study on the liability of eight different female sex steroids to inhibit CYP2C9, 2C19 and 3A4 activities in human liver microsomes. Pharmacol Toxicol. 2003 Aug;93(2):77-81.","parent_key":"BE0002793"} {"ref-id":"A39264","pubmed-id":10859153,"citation":"Desta Z, Soukhova N, Mahal SK, Flockhart DA: Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies. Drug Metab Dispos. 2000 Jul;28(7):789-800.","parent_key":"BE0003612"} {"ref-id":"A932","pubmed-id":11717173,"citation":"Pearce RE, Gotschall RR, Kearns GL, Leeder JS: Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms. Drug Metab Dispos. 2001 Dec;29(12):1548-54.","parent_key":"BE0002638"} {"ref-id":"A31321","pubmed-id":10926350,"citation":"Michalets EL, Williams CR: Drug interactions with cisapride: clinical implications. Clin Pharmacokinet. 2000 Jul;39(1):49-75. doi: 10.2165/00003088-200039010-00004.","parent_key":"BE0002638"} {"ref-id":"A185015","pubmed-id":12621386,"citation":"Lowry JA, Kearns GL, Abdel-Rahman SM, Nafziger AN, Khan IS, Kashuba AD, Schuetz EG, Bertino JS Jr, van den Anker JN, Leeder JS: Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo. Clin Pharmacol Ther. 2003 Mar;73(3):209-22. doi: 10.1067/mcp.2003.29.","parent_key":"BE0002638"} {"ref-id":"A39264","pubmed-id":10859153,"citation":"Desta Z, Soukhova N, Mahal SK, Flockhart DA: Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies. Drug Metab Dispos. 2000 Jul;28(7):789-800.","parent_key":"BE0002362"} {"ref-id":"A185030","pubmed-id":10780971,"citation":"Bohets H, Lavrijsen K, Hendrickx J, van Houdt J, van Genechten V, Verboven P, Meuldermans W, Heykants J: Identification of the cytochrome P450 enzymes involved in the metabolism of cisapride: in vitro studies of potential co-medication interactions. Br J Pharmacol. 2000 Apr;129(8):1655-67. doi: 10.1038/sj.bjp.0703246.","parent_key":"BE0003336"} {"ref-id":"A184184","pubmed-id":19702528,"citation":"Di YM, Chow VD, Yang LP, Zhou SF: Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab. 2009 Sep;10(7):754-80.","parent_key":"BE0003336"} {"ref-id":"A39264","pubmed-id":10859153,"citation":"Desta Z, Soukhova N, Mahal SK, Flockhart DA: Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies. Drug Metab Dispos. 2000 Jul;28(7):789-800.","parent_key":"BE0003549"} {"ref-id":"A185030","pubmed-id":10780971,"citation":"Bohets H, Lavrijsen K, Hendrickx J, van Houdt J, van Genechten V, Verboven P, Meuldermans W, Heykants J: Identification of the cytochrome P450 enzymes involved in the metabolism of cisapride: in vitro studies of potential co-medication interactions. Br J Pharmacol. 2000 Apr;129(8):1655-67. doi: 10.1038/sj.bjp.0703246.","parent_key":"BE0003536"} {"ref-id":"A39264","pubmed-id":10859153,"citation":"Desta Z, Soukhova N, Mahal SK, Flockhart DA: Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies. Drug Metab Dispos. 2000 Jul;28(7):789-800.","parent_key":"BE0003536"} {"ref-id":"A178642","pubmed-id":11510629,"citation":"Andersson T, Hassan-Alin M, Hasselgren G, Rohss K: Drug interaction studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet. 2001;40(7):523-37. doi: 10.2165/00003088-200140070-00004.","parent_key":"BE0003536"} {"ref-id":"A39264","pubmed-id":10859153,"citation":"Desta Z, Soukhova N, Mahal SK, Flockhart DA: Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies. Drug Metab Dispos. 2000 Jul;28(7):789-800.","parent_key":"BE0002887"} {"ref-id":"A185030","pubmed-id":10780971,"citation":"Bohets H, Lavrijsen K, Hendrickx J, van Houdt J, van Genechten V, Verboven P, Meuldermans W, Heykants J: Identification of the cytochrome P450 enzymes involved in the metabolism of cisapride: in vitro studies of potential co-medication interactions. Br J Pharmacol. 2000 Apr;129(8):1655-67. doi: 10.1038/sj.bjp.0703246.","parent_key":"BE0002793"} {"ref-id":"A39264","pubmed-id":10859153,"citation":"Desta Z, Soukhova N, Mahal SK, Flockhart DA: Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies. Drug Metab Dispos. 2000 Jul;28(7):789-800.","parent_key":"BE0002363"} {"ref-id":"A182879","pubmed-id":16531450,"citation":"Ciolino HP, MacDonald CJ, Memon OS, Bass SE, Yeh GC: Sulindac regulates the aryl hydrocarbon receptor-mediated expression of Phase 1 metabolic enzymes in vivo and in vitro. Carcinogenesis. 2006 Aug;27(8):1586-92. doi: 10.1093/carcin/bgi359. Epub 2006 Mar 10.","parent_key":"BE0003543"} {"ref-id":"A15704","pubmed-id":17896903,"citation":"Kim KY, Frey RJ, Epplen K, Foruhari F: Interaction between warfarin and nafcillin: case report and review of the literature. Pharmacotherapy. 2007 Oct;27(10):1467-70.","parent_key":"BE0002638"} {"ref-id":"A15705","pubmed-id":12814453,"citation":"Lang CC, Jamal SK, Mohamed Z, Mustafa MR, Mustafa AM, Lee TC: Evidence of an interaction between nifedipine and nafcillin in humans. Br J Clin Pharmacol. 2003 Jun;55(6):588-90.","parent_key":"BE0002638"} {"ref-id":"A38847","pubmed-id":12967198,"citation":"Kim KA, Park JY, Lee JS, Lim S: Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003 Aug;26(8):631-7.","parent_key":"BE0002887"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0002887"} {"ref-id":"A39300","pubmed-id":12756207,"citation":"Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, Ducharme J: In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003 Jun;31(6):748-54.","parent_key":"BE0002887"} {"ref-id":"A191661","pubmed-id":30873854,"citation":"Kaewkhao K, Chotivanich K, Winterberg M, Day NP, Tarning J, Blessborn D: High sensitivity methods to quantify chloroquine and its metabolite in human blood samples using LC-MS/MS. Bioanalysis. 2019 Mar;11(5):333-347. doi: 10.4155/bio-2018-0202. Epub 2019 Mar 15.","parent_key":"BE0002887"} {"ref-id":"A38847","pubmed-id":12967198,"citation":"Kim KA, Park JY, Lee JS, Lim S: Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003 Aug;26(8):631-7.","parent_key":"BE0002638"} {"ref-id":"A39300","pubmed-id":12756207,"citation":"Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, Ducharme J: In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003 Jun;31(6):748-54.","parent_key":"BE0002638"} {"ref-id":"A191661","pubmed-id":30873854,"citation":"Kaewkhao K, Chotivanich K, Winterberg M, Day NP, Tarning J, Blessborn D: High sensitivity methods to quantify chloroquine and its metabolite in human blood samples using LC-MS/MS. Bioanalysis. 2019 Mar;11(5):333-347. doi: 10.4155/bio-2018-0202. Epub 2019 Mar 15.","parent_key":"BE0002638"} {"ref-id":"A38847","pubmed-id":12967198,"citation":"Kim KA, Park JY, Lee JS, Lim S: Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003 Aug;26(8):631-7.","parent_key":"BE0002362"} {"ref-id":"A184421","pubmed-id":26316040,"citation":"Lee JY, Vinayagamoorthy N, Han K, Kwok SK, Ju JH, Park KS, Jung SH, Park SW, Chung YJ, Park SH: Association of Polymorphisms of Cytochrome P450 2D6 With Blood Hydroxychloroquine Levels in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol. 2016 Jan;68(1):184-90. doi: 10.1002/art.39402.","parent_key":"BE0002362"} {"ref-id":"A191661","pubmed-id":30873854,"citation":"Kaewkhao K, Chotivanich K, Winterberg M, Day NP, Tarning J, Blessborn D: High sensitivity methods to quantify chloroquine and its metabolite in human blood samples using LC-MS/MS. Bioanalysis. 2019 Mar;11(5):333-347. doi: 10.4155/bio-2018-0202. Epub 2019 Mar 15.","parent_key":"BE0002362"} {"ref-id":"A39300","pubmed-id":12756207,"citation":"Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, Ducharme J: In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003 Jun;31(6):748-54.","parent_key":"BE0002363"} {"ref-id":"A39301","pubmed-id":9764961,"citation":"Adedoyin A, Frye RF, Mauro K, Branch RA: Chloroquine modulation of specific metabolizing enzymes activities: investigation with selective five drug cocktail. Br J Clin Pharmacol. 1998 Sep;46(3):215-9.","parent_key":"BE0002363"} {"ref-id":"A39302","pubmed-id":10896408,"citation":"Simooya OO, Sijumbil G, Lennard MS, Tucker GT: Halofantrine and chloroquine inhibit CYP2D6 activity in healthy Zambians. Br J Clin Pharmacol. 1998 Mar;45(3):315-7.","parent_key":"BE0002363"} {"ref-id":"A39300","pubmed-id":12756207,"citation":"Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, Ducharme J: In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003 Jun;31(6):748-54.","parent_key":"BE0003543"} {"ref-id":"A14849","pubmed-id":9523980,"citation":"Horikiri Y, Suzuki T, Mizobe M: Pharmacokinetics and metabolism of bisoprolol enantiomers in humans. J Pharm Sci. 1998 Mar;87(3):289-94.","parent_key":"BE0002638"} {"ref-id":"A34415","pubmed-id":25341854,"citation":"Zisaki A, Miskovic L, Hatzimanikatis V: Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Curr Pharm Des. 2015;21(6):806-22.","parent_key":"BE0002638"} {"ref-id":"A15164","pubmed-id":11805197,"citation":"Li XQ, Bjorkman A, Andersson TB, Ridderstrom M, Masimirembwa CM: Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002 Feb;300(2):399-407. doi: 10.1124/jpet.300.2.399.","parent_key":"BE0002887"} {"ref-id":"A185057","pubmed-id":15100167,"citation":"Ma B, Subramanian R, Schrag ML, Rodrigues AD, Tang C: Cytochrome P450 2C8 (CYP2C8)-mediated hydroxylation of an endothelin ETA receptor antagonist in human liver microsomes. Drug Metab Dispos. 2004 May;32(5):473-8. doi: 10.1124/dmd.32.5.473.","parent_key":"BE0002887"} {"ref-id":"A15164","pubmed-id":11805197,"citation":"Li XQ, Bjorkman A, Andersson TB, Ridderstrom M, Masimirembwa CM: Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002 Feb;300(2):399-407. doi: 10.1124/jpet.300.2.399.","parent_key":"BE0003543"} {"ref-id":"A185063","pubmed-id":19074972,"citation":"Johansson T, Jurva U, Gronberg G, Weidolf L, Masimirembwa C: Novel metabolites of amodiaquine formed by CYP1A1 and CYP1B1: structure elucidation using electrochemistry, mass spectrometry, and NMR. Drug Metab Dispos. 2009 Mar;37(3):571-9. doi: 10.1124/dmd.108.025171. Epub 2008 Dec 15.","parent_key":"BE0003543"} {"ref-id":"A34374","pubmed-id":24446424,"citation":"Scarsi KK, Fehintola FA, Ma Q, Aweeka FT, Darin KM, Morse GD, Akinola IT, Adedeji WA, Lindegardh N, Tarning J, Ojengbede O, Adewole IF, Taiwo B, Murphy RL, Akinyinka OO, Parikh S: Disposition of amodiaquine and desethylamodiaquine in HIV-infected Nigerian subjects on nevirapine-containing antiretroviral therapy. J Antimicrob Chemother. 2014 May;69(5):1370-6. doi: 10.1093/jac/dkt513. Epub 2014 Jan 19.","parent_key":"BE0003543"} {"ref-id":"A15164","pubmed-id":11805197,"citation":"Li XQ, Bjorkman A, Andersson TB, Ridderstrom M, Masimirembwa CM: Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002 Feb;300(2):399-407. doi: 10.1124/jpet.300.2.399.","parent_key":"BE0001111"} {"ref-id":"A185063","pubmed-id":19074972,"citation":"Johansson T, Jurva U, Gronberg G, Weidolf L, Masimirembwa C: Novel metabolites of amodiaquine formed by CYP1A1 and CYP1B1: structure elucidation using electrochemistry, mass spectrometry, and NMR. Drug Metab Dispos. 2009 Mar;37(3):571-9. doi: 10.1124/dmd.108.025171. Epub 2008 Dec 15.","parent_key":"BE0001111"} {"ref-id":"A34374","pubmed-id":24446424,"citation":"Scarsi KK, Fehintola FA, Ma Q, Aweeka FT, Darin KM, Morse GD, Akinola IT, Adedeji WA, Lindegardh N, Tarning J, Ojengbede O, Adewole IF, Taiwo B, Murphy RL, Akinyinka OO, Parikh S: Disposition of amodiaquine and desethylamodiaquine in HIV-infected Nigerian subjects on nevirapine-containing antiretroviral therapy. J Antimicrob Chemother. 2014 May;69(5):1370-6. doi: 10.1093/jac/dkt513. Epub 2014 Jan 19.","parent_key":"BE0001111"} {"ref-id":"A39251","pubmed-id":16783563,"citation":"Wennerholm A, Nordmark A, Pihlsgard M, Mahindi M, Bertilsson L, Gustafsson LL: Amodiaquine, its desethylated metabolite, or both, inhibit the metabolism of debrisoquine (CYP2D6) and losartan (CYP2C9) in vivo. Eur J Clin Pharmacol. 2006 Jul;62(7):539-46. doi: 10.1007/s00228-006-0121-3. Epub 2006 Jun 17.","parent_key":"BE0002363"} {"ref-id":"A17756","pubmed-id":11124226,"citation":"Bapiro TE, Egnell AC, Hasler JA, Masimirembwa CM: Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos. 2001 Jan;29(1):30-5.","parent_key":"BE0002363"} {"ref-id":"A39251","pubmed-id":16783563,"citation":"Wennerholm A, Nordmark A, Pihlsgard M, Mahindi M, Bertilsson L, Gustafsson LL: Amodiaquine, its desethylated metabolite, or both, inhibit the metabolism of debrisoquine (CYP2D6) and losartan (CYP2C9) in vivo. Eur J Clin Pharmacol. 2006 Jul;62(7):539-46. doi: 10.1007/s00228-006-0121-3. Epub 2006 Jun 17.","parent_key":"BE0002793"} {"ref-id":"A36010","pubmed-id":22644026,"citation":"Vourvahis M, Davis J, Wang R, Layton G, Choo HW, Chong CL, Tawadrous M: Effect of rifampin and rifabutin on the pharmacokinetics of lersivirine and effect of lersivirine on the pharmacokinetics of rifabutin and 25-O-desacetyl-rifabutin in healthy subjects. Antimicrob Agents Chemother. 2012 Aug;56(8):4303-9. doi: 10.1128/AAC.06282-11. Epub 2012 May 29.","parent_key":"BE0002638"} {"ref-id":"A183695","pubmed-id":18713760,"citation":"Sousa M, Pozniak A, Boffito M: Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J Antimicrob Chemother. 2008 Nov;62(5):872-8. doi: 10.1093/jac/dkn330. Epub 2008 Aug 18.","parent_key":"BE0002638"} {"ref-id":"A14231","pubmed-id":16480505,"citation":"Chen J, Raymond K: Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006 Feb 15;5:3.","parent_key":"BE0002793"} {"ref-id":"A39334","pubmed-id":11996607,"citation":"Finch CK, Chrisman CR, Baciewicz AM, Self TH: Rifampin and rifabutin drug interactions: an update. Arch Intern Med. 2002 May 13;162(9):985-92.","parent_key":"BE0002793"} {"ref-id":"A34863","pubmed-id":29569712,"citation":"Lutz JD, Kirby BJ, Wang L, Song Q, Ling J, Massetto B, Worth A, Kearney BP, Mathias A: Cytochrome P450 3A Induction Predicts P-glycoprotein Induction; Part 2: Prediction of Decreased Substrate Exposure After Rifabutin or Carbamazepine. Clin Pharmacol Ther. 2018 Mar 23. doi: 10.1002/cpt.1072.","parent_key":"BE0002793"} {"ref-id":"A17279","pubmed-id":10886461,"citation":"Tanaka E, Terada M, Misawa S: Cytochrome P450 2E1: its clinical and toxicological role. J Clin Pharm Ther. 2000 Jun;25(3):165-75.","parent_key":"BE0003533"} {"ref-id":"A37800","pubmed-id":9616191,"citation":"Koudriakova T, Iatsimirskaia E, Utkin I, Gangl E, Vouros P, Storozhuk E, Orza D, Marinina J, Gerber N: Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos. 1998 Jun;26(6):552-61.","parent_key":"BE0002638"} {"ref-id":"A38426","pubmed-id":22014153,"citation":"Filppula AM, Laitila J, Neuvonen PJ, Backman JT: Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98. doi: 10.1111/j.1476-5381.2011.01732.x.","parent_key":"BE0002638"} {"ref-id":"A34763","pubmed-id":16122278,"citation":"Peng B, Lloyd P, Schran H: Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879-94. doi: 10.2165/00003088-200544090-00001.","parent_key":"BE0002638"} {"ref-id":"A34763","pubmed-id":16122278,"citation":"Peng B, Lloyd P, Schran H: Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879-94. doi: 10.2165/00003088-200544090-00001.","parent_key":"BE0002362"} {"ref-id":"A184217","pubmed-id":29741432,"citation":"Adehin A, Adeagbo BA, Kennedy MA, Bolaji OO, Olugbade TA, Bolarinwa RA, Durosinmi MA: Inter-individual variation in imatinib disposition: any role for prevalent variants of CYP1A2, CYP2C8, CYP2C9, and CYP3A5 in Nigerian CML patients? Leuk Lymphoma. 2019 Jan;60(1):216-221. doi: 10.1080/10428194.2018.1466291. Epub 2018 May 9.","parent_key":"BE0002362"} {"ref-id":"A38976","pubmed-id":19088049,"citation":"van Erp N, Gelderblom H, van Glabbeke M, Van Oosterom A, Verweij J, Guchelaar HJ, Debiec-Rychter M, Peng B, Blay JY, Judson I: Effect of cigarette smoking on imatinib in patients in the soft tissue and bone sarcoma group of the EORTC. Clin Cancer Res. 2008 Dec 15;14(24):8308-13. doi: 10.1158/1078-0432.CCR-08-1303.","parent_key":"BE0002433"} {"ref-id":"A38977","pubmed-id":24369535,"citation":"Liu XY, Xu T, Li WS, Luo J, Geng PW, Wang L, Xia MM, Chen MC, Yu L, Hu GX: The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. Biomed Res Int. 2013;2013:789184. doi: 10.1155/2013/789184. Epub 2013 Nov 28.","parent_key":"BE0002433"} {"ref-id":"A39416","pubmed-id":27749579,"citation":"Recoche I, Rousseau V, Bourrel R, Lapeyre-Mestre M, Chebane L, Despas F, Montastruc JL, Bondon-Guitton E: Drug-drug interactions with imatinib: An observational study. Medicine (Baltimore). 2016 Oct;95(40):e5076. doi: 10.1097/MD.0000000000005076.","parent_key":"BE0002793"} {"ref-id":"A17856","pubmed-id":19505306,"citation":"Dort K, Padia S, Wispelwey B, Moore CC: Adrenal suppression due to an interaction between ritonavir and injected triamcinolone: a case report. AIDS Res Ther. 2009 Jun 8;6:10. doi: 10.1186/1742-6405-6-10.","parent_key":"BE0002638"} {"ref-id":"A17857","pubmed-id":20456080,"citation":"Hagan JB, Erickson D, Singh RJ: Triamcinolone acetonide induced secondary adrenal insufficiency related to impaired CYP3A4 metabolism by coadministration of nefazodone. Pain Med. 2010 Jul;11(7):1132-5. doi: 10.1111/j.1526-4637.2010.00852.x. Epub 2010 Apr 29.","parent_key":"BE0002638"} {"ref-id":"A35818","pubmed-id":23143891,"citation":"Moore CD, Roberts JK, Orton CR, Murai T, Fidler TP, Reilly CA, Ward RM, Yost GS: Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos. 2013 Feb;41(2):379-89. doi: 10.1124/dmd.112.046318. Epub 2012 Nov 9.","parent_key":"BE0002362"} {"ref-id":"A35818","pubmed-id":23143891,"citation":"Moore CD, Roberts JK, Orton CR, Murai T, Fidler TP, Reilly CA, Ward RM, Yost GS: Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos. 2013 Feb;41(2):379-89. doi: 10.1124/dmd.112.046318. Epub 2012 Nov 9.","parent_key":"BE0003612"} {"ref-id":"A39918","pubmed-id":27754879,"citation":"Wiggins BS, Saseen JJ, Page RL 2nd, Reed BN, Sneed K, Kostis JB, Lanfear D, Virani S, Morris PB: Recommendations for Management of Clinically Significant Drug-Drug Interactions With Statins and Select Agents Used in Patients With Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2016 Nov 22;134(21):e468-e495. doi: 10.1161/CIR.0000000000000456. Epub 2016 Oct 17.","parent_key":"BE0002793"} {"ref-id":"A33194","pubmed-id":15863898,"citation":"Nakamura K, Ariyoshi N, Iwatsubo T, Fukunaga Y, Higuchi S, Itoh K, Shimada N, Nagashima K, Yokoi T, Yamamoto K, Horiuchi R, Kamataki T: Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol Pharm Bull. 2005 May;28(5):882-5. doi: 10.1248/bpb.28.882.","parent_key":"BE0002638"} {"ref-id":"A33194","pubmed-id":15863898,"citation":"Nakamura K, Ariyoshi N, Iwatsubo T, Fukunaga Y, Higuchi S, Itoh K, Shimada N, Nagashima K, Yokoi T, Yamamoto K, Horiuchi R, Kamataki T: Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol Pharm Bull. 2005 May;28(5):882-5. doi: 10.1248/bpb.28.882.","parent_key":"BE0002363"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0002363"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0003536"} {"ref-id":"A33194","pubmed-id":15863898,"citation":"Nakamura K, Ariyoshi N, Iwatsubo T, Fukunaga Y, Higuchi S, Itoh K, Shimada N, Nagashima K, Yokoi T, Yamamoto K, Horiuchi R, Kamataki T: Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol Pharm Bull. 2005 May;28(5):882-5. doi: 10.1248/bpb.28.882.","parent_key":"BE0003536"} {"ref-id":"A33194","pubmed-id":15863898,"citation":"Nakamura K, Ariyoshi N, Iwatsubo T, Fukunaga Y, Higuchi S, Itoh K, Shimada N, Nagashima K, Yokoi T, Yamamoto K, Horiuchi R, Kamataki T: Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol Pharm Bull. 2005 May;28(5):882-5. doi: 10.1248/bpb.28.882.","parent_key":"BE0002887"} {"ref-id":"A39175","pubmed-id":24748562,"citation":"Lawrence SK, Nguyen D, Bowen C, Richards-Peterson L, Skordos KW: The metabolic drug-drug interaction profile of Dabrafenib: in vitro investigations and quantitative extrapolation of the P450-mediated DDI risk. Drug Metab Dispos. 2014 Jul;42(7):1180-90. doi: 10.1124/dmd.114.057778. Epub 2014 Apr 18.","parent_key":"BE0002887"} {"ref-id":"A33192","pubmed-id":11560876,"citation":"Drocourt L, Pascussi JM, Assenat E, Fabre JM, Maurel P, Vilarem MJ: Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab Dispos. 2001 Oct;29(10):1325-31.","parent_key":"BE0003549"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0003533"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0002793"} {"ref-id":"A39021","pubmed-id":10460810,"citation":"Shin JG, Soukhova N, Flockhart DA: Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab Dispos. 1999 Sep;27(9):1078-84.","parent_key":"BE0002363"} {"ref-id":"A14822","pubmed-id":12401364,"citation":"Zhang T, Zhu Y, Gunaratna C: Rapid and quantitative determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography-electrospray ionization-ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Nov 25;780(2):371-9.","parent_key":"BE0002638"} {"ref-id":"A183701","pubmed-id":28986474,"citation":"Kandel SE, Han LW, Mao Q, Lampe JN: Digging Deeper into CYP3A Testosterone Metabolism: Kinetic, Regioselectivity, and Stereoselectivity Differences between CYP3A4/5 and CYP3A7. Drug Metab Dispos. 2017 Dec;45(12):1266-1275. doi: 10.1124/dmd.117.078055. Epub 2017 Oct 6.","parent_key":"BE0002638"} {"ref-id":"A183704","pubmed-id":20945304,"citation":"Usmani KA, Tang J: Human cytochrome P450: metabolism of testosterone by CYP3A4 and inhibition by ketoconazole. Curr Protoc Toxicol. 2004 Jun;Chapter 4:Unit4.13. doi: 10.1002/0471140856.tx0413s20.","parent_key":"BE0002638"} {"ref-id":"A182990","pubmed-id":25337833,"citation":"Han JH, Lee YS, Kim HJ, Lee SY, Myung SC: Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population. Asian J Androl. 2015 Mar-Apr;17(2):285-91. doi: 10.4103/1008-682X.133320.","parent_key":"BE0002638"} {"ref-id":"A183104","pubmed-id":31339834,"citation":"Niwa T, Narita K, Okamoto A, Murayama N, Yamazaki H: Comparison of Steroid Hormone Hydroxylations by and Docking to Human Cytochromes P450 3A4 and 3A5. J Pharm Pharm Sci. 2019;22(1):332-339. doi: 10.18433/jpps30558.","parent_key":"BE0002362"} {"ref-id":"A182990","pubmed-id":25337833,"citation":"Han JH, Lee YS, Kim HJ, Lee SY, Myung SC: Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population. Asian J Androl. 2015 Mar-Apr;17(2):285-91. doi: 10.4103/1008-682X.133320.","parent_key":"BE0002362"} {"ref-id":"A183200","pubmed-id":9644715,"citation":"Ohmori S, Fujiki N, Nakasa H, Nakamura H, Ishii I, Itahashi K, Kitada M: Steroid hydroxylation by human fetal CYP3A7 and human NADPH-cytochrome P450 reductase coexpressed in insect cells using baculovirus. Res Commun Mol Pathol Pharmacol. 1998 Apr;100(1):15-28.","parent_key":"BE0003612"} {"ref-id":"A182990","pubmed-id":25337833,"citation":"Han JH, Lee YS, Kim HJ, Lee SY, Myung SC: Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population. Asian J Androl. 2015 Mar-Apr;17(2):285-91. doi: 10.4103/1008-682X.133320.","parent_key":"BE0003612"} {"ref-id":"A182990","pubmed-id":25337833,"citation":"Han JH, Lee YS, Kim HJ, Lee SY, Myung SC: Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population. Asian J Androl. 2015 Mar-Apr;17(2):285-91. doi: 10.4103/1008-682X.133320.","parent_key":"BE0003550"} {"ref-id":"A182858","pubmed-id":25243177,"citation":"Urban P, Truan G, Pompon D: High-throughput functional screening of steroid substrates with wild-type and chimeric P450 enzymes. Biomed Res Int. 2014;2014:764102. doi: 10.1155/2014/764102. Epub 2014 Aug 26.","parent_key":"BE0003543"} {"ref-id":"A182861","pubmed-id":23861929,"citation":"Zhang H, Li L, Xu Y: CYP1B1 polymorphisms and susceptibility to prostate cancer: a meta-analysis. PLoS One. 2013 Jul 4;8(7):e68634. doi: 10.1371/journal.pone.0068634. Print 2013.","parent_key":"BE0001111"} {"ref-id":"A182864","pubmed-id":26928804,"citation":"Pingili AK, Thirunavukkarasu S, Kara M, Brand DD, Katsurada A, Majid DS, Navar LG, Gonzalez FJ, Malik KU: 6beta-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice. Hypertension. 2016 May;67(5):916-26. doi: 10.1161/HYPERTENSIONAHA.115.06936. Epub 2016 Feb 29.","parent_key":"BE0001111"} {"ref-id":"A15135","pubmed-id":9732386,"citation":"Ekins S, Vandenbranden M, Ring BJ, Gillespie JS, Yang TJ, Gelboin HV, Wrighton SA: Further characterization of the expression in liver and catalytic activity of CYP2B6. J Pharmacol Exp Ther. 1998 Sep;286(3):1253-9.","parent_key":"BE0003549"} {"ref-id":"A182675","pubmed-id":10630892,"citation":"Rendic S, Nolteernsting E, Schanzer W: Metabolism of anabolic steroids by recombinant human cytochrome P450 enzymes. Gas chromatographic-mass spectrometric determination of metabolites. J Chromatogr B Biomed Sci Appl. 1999 Nov 26;735(1):73-83.","parent_key":"BE0003549"} {"ref-id":"A182987","pubmed-id":9633999,"citation":"Yang TJ, Krausz KW, Shou M, Yang SK, Buters JT, Gonzalez FJ, Gelboin HV: Inhibitory monoclonal antibody to human cytochrome P450 2B6. Biochem Pharmacol. 1998 May 15;55(10):1633-40. doi: 10.1016/s0006-2952(98)00018-5.","parent_key":"BE0003549"} {"ref-id":"A2957","pubmed-id":16501008,"citation":"Zhang JG, Dehal SS, Ho T, Johnson J, Chandler C, Blanchard AP, Clark RJ Jr, Crespi CL, Stresser DM, Wong J: Human cytochrome p450 induction and inhibition potential of clevidipine and its primary metabolite h152/81. Drug Metab Dispos. 2006 May;34(5):734-7. Epub 2006 Feb 24.","parent_key":"BE0003536"} {"ref-id":"A38593","pubmed-id":22318618,"citation":"Michaud V, Ogburn E, Thong N, Aregbe AO, Quigg TC, Flockhart DA, Desta Z: Induction of CYP2C19 and CYP3A activity following repeated administration of efavirenz in healthy volunteers. Clin Pharmacol Ther. 2012 Mar;91(3):475-82. doi: 10.1038/clpt.2011.249. Epub 2012 Feb 8.","parent_key":"BE0003536"} {"ref-id":"A38594","pubmed-id":23629159,"citation":"Michaud V, Kreutz Y, Skaar T, Ogburn E, Thong N, Flockhart DA, Desta Z: Efavirenz-mediated induction of omeprazole metabolism is CYP2C19 genotype dependent. Pharmacogenomics J. 2014 Apr;14(2):151-9. doi: 10.1038/tpj.2013.17. Epub 2013 Apr 30.","parent_key":"BE0003536"} {"ref-id":"A38596","pubmed-id":23385314,"citation":"Xu C, Desta Z: In vitro analysis and quantitative prediction of efavirenz inhibition of eight cytochrome P450 (CYP) enzymes: major effects on CYPs 2B6, 2C8, 2C9 and 2C19. Drug Metab Pharmacokinet. 2013;28(4):362-71. Epub 2013 Feb 5.","parent_key":"BE0003536"} {"ref-id":"A38596","pubmed-id":23385314,"citation":"Xu C, Desta Z: In vitro analysis and quantitative prediction of efavirenz inhibition of eight cytochrome P450 (CYP) enzymes: major effects on CYPs 2B6, 2C8, 2C9 and 2C19. Drug Metab Pharmacokinet. 2013;28(4):362-71. Epub 2013 Feb 5.","parent_key":"BE0002793"} {"ref-id":"A40219","pubmed-id":19663676,"citation":"Lakhman SS, Ma Q, Morse GD: Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics. 2009 Aug;10(8):1323-39. doi: 10.2217/pgs.09.53.","parent_key":"BE0002638"} {"ref-id":"A40220","pubmed-id":19223624,"citation":"Zhu M, Kaul S, Nandy P, Grasela DM, Pfister M: Model-based approach to characterize efavirenz autoinduction and concurrent enzyme induction with carbamazepine. Antimicrob Agents Chemother. 2009 Jun;53(6):2346-53. doi: 10.1128/AAC.01120-08. Epub 2009 Feb 17.","parent_key":"BE0002638"} {"ref-id":"A34927","pubmed-id":15496645,"citation":"Hariparsad N, Nallani SC, Sane RS, Buckley DJ, Buckley AR, Desai PB: Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital. J Clin Pharmacol. 2004 Nov;44(11):1273-81. doi: 10.1177/0091270004269142.","parent_key":"BE0002638"} {"ref-id":"A183707","pubmed-id":10082072,"citation":"Malaty LI, Kuper JJ: Drug interactions of HIV protease inhibitors. Drug Saf. 1999 Feb;20(2):147-69. doi: 10.2165/00002018-199920020-00005.","parent_key":"BE0002638"} {"ref-id":"A184748","pubmed-id":31339646,"citation":"Metzger IF, Dave N, Kreutz Y, Lu JBL, Galinsky RE, Desta Z: CYP2B6 Genotype-Dependent Inhibition of CYP1A2 and Induction of CYP2A6 by the Antiretroviral Drug Efavirenz in Healthy Volunteers. Clin Transl Sci. 2019 Jul 24. doi: 10.1111/cts.12671.","parent_key":"BE0002433"} {"ref-id":"A38596","pubmed-id":23385314,"citation":"Xu C, Desta Z: In vitro analysis and quantitative prediction of efavirenz inhibition of eight cytochrome P450 (CYP) enzymes: major effects on CYPs 2B6, 2C8, 2C9 and 2C19. Drug Metab Pharmacokinet. 2013;28(4):362-71. Epub 2013 Feb 5.","parent_key":"BE0002433"} {"ref-id":"A184751","pubmed-id":20335270,"citation":"Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z: Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos. 2010 Jul;38(7):1218-29. doi: 10.1124/dmd.109.031393. Epub 2010 Mar 24.","parent_key":"BE0002433"} {"ref-id":"A38596","pubmed-id":23385314,"citation":"Xu C, Desta Z: In vitro analysis and quantitative prediction of efavirenz inhibition of eight cytochrome P450 (CYP) enzymes: major effects on CYPs 2B6, 2C8, 2C9 and 2C19. Drug Metab Pharmacokinet. 2013;28(4):362-71. Epub 2013 Feb 5.","parent_key":"BE0002363"} {"ref-id":"A38748","pubmed-id":15081432,"citation":"Gaudineau C, Auclair K: Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem Biophys Res Commun. 2004 May 7;317(3):950-6. doi: 10.1016/j.bbrc.2004.03.137.","parent_key":"BE0002363"} {"ref-id":"A38748","pubmed-id":15081432,"citation":"Gaudineau C, Auclair K: Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem Biophys Res Commun. 2004 May 7;317(3):950-6. doi: 10.1016/j.bbrc.2004.03.137.","parent_key":"BE0002638"} {"ref-id":"A38748","pubmed-id":15081432,"citation":"Gaudineau C, Auclair K: Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem Biophys Res Commun. 2004 May 7;317(3):950-6. doi: 10.1016/j.bbrc.2004.03.137.","parent_key":"BE0003533"} {"ref-id":"A14980","pubmed-id":10668858,"citation":"Dresser GK, Spence JD, Bailey DG: Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000 Jan;38(1):41-57.","parent_key":"BE0002638"} {"ref-id":"A15681","pubmed-id":11251565,"citation":"Sachs B, Erdmann S, Al-Masaoudi T, Merk HF: In vitro drug allergy detection system incorporating human liver microsomes in chlorazepate-induced skin rash: drug-specific proliferation associated with interleukin-5 secretion. Br J Dermatol. 2001 Feb;144(2):316-20.","parent_key":"BE0002638"} {"ref-id":"A15652","pubmed-id":9351903,"citation":"Clement B, Demesmaeker M: Formation of guanoxabenz from guanabenz in human liver. A new metabolic marker for CYP1A2. Drug Metab Dispos. 1997 Nov;25(11):1266-71.","parent_key":"BE0002433"} {"ref-id":"A17712","pubmed-id":18638298,"citation":"Avsaroglu H, Bull S, Maas-Bakker RF, Scherpenisse P, Van Lith HA, Bergwerff AA, Hellebrekers LJ, Van Zutphen LF, Fink-Gremmels J: Differences in hepatic cytochrome P450 activity correlate with the strain-specific biotransformation of medetomidine in AX/JU and IIIVO/JU inbred rabbits. J Vet Pharmacol Ther. 2008 Aug;31(4):368-77. doi: 10.1111/j.1365-2885.2008.00969.x.","parent_key":"BE0003533"} {"ref-id":"A17713","pubmed-id":20020418,"citation":"Duhamel MC, Troncy E, Beaudry F: Metabolic stability and determination of cytochrome P450 isoenzymes' contribution to the metabolism of medetomidine in dog liver microsomes. Biomed Chromatogr. 2010 Aug;24(8):868-77. doi: 10.1002/bmc.1379.","parent_key":"BE0003533"} {"ref-id":"A17714","pubmed-id":17973897,"citation":"Konstandi M, Lang MA, Kostakis D, Johnson EO, Marselos M: Predominant role of peripheral catecholamines in the stress-induced modulation of CYP1A2 inducibility by benzo(alpha)pyrene. Basic Clin Pharmacol Toxicol. 2008 Jan;102(1):35-44. Epub 2007 Oct 31.","parent_key":"BE0002433"} {"ref-id":"A17716","pubmed-id":15627480,"citation":"Konstandi M, Kostakis D, Harkitis P, Marselos M, Johnson EO, Adamidis K, Lang MA: Role of adrenoceptor-linked signaling pathways in the regulation of CYP1A1 gene expression. Biochem Pharmacol. 2005 Jan 15;69(2):277-87.","parent_key":"BE0003543"} {"ref-id":"A17717","pubmed-id":9152607,"citation":"Rodrigues AD, Roberts EM: The in vitro interaction of dexmedetomidine with human liver microsomal cytochrome P4502D6 (CYP2D6). Drug Metab Dispos. 1997 May;25(5):651-5.","parent_key":"BE0002363"} {"ref-id":"A38671","pubmed-id":15647408,"citation":"Hardy KW, Crocker JF, McLellan H, Goralski KB, Renton KW, Acott PD: Paradoxical cyclosporine A requirements in pediatric renal transplants receiving high-dose steroids. J Clin Pharmacol. 2005 Feb;45(2):161-7. doi: 10.1177/0091270004271403.","parent_key":"BE0002638"} {"ref-id":"A183212","pubmed-id":1614409,"citation":"Pichard L, Fabre I, Daujat M, Domergue J, Joyeux H, Maurel P: Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol Pharmacol. 1992 Jun;41(6):1047-55.","parent_key":"BE0002638"} {"ref-id":"A187979","pubmed-id":19795924,"citation":"Miura M, Inoue K, Kagaya H, Saito M, Habuchi T, Satoh S: Inter-individual difference determinant of prednisolone pharmacokinetics for Japanese renal transplant recipients in the maintenance stage. Xenobiotica. 2009 Dec;39(12):939-45. doi: 10.3109/00498250903294361.","parent_key":"BE0002638"} {"ref-id":"A21546","pubmed-id":12673034,"citation":"Usui T, Saitoh Y, Komada F: Induction of CYP3As in HepG2 cells by several drugs. Association between induction of CYP3A4 and expression of glucocorticoid receptor. Biol Pharm Bull. 2003 Apr;26(4):510-7. doi: 10.1248/bpb.26.510.","parent_key":"BE0002638"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0002638"} {"ref-id":"A187265","pubmed-id":24451000,"citation":"Matoulkova P, Pavek P, Maly J, Vlcek J: Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014 Mar;10(3):425-35. doi: 10.1517/17425255.2014.878703. Epub 2014 Jan 23.","parent_key":"BE0004866"} {"ref-id":"A17952","pubmed-id":20634231,"citation":"Raza K, Hardy R, Cooper MS: The 11beta-hydroxysteroid dehydrogenase enzymes--arbiters of the effects of glucocorticoids in synovium and bone. Rheumatology (Oxford). 2010 Nov;49(11):2016-23. doi: 10.1093/rheumatology/keq212. Epub 2010 Jul 15.","parent_key":"BE0000329"} {"ref-id":"A185105","pubmed-id":9817083,"citation":"Lee PC, Marquardt M, Lech JJ: Metabolism of nonylphenol by rat and human microsomes. Toxicol Lett. 1998 Oct 15;99(2):117-26. doi: 10.1016/s0378-4274(98)00153-2.","parent_key":"BE0003533"} {"ref-id":"A185108","pubmed-id":9643352,"citation":"Adas F, Berthou F, Picart D, Lozac'h P, Beauge F, Amet Y: Involvement of cytochrome P450 2E1 in the (omega-1)-hydroxylation of oleic acid in human and rat liver microsomes. J Lipid Res. 1998 Jun;39(6):1210-9.","parent_key":"BE0003533"} {"ref-id":"A185099","pubmed-id":7587930,"citation":"Donato MT, Castell JV, Gomez-Lechon MJ: Effect of model inducers on cytochrome P450 activities of human hepatocytes in primary culture. Drug Metab Dispos. 1995 May;23(5):553-8.","parent_key":"BE0002638"} {"ref-id":"A36366","pubmed-id":9515185,"citation":"Miller DB, Spence JD: Clinical pharmacokinetics of fibric acid derivatives (fibrates). Clin Pharmacokinet. 1998 Feb;34(2):155-62. doi: 10.2165/00003088-199834020-00003.","parent_key":"BE0002638"} {"ref-id":"A185105","pubmed-id":9817083,"citation":"Lee PC, Marquardt M, Lech JJ: Metabolism of nonylphenol by rat and human microsomes. Toxicol Lett. 1998 Oct 15;99(2):117-26. doi: 10.1016/s0378-4274(98)00153-2.","parent_key":"BE0003543"} {"ref-id":"A21411","pubmed-id":15521013,"citation":"Seree E, Villard PH, Pascussi JM, Pineau T, Maurel P, Nguyen QB, Fallone F, Martin PM, Champion S, Lacarelle B, Savouret JF, Barra Y: Evidence for a new human CYP1A1 regulation pathway involving PPAR-alpha and 2 PPRE sites. Gastroenterology. 2004 Nov;127(5):1436-45. doi: 10.1053/j.gastro.2004.08.023.","parent_key":"BE0003543"} {"ref-id":"A185111","pubmed-id":8819304,"citation":"Rey-Grobellet X, Eeckhoutte C, Sutra JF, Alvinerie M, Galtier P: Major involvement of rabbit liver cytochrome P4501A in thiabendazole 5-hydroxylation. Xenobiotica. 1996 Jul;26(7):765-78.","parent_key":"BE0003543"} {"ref-id":"A21678","pubmed-id":26558470,"citation":"Li J, Li D, Tie C, Wu J, Wu Q, Li Q: Cisplatin-mediated cytotoxicity through inducing CYP4A 11 expression in human renal tubular epithelial cells. J Toxicol Sci. 2015 Dec;40(6):895-900. doi: 10.2131/jts.40.895.","parent_key":"BE0000421"} {"ref-id":"A185114","pubmed-id":15056802,"citation":"Raucy JL, Lasker J, Ozaki K, Zoleta V: Regulation of CYP2E1 by ethanol and palmitic acid and CYP4A11 by clofibrate in primary cultures of human hepatocytes. Toxicol Sci. 2004 Jun;79(2):233-41. doi: 10.1093/toxsci/kfh126. Epub 2004 Mar 31.","parent_key":"BE0000421"} {"ref-id":"A14855","pubmed-id":10597902,"citation":"Nicolas JM, Whomsley R, Collart P, Roba J: In vitro inhibition of human liver drug metabolizing enzymes by second generation antihistamines. Chem Biol Interact. 1999 Nov 15;123(1):63-79.","parent_key":"BE0002638"} {"ref-id":"A14856","pubmed-id":11259984,"citation":"Matsumoto S, Yamazoe Y: Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol. 2001 Feb;51(2):133-42.","parent_key":"BE0002638"} {"ref-id":"A14857","pubmed-id":12662125,"citation":"Cvetkovic RS, Goa KL: Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003;63(8):769-802.","parent_key":"BE0002638"} {"ref-id":"A14858","pubmed-id":15133245,"citation":"Goto A, Adachi Y, Inaba A, Nakajima H, Kobayashi H, Sakai K: Identification of human p450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its inhibitory effect on enzyme activity. Biol Pharm Bull. 2004 May;27(5):684-90.","parent_key":"BE0002638"} {"ref-id":"A14859","pubmed-id":15684493,"citation":"Goto A, Ueda K, Inaba A, Nakajima H, Kobayashi H, Sakai K: Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its kinetic parameters and inhibition constants. Biol Pharm Bull. 2005 Feb;28(2):328-34.","parent_key":"BE0002638"} {"ref-id":"A14856","pubmed-id":11259984,"citation":"Matsumoto S, Yamazoe Y: Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol. 2001 Feb;51(2):133-42.","parent_key":"BE0002363"} {"ref-id":"A181460","pubmed-id":23047648,"citation":"Elsby R, Hilgendorf C, Fenner K: Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther. 2012 Nov;92(5):584-98. doi: 10.1038/clpt.2012.163. Epub 2012 Oct 10.","parent_key":"BE0002638"} {"ref-id":"A181577","pubmed-id":17192506,"citation":"Kim KA, Park PW, Lee OJ, Kang DK, Park JY: Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol. 2007 Jan;47(1):87-93. doi: 10.1177/0091270006295063.","parent_key":"BE0002638"} {"ref-id":"A181580","pubmed-id":18213452,"citation":"Tubic-Grozdanis M, Hilfinger JM, Amidon GL, Kim JS, Kijek P, Staubach P, Langguth P: Pharmacokinetics of the CYP 3A substrate simvastatin following administration of delayed versus immediate release oral dosage forms. Pharm Res. 2008 Jul;25(7):1591-600. doi: 10.1007/s11095-007-9519-6. Epub 2008 Jan 24.","parent_key":"BE0002638"} {"ref-id":"A181577","pubmed-id":17192506,"citation":"Kim KA, Park PW, Lee OJ, Kang DK, Park JY: Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol. 2007 Jan;47(1):87-93. doi: 10.1177/0091270006295063.","parent_key":"BE0002362"} {"ref-id":"A181580","pubmed-id":18213452,"citation":"Tubic-Grozdanis M, Hilfinger JM, Amidon GL, Kim JS, Kijek P, Staubach P, Langguth P: Pharmacokinetics of the CYP 3A substrate simvastatin following administration of delayed versus immediate release oral dosage forms. Pharm Res. 2008 Jul;25(7):1591-600. doi: 10.1007/s11095-007-9519-6. Epub 2008 Jan 24.","parent_key":"BE0002362"} {"ref-id":"A39267","pubmed-id":8737761,"citation":"Transon C, Leemann T, Dayer P: In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol. 1996;50(3):209-15.","parent_key":"BE0002793"} {"ref-id":"A181580","pubmed-id":18213452,"citation":"Tubic-Grozdanis M, Hilfinger JM, Amidon GL, Kim JS, Kijek P, Staubach P, Langguth P: Pharmacokinetics of the CYP 3A substrate simvastatin following administration of delayed versus immediate release oral dosage forms. Pharm Res. 2008 Jul;25(7):1591-600. doi: 10.1007/s11095-007-9519-6. Epub 2008 Jan 24.","parent_key":"BE0002793"} {"ref-id":"A39314","pubmed-id":15285699,"citation":"Vermes A, Vermes I: Genetic polymorphisms in cytochrome P450 enzymes: effect on efficacy and tolerability of HMG-CoA reductase inhibitors. Am J Cardiovasc Drugs. 2004;4(4):247-55.","parent_key":"BE0002363"} {"ref-id":"A5315","pubmed-id":12433810,"citation":"Kocarek TA, Dahn MS, Cai H, Strom SC, Mercer-Haines NA: Regulation of CYP2B6 and CYP3A expression by hydroxymethylglutaryl coenzyme A inhibitors in primary cultured human hepatocytes. Drug Metab Dispos. 2002 Dec;30(12):1400-5.","parent_key":"BE0003549"} {"ref-id":"A182975","pubmed-id":12841937,"citation":"Baliharova V, Skalova L, Maas RF, De Vrieze G, Bull S, Fink-Gremmels J: The effects of mebendazole on P4501A activity in rat hepatocytes and HepG2 cells. Comparison with tiabendazole and omeprazole. J Pharm Pharmacol. 2003 Jun;55(6):773-81. doi: 10.1211/002235703765951375.","parent_key":"BE0003543"} {"ref-id":"A38406","pubmed-id":15096105,"citation":"Baliharova V, Velik J, Savlik M, Szotakova B, Lamka J, Tahotna L, Skalova L: The effects of fenbendazole, flubendazole and mebendazole on activities of hepatic cytochromes P450 in pig. J Vet Pharmacol Ther. 2004 Apr;27(2):85-90. doi: 10.1111/j.1365-2885.2004.00557.x.","parent_key":"BE0004866"} {"ref-id":"A38736","pubmed-id":15764408,"citation":"Somogyi AA, Menelaou A, Fullston SV: CYP3A4 mediates dextropropoxyphene N-demethylation to nordextropropoxyphene: human in vitro and in vivo studies and lack of CYP2D6 involvement. Xenobiotica. 2004 Oct;34(10):875-87. doi: 10.1080/00498250400008371 .","parent_key":"BE0002638"} {"ref-id":"A33259","pubmed-id":8877250,"citation":"Spina E, Pisani F, Perucca E: Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin Pharmacokinet. 1996 Sep;31(3):198-214. doi: 10.2165/00003088-199631030-00004.","parent_key":"BE0002638"} {"ref-id":"A39247","pubmed-id":9143866,"citation":"Yue QY, Sawe J: Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol. 1997;52(1):41-7.","parent_key":"BE0002363"} {"ref-id":"A34935","pubmed-id":7826826,"citation":"Kerry NL, Somogyi AA, Bochner F, Mikus G: The role of CYP2D6 in primary and secondary oxidative metabolism of dextromethorphan: in vitro studies using human liver microsomes. Br J Clin Pharmacol. 1994 Sep;38(3):243-8.","parent_key":"BE0002363"} {"ref-id":"A182978","pubmed-id":10640505,"citation":"Ohe T, Hirobe M, Mashino T: Novel metabolic pathway of estrone and 17beta-estradiol catalyzed by cytochrome P-450. Drug Metab Dispos. 2000 Feb;28(2):110-2.","parent_key":"BE0003543"} {"ref-id":"A182981","pubmed-id":12902195,"citation":"van Duursen MB, Sanderson JT, van der Bruggen M, van der Linden J, van den Berg M: Effects of several dioxin-like compounds on estrogen metabolism in the malignant MCF-7 and nontumorigenic MCF-10A human mammary epithelial cell lines. Toxicol Appl Pharmacol. 2003 Aug 1;190(3):241-50. doi: 10.1016/s0041-008x(03)00166-2.","parent_key":"BE0003543"} {"ref-id":"A38922","pubmed-id":10930541,"citation":"Ueno T, Tamura S, Frels WI, Shou M, Gonzalez FJ, Kimura S: A transgenic mouse expressing human CYP1A2 in the pancreas. Biochem Pharmacol. 2000 Sep 15;60(6):857-63.","parent_key":"BE0002433"} {"ref-id":"A38923","pubmed-id":9625734,"citation":"Yamazaki H, Shaw PM, Guengerich FP, Shimada T: Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem Res Toxicol. 1998 Jun;11(6):659-65. doi: 10.1021/tx970217f.","parent_key":"BE0002433"} {"ref-id":"A184412","pubmed-id":25678418,"citation":"Niwa T, Murayama N, Imagawa Y, Yamazaki H: Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev. 2015 May;47(2):89-110. doi: 10.3109/03602532.2015.1011658. Epub 2015 Feb 13.","parent_key":"BE0002638"} {"ref-id":"A35839","pubmed-id":23291110,"citation":"Thomas MP, Potter BV: The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. 2013 Sep;137:27-49. doi: 10.1016/j.jsbmb.2012.12.014. Epub 2013 Jan 4.","parent_key":"BE0001111"} {"ref-id":"A182981","pubmed-id":12902195,"citation":"van Duursen MB, Sanderson JT, van der Bruggen M, van der Linden J, van den Berg M: Effects of several dioxin-like compounds on estrogen metabolism in the malignant MCF-7 and nontumorigenic MCF-10A human mammary epithelial cell lines. Toxicol Appl Pharmacol. 2003 Aug 1;190(3):241-50. doi: 10.1016/s0041-008x(03)00166-2.","parent_key":"BE0001111"} {"ref-id":"A184769","pubmed-id":23467454,"citation":"Zanger UM, Klein K: Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet. 2013 Mar 5;4:24. doi: 10.3389/fgene.2013.00024. eCollection 2013.","parent_key":"BE0003549"} {"ref-id":"A184772","pubmed-id":19702527,"citation":"Mo SL, Liu YH, Duan W, Wei MQ, Kanwar JR, Zhou SF: Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6. Curr Drug Metab. 2009 Sep;10(7):730-53.","parent_key":"BE0003549"} {"ref-id":"A39358","pubmed-id":14703066,"citation":"Modugno F, Knoll C, Kanbour-Shakir A, Romkes M: A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat. 2003 Dec;82(3):191-7. doi: 10.1023/B:BREA.0000004376.21491.44.","parent_key":"BE0002793"} {"ref-id":"A184775","pubmed-id":30098040,"citation":"Uno T, Nakano R, Kitagawa R, Okada M, Kanamaru K, Takenaka S, Uno Y, Imaishi H: Metabolism of steroids by cytochrome P450 2C9 variants. Biopharm Drug Dispos. 2018 Sep;39(8):371-377. doi: 10.1002/bdd.2153.","parent_key":"BE0002793"} {"ref-id":"A182978","pubmed-id":10640505,"citation":"Ohe T, Hirobe M, Mashino T: Novel metabolic pathway of estrone and 17beta-estradiol catalyzed by cytochrome P-450. Drug Metab Dispos. 2000 Feb;28(2):110-2.","parent_key":"BE0003533"} {"ref-id":"A38846","pubmed-id":9635876,"citation":"Huang Z, Guengerich FP, Kaminsky LS: 16Alpha-hydroxylation of estrone by human cytochrome P4503A4/5. Carcinogenesis. 1998 May;19(5):867-72.","parent_key":"BE0002362"} {"ref-id":"A14754","pubmed-id":12865317,"citation":"Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT: Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.","parent_key":"BE0002362"} {"ref-id":"A38989","pubmed-id":16537715,"citation":"Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM: Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol Biomarkers Prev. 2006 Mar;15(3):551-8. doi: 10.1158/1055-9965.EPI-05-0801.","parent_key":"BE0002362"} {"ref-id":"A987","pubmed-id":9616194,"citation":"Rotzinger S, Fang J, Baker GB: Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources. Drug Metab Dispos. 1998 Jun;26(6):572-5.","parent_key":"BE0002638"} {"ref-id":"A988","pubmed-id":15978881,"citation":"Kalgutkar AS, Henne KR, Lame ME, Vaz AD, Collin C, Soglia JR, Zhao SX, Hop CE: Metabolic activation of the nontricyclic antidepressant trazodone to electrophilic quinone-imine and epoxide intermediates in human liver microsomes and recombinant P4503A4. Chem Biol Interact. 2005 Jun 30;155(1-2):10-20. Epub 2005 Apr 18.","parent_key":"BE0002638"} {"ref-id":"A14863","pubmed-id":18238857,"citation":"Wen B, Ma L, Rodrigues AD, Zhu M: Detection of novel reactive metabolites of trazodone: evidence for CYP2D6-mediated bioactivation of m-chlorophenylpiperazine. Drug Metab Dispos. 2008 May;36(5):841-50. doi: 10.1124/dmd.107.019471. Epub 2008 Jan 31.","parent_key":"BE0002363"} {"ref-id":"A181265","pubmed-id":27643409,"citation":"Najibi A, Heidari R, Zarifi J, Jamshidzadeh A, Firoozabadi N, Niknahad H: Evaluating the Role of Drug Metabolism and Reactive Intermediates in Trazodone-Induced Cytotoxicity toward Freshly-Isolated Rat Hepatocytes. Drug Res (Stuttg). 2016 Nov;66(11):592-596. doi: 10.1055/s-0042-109536. Epub 2016 Sep 19.","parent_key":"BE0002363"} {"ref-id":"A181268","pubmed-id":20373668,"citation":"Mrazek DA: Psychiatric pharmacogenomic testing in clinical practice. Dialogues Clin Neurosci. 2010;12(1):69-76.","parent_key":"BE0002363"} {"ref-id":"A181334","pubmed-id":22294487,"citation":"Wu AH, Lorizio W, Tchu S, Lynch K, Gerona R, Ji W, Ruan W, Ruddy KJ, Desantis SD, Burstein HJ, Ziv E: Estimation of tamoxifen metabolite concentrations in the blood of breast cancer patients through CYP2D6 genotype activity score. Breast Cancer Res Treat. 2012 Jun;133(2):677-83. doi: 10.1007/s10549-012-1963-2.","parent_key":"BE0002363"} {"ref-id":"A181337","pubmed-id":26518198,"citation":"Chubak J, Bowles EJ, Yu O, Buist DS, Fujii M, Boudreau DM: Breast cancer recurrence in relation to antidepressant use. Cancer Causes Control. 2016 Jan;27(1):125-36. doi: 10.1007/s10552-015-0689-y. Epub 2015 Oct 30.","parent_key":"BE0002363"} {"ref-id":"A184001","pubmed-id":15689501,"citation":"Wang YH, Jones DR, Hall SD: Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos. 2005 May;33(5):664-71. doi: 10.1124/dmd.104.001834. Epub 2005 Feb 2.","parent_key":"BE0002638"} {"ref-id":"A38562","pubmed-id":15900280,"citation":"Totah RA, Rettie AE: Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther. 2005 May;77(5):341-52. doi: 10.1016/j.clpt.2004.12.267.","parent_key":"BE0002887"} {"ref-id":"A182984","pubmed-id":8750925,"citation":"Busse D, Cosme J, Beaune P, Kroemer HK, Eichelbaum M: Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec;353(1):116-21. doi: 10.1007/bf00168924.","parent_key":"BE0002887"} {"ref-id":"A184001","pubmed-id":15689501,"citation":"Wang YH, Jones DR, Hall SD: Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos. 2005 May;33(5):664-71. doi: 10.1124/dmd.104.001834. Epub 2005 Feb 2.","parent_key":"BE0002362"} {"ref-id":"A184004","pubmed-id":17339868,"citation":"Langaee TY, Gong Y, Yarandi HN, Katz DA, Cooper-DeHoff RM, Pepine CJ, Johnson JA: Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin Pharmacol Ther. 2007 Mar;81(3):386-91. doi: 10.1038/sj.clpt.6100090.","parent_key":"BE0002362"} {"ref-id":"A182984","pubmed-id":8750925,"citation":"Busse D, Cosme J, Beaune P, Kroemer HK, Eichelbaum M: Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec;353(1):116-21. doi: 10.1007/bf00168924.","parent_key":"BE0003536"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0003536"} {"ref-id":"A38924","pubmed-id":8232610,"citation":"Kroemer HK, Gautier JC, Beaune P, Henderson C, Wolf CR, Eichelbaum M: Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1993 Sep;348(3):332-7.","parent_key":"BE0002433"} {"ref-id":"A183215","pubmed-id":30815023,"citation":"Badowski ME, Burton B, Shaeer KM, Dicristofano J: Oral oncolytic and antiretroviral therapy administration: dose adjustments, drug interactions, and other considerations for clinical use. Drugs Context. 2019 Feb 13;8:212550. doi: 10.7573/dic.212550. eCollection 2019.","parent_key":"BE0003536"} {"ref-id":"A37732","pubmed-id":19356039,"citation":"Gervasini G, Martinez C, Benitez J, Agundez JA: Effect of neurotransmitters on NADPH-cytochrome P450 reductase in vitro activity. Drug Metab Lett. 2007 Aug;1(3):172-5.","parent_key":"BE0002793"} {"ref-id":"A37747","pubmed-id":11207028,"citation":"Gervasini G, Martinez C, Agundez JA, Garcia-Gamito FJ, Benitez J: Inhibition of cytochrome P450 2C9 activity in vitro by 5-hydroxytryptamine and adrenaline. Pharmacogenetics. 2001 Feb;11(1):29-37.","parent_key":"BE0002793"} {"ref-id":"A37732","pubmed-id":19356039,"citation":"Gervasini G, Martinez C, Benitez J, Agundez JA: Effect of neurotransmitters on NADPH-cytochrome P450 reductase in vitro activity. Drug Metab Lett. 2007 Aug;1(3):172-5.","parent_key":"BE0002638"} {"ref-id":"A31191","pubmed-id":15842554,"citation":"Shon JH, Yoon YR, Kim MJ, Kim KA, Lim YC, Liu KH, Shin DH, Lee CH, Cha IJ, Shin JG: Chlorpropamide 2-hydroxylation is catalysed by CYP2C9 and CYP2C19 in vitro: chlorpropamide disposition is influenced by CYP2C9, but not by CYP2C19 genetic polymorphism. Br J Clin Pharmacol. 2005 May;59(5):552-63.","parent_key":"BE0002793"} {"ref-id":"A31191","pubmed-id":15842554,"citation":"Shon JH, Yoon YR, Kim MJ, Kim KA, Lim YC, Liu KH, Shin DH, Lee CH, Cha IJ, Shin JG: Chlorpropamide 2-hydroxylation is catalysed by CYP2C9 and CYP2C19 in vitro: chlorpropamide disposition is influenced by CYP2C9, but not by CYP2C19 genetic polymorphism. Br J Clin Pharmacol. 2005 May;59(5):552-63.","parent_key":"BE0003536"} {"ref-id":"A14868","pubmed-id":15304427,"citation":"Sanchez RI, Wang RW, Newton DJ, Bakhtiar R, Lu P, Chiu SH, Evans DC, Huskey SE: Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab Dispos. 2004 Nov;32(11):1287-92. Epub 2004 Aug 10.","parent_key":"BE0002638"} {"ref-id":"A183218","pubmed-id":12891225,"citation":"Majumdar AK, McCrea JB, Panebianco DL, Hesney M, Dru J, Constanzer M, Goldberg MR, Murphy G, Gottesdiener KM, Lines CR, Petty KJ, Blum RA: Effects of aprepitant on cytochrome P450 3A4 activity using midazolam as a probe. Clin Pharmacol Ther. 2003 Aug;74(2):150-6. doi: 10.1016/S0009-9236(03)00123-1.","parent_key":"BE0002638"} {"ref-id":"A36854","pubmed-id":15025555,"citation":"Dando TM, Perry CM: Aprepitant: a review of its use in the prevention of chemotherapy-induced nausea and vomiting. Drugs. 2004;64(7):777-94.","parent_key":"BE0002638"} {"ref-id":"A14868","pubmed-id":15304427,"citation":"Sanchez RI, Wang RW, Newton DJ, Bakhtiar R, Lu P, Chiu SH, Evans DC, Huskey SE: Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab Dispos. 2004 Nov;32(11):1287-92. Epub 2004 Aug 10.","parent_key":"BE0003536"} {"ref-id":"A184460","pubmed-id":26053558,"citation":"House L, Ramirez J, Seminerio M, Mirkov S, Ratain MJ: In vitro glucuronidation of aprepitant: a moderate inhibitor of UGT2B7. Xenobiotica. 2015;45(11):990-8. doi: 10.3109/00498254.2015.1038743. Epub 2015 Jun 8.","parent_key":"BE0003536"} {"ref-id":"A36854","pubmed-id":15025555,"citation":"Dando TM, Perry CM: Aprepitant: a review of its use in the prevention of chemotherapy-induced nausea and vomiting. Drugs. 2004;64(7):777-94.","parent_key":"BE0002793"} {"ref-id":"A39307","pubmed-id":15485308,"citation":"Navari RM: Aprepitant: a neurokinin-1 receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting. Expert Rev Anticancer Ther. 2004 Oct;4(5):715-24. doi: 10.1586/14737140.4.5.715.","parent_key":"BE0002793"} {"ref-id":"A14868","pubmed-id":15304427,"citation":"Sanchez RI, Wang RW, Newton DJ, Bakhtiar R, Lu P, Chiu SH, Evans DC, Huskey SE: Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab Dispos. 2004 Nov;32(11):1287-92. Epub 2004 Aug 10.","parent_key":"BE0002793"} {"ref-id":"A38749","pubmed-id":12162759,"citation":"Jann MW, Shirley KL, Small GW: Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719-39. doi: 10.2165/00003088-200241100-00003.","parent_key":"BE0002638"} {"ref-id":"A182993","pubmed-id":14674789,"citation":"Farlow MR: Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42(15):1383-92. doi: 10.2165/00003088-200342150-00005.","parent_key":"BE0002638"} {"ref-id":"A1022","pubmed-id":12177686,"citation":"Lilienfeld S: Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev. 2002 Summer;8(2):159-76.","parent_key":"BE0002638"} {"ref-id":"A182996","pubmed-id":12751272,"citation":"Piotrovsky V, Van Peer A, Van Osselaer N, Armstrong M, Aerssens J: Galantamine population pharmacokinetics in patients with Alzheimer's disease: modeling and simulations. J Clin Pharmacol. 2003 May;43(5):514-23.","parent_key":"BE0002638"} {"ref-id":"A38749","pubmed-id":12162759,"citation":"Jann MW, Shirley KL, Small GW: Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719-39. doi: 10.2165/00003088-200241100-00003.","parent_key":"BE0002363"} {"ref-id":"A182993","pubmed-id":14674789,"citation":"Farlow MR: Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42(15):1383-92. doi: 10.2165/00003088-200342150-00005.","parent_key":"BE0002363"} {"ref-id":"A1022","pubmed-id":12177686,"citation":"Lilienfeld S: Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev. 2002 Summer;8(2):159-76.","parent_key":"BE0002363"} {"ref-id":"A182996","pubmed-id":12751272,"citation":"Piotrovsky V, Van Peer A, Van Osselaer N, Armstrong M, Aerssens J: Galantamine population pharmacokinetics in patients with Alzheimer's disease: modeling and simulations. J Clin Pharmacol. 2003 May;43(5):514-23.","parent_key":"BE0002363"} {"ref-id":"A14870","pubmed-id":20425602,"citation":"Higgins MJ, Stearns V: CYP2D6 polymorphisms and tamoxifen metabolism: clinical relevance. Curr Oncol Rep. 2010 Jan;12(1):7-15. doi: 10.1007/s11912-009-0076-5.","parent_key":"BE0002363"} {"ref-id":"A14871","pubmed-id":20120834,"citation":"Kuderer NM, Peppercorn J: CYP2D6 testing in breast cancer: ready for prime time? Oncology (Williston Park). 2009 Dec;23(14):1223-32.","parent_key":"BE0002363"} {"ref-id":"A14872","pubmed-id":20120835,"citation":"Goetz MP: Tamoxifen, endoxifen, and CYP2D6: the rules for evaluating a predictive factor. Oncology (Williston Park). 2009 Dec;23(14):1233-4, 1236.","parent_key":"BE0002363"} {"ref-id":"A14869","pubmed-id":15159443,"citation":"Desta Z, Ward BA, Soukhova NV, Flockhart DA: Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75. Epub 2004 May 24.","parent_key":"BE0002363"} {"ref-id":"A14873","pubmed-id":12124303,"citation":"Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM: Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002 Aug;30(8):869-74.","parent_key":"BE0002363"} {"ref-id":"A14869","pubmed-id":15159443,"citation":"Desta Z, Ward BA, Soukhova NV, Flockhart DA: Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75. Epub 2004 May 24.","parent_key":"BE0002638"} {"ref-id":"A183224","pubmed-id":12419016,"citation":"Zhao XJ, Jones DR, Wang YH, Grimm SW, Hall SD: Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica. 2002 Oct;32(10):863-78. doi: 10.1080/00498250210158230 .","parent_key":"BE0002638"} {"ref-id":"A183224","pubmed-id":12419016,"citation":"Zhao XJ, Jones DR, Wang YH, Grimm SW, Hall SD: Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica. 2002 Oct;32(10):863-78. doi: 10.1080/00498250210158230 .","parent_key":"BE0002362"} {"ref-id":"A39388","pubmed-id":17024799,"citation":"Boruban MC, Yasar U, Babaoglu MO, Sencan O, Bozkurt A: Tamoxifen inhibits cytochrome P450 2C9 activity in breast cancer patients. J Chemother. 2006 Aug;18(4):421-4. doi: 10.1179/joc.2006.18.4.421.","parent_key":"BE0002793"} {"ref-id":"A39389","pubmed-id":25091503,"citation":"Saladores P, Murdter T, Eccles D, Chowbay B, Zgheib NK, Winter S, Ganchev B, Eccles B, Gerty S, Tfayli A, Lim JS, Yap YS, Ng RC, Wong NS, Dent R, Habbal MZ, Schaeffeler E, Eichelbaum M, Schroth W, Schwab M, Brauch H: Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J. 2015 Feb;15(1):84-94. doi: 10.1038/tpj.2014.34. Epub 2014 Aug 5.","parent_key":"BE0002793"} {"ref-id":"A14869","pubmed-id":15159443,"citation":"Desta Z, Ward BA, Soukhova NV, Flockhart DA: Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75. Epub 2004 May 24.","parent_key":"BE0003536"} {"ref-id":"A14873","pubmed-id":12124303,"citation":"Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM: Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002 Aug;30(8):869-74.","parent_key":"BE0003536"} {"ref-id":"A14869","pubmed-id":15159443,"citation":"Desta Z, Ward BA, Soukhova NV, Flockhart DA: Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75. Epub 2004 May 24.","parent_key":"BE0003549"} {"ref-id":"A14873","pubmed-id":12124303,"citation":"Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM: Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002 Aug;30(8):869-74.","parent_key":"BE0003549"} {"ref-id":"A14873","pubmed-id":12124303,"citation":"Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM: Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002 Aug;30(8):869-74.","parent_key":"BE0003543"} {"ref-id":"A14873","pubmed-id":12124303,"citation":"Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM: Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002 Aug;30(8):869-74.","parent_key":"BE0001111"} {"ref-id":"A183224","pubmed-id":12419016,"citation":"Zhao XJ, Jones DR, Wang YH, Grimm SW, Hall SD: Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica. 2002 Oct;32(10):863-78. doi: 10.1080/00498250210158230 .","parent_key":"BE0001111"} {"ref-id":"A20339","pubmed-id":16684653,"citation":"Krueger SK, Vandyke JE, Williams DE, Hines RN: The role of flavin-containing monooxygenase (FMO) in the metabolism of tamoxifen and other tertiary amines. Drug Metab Rev. 2006;38(1-2):139-47.","parent_key":"BE0003609"} {"ref-id":"A20339","pubmed-id":16684653,"citation":"Krueger SK, Vandyke JE, Williams DE, Hines RN: The role of flavin-containing monooxygenase (FMO) in the metabolism of tamoxifen and other tertiary amines. Drug Metab Rev. 2006;38(1-2):139-47.","parent_key":"BE0003606"} {"ref-id":"A183230","pubmed-id":19935798,"citation":"Jernstrom H, Bageman E, Rose C, Jonsson PE, Ingvar C: CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients. Br J Cancer. 2009 Dec 1;101(11):1817-23. doi: 10.1038/sj.bjc.6605428.","parent_key":"BE0002887"} {"ref-id":"A183005","pubmed-id":8293548,"citation":"Styles JA, Davies A, Lim CK, De Matteis F, Stanley LA, White IN, Yuan ZX, Smith LL: Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s. Carcinogenesis. 1994 Jan;15(1):5-9. doi: 10.1093/carcin/15.1.5.","parent_key":"BE0003533"} {"ref-id":"A14873","pubmed-id":12124303,"citation":"Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM: Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002 Aug;30(8):869-74.","parent_key":"BE0002433"} {"ref-id":"A182102","pubmed-id":25157097,"citation":"Squirewell EJ, Qin X, Duffel MW: Endoxifen and other metabolites of tamoxifen inhibit human hydroxysteroid sulfotransferase 2A1 (hSULT2A1). Drug Metab Dispos. 2014 Nov;42(11):1843-50. doi: 10.1124/dmd.114.059709. Epub 2014 Aug 25.","parent_key":"BE0002433"} {"ref-id":"A182105","pubmed-id":24328412,"citation":"Cronin-Fenton DP, Damkier P, Lash TL: Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol. 2014 Jan;10(1):107-22. doi: 10.2217/fon.13.168.","parent_key":"BE0002433"} {"ref-id":"A182108","pubmed-id":10383884,"citation":"White IN: The tamoxifen dilemma. Carcinogenesis. 1999 Jul;20(7):1153-60. doi: 10.1093/carcin/20.7.1153.","parent_key":"BE0002433"} {"ref-id":"A182105","pubmed-id":24328412,"citation":"Cronin-Fenton DP, Damkier P, Lash TL: Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol. 2014 Jan;10(1):107-22. doi: 10.2217/fon.13.168.","parent_key":"BE0003679"} {"ref-id":"A14874","pubmed-id":10678291,"citation":"Song JC, White CM: Pharmacologic, pharmacokinetic, and therapeutic differences among angiotensin II receptor antagonists. Pharmacotherapy. 2000 Feb;20(2):130-9.","parent_key":"BE0002793"} {"ref-id":"A1033","pubmed-id":16029066,"citation":"Sica DA, Gehr TW, Ghosh S: Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44(8):797-814.","parent_key":"BE0002793"} {"ref-id":"A14875","pubmed-id":11823761,"citation":"Yasar U, Forslund-Bergengren C, Tybring G, Dorado P, Llerena A, Sjoqvist F, Eliasson E, Dahl ML: Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther. 2002 Jan;71(1):89-98.","parent_key":"BE0002793"} {"ref-id":"A14874","pubmed-id":10678291,"citation":"Song JC, White CM: Pharmacologic, pharmacokinetic, and therapeutic differences among angiotensin II receptor antagonists. Pharmacotherapy. 2000 Feb;20(2):130-9.","parent_key":"BE0002638"} {"ref-id":"A1033","pubmed-id":16029066,"citation":"Sica DA, Gehr TW, Ghosh S: Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44(8):797-814.","parent_key":"BE0002638"} {"ref-id":"A184562","pubmed-id":25424246,"citation":"Mukai Y, Senda A, Toda T, Hayakawa T, Eliasson E, Rane A, Inotsume N: Drug-drug Interaction between Losartan and Paclitaxel in Human Liver Microsomes with Different CYP2C8 Genotypes. Basic Clin Pharmacol Toxicol. 2015 Jun;116(6):493-8. doi: 10.1111/bcpt.12355. Epub 2014 Dec 23.","parent_key":"BE0002638"} {"ref-id":"A38745","pubmed-id":10877007,"citation":"Taavitsainen P, Kiukaanniemi K, Pelkonen O: In vitro inhibition screening of human hepatic P450 enzymes by five angiotensin-II receptor antagonists. Eur J Clin Pharmacol. 2000 May;56(2):135-40.","parent_key":"BE0003536"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003677"} {"ref-id":"A184562","pubmed-id":25424246,"citation":"Mukai Y, Senda A, Toda T, Hayakawa T, Eliasson E, Rane A, Inotsume N: Drug-drug Interaction between Losartan and Paclitaxel in Human Liver Microsomes with Different CYP2C8 Genotypes. Basic Clin Pharmacol Toxicol. 2015 Jun;116(6):493-8. doi: 10.1111/bcpt.12355. Epub 2014 Dec 23.","parent_key":"BE0002887"} {"ref-id":"A183245","pubmed-id":9352572,"citation":"Yasui N, Tybring G, Otani K, Mihara K, Suzuki A, Svensson JO, Kaneko S: Effects of thioridazine, an inhibitor of CYP2D6, on the steady-state plasma concentrations of the enantiomers of mianserin and its active metabolite, desmethylmianserin, in depressed Japanese patients. Pharmacogenetics. 1997 Oct;7(5):369-74.","parent_key":"BE0002363"} {"ref-id":"A38625","pubmed-id":20233192,"citation":"Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J: Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol. 2010 Mar;69(3):222-30. doi: 10.1111/j.1365-2125.2009.03578.x.","parent_key":"BE0003536"} {"ref-id":"A38884","pubmed-id":29283396,"citation":"Daly AK, Rettie AE, Fowler DM, Miners JO: Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med. 2017 Dec 28;8(1). pii: jpm8010001. doi: 10.3390/jpm8010001.","parent_key":"BE0002793"} {"ref-id":"A2460","pubmed-id":16372822,"citation":"Ufer M: Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227-46.","parent_key":"BE0002793"} {"ref-id":"A20147","pubmed-id":20735727,"citation":"Rulcova A, Prokopova I, Krausova L, Bitman M, Vrzal R, Dvorak Z, Blahos J, Pavek P: Stereoselective interactions of warfarin enantiomers with the pregnane X nuclear receptor in gene regulation of major drug-metabolizing cytochrome P450 enzymes. J Thromb Haemost. 2010 Dec;8(12):2708-17. doi: 10.1111/j.1538-7836.2010.04036.x.","parent_key":"BE0002793"} {"ref-id":"A37594","pubmed-id":18576910,"citation":"Fulco PP, Zingone MM, Higginson RT: Possible antiretroviral therapy-warfarin drug interaction. Pharmacotherapy. 2008 Jul;28(7):945-9. doi: 10.1592/phco.28.7.945.","parent_key":"BE0002433"} {"ref-id":"A2460","pubmed-id":16372822,"citation":"Ufer M: Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227-46.","parent_key":"BE0002433"} {"ref-id":"A38709","pubmed-id":16162970,"citation":"Brandon EF, Meijerman I, Klijn JS, den Arend D, Sparidans RW, Lazaro LL, Beijnen JH, Schellens JH: In-vitro cytotoxicity of ET-743 (Trabectedin, Yondelis), a marine anti-cancer drug, in the Hep G2 cell line: influence of cytochrome P450 and phase II inhibition, and cytochrome P450 induction. Anticancer Drugs. 2005 Oct;16(9):935-43.","parent_key":"BE0003536"} {"ref-id":"A2460","pubmed-id":16372822,"citation":"Ufer M: Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227-46.","parent_key":"BE0003536"} {"ref-id":"A2460","pubmed-id":16372822,"citation":"Ufer M: Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227-46.","parent_key":"BE0002638"} {"ref-id":"A20147","pubmed-id":20735727,"citation":"Rulcova A, Prokopova I, Krausova L, Bitman M, Vrzal R, Dvorak Z, Blahos J, Pavek P: Stereoselective interactions of warfarin enantiomers with the pregnane X nuclear receptor in gene regulation of major drug-metabolizing cytochrome P450 enzymes. J Thromb Haemost. 2010 Dec;8(12):2708-17. doi: 10.1111/j.1538-7836.2010.04036.x.","parent_key":"BE0002638"} {"ref-id":"A2460","pubmed-id":16372822,"citation":"Ufer M: Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227-46.","parent_key":"BE0002887"} {"ref-id":"A14876","pubmed-id":20203109,"citation":"Foti RS, Rock DA, Wienkers LC, Wahlstrom JL: Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos. 2010 Jun;38(6):981-7. doi: 10.1124/dmd.110.032094. Epub 2010 Mar 4.","parent_key":"BE0002638"} {"ref-id":"A14877","pubmed-id":15544435,"citation":"Zhou S, Chan E, Lim LY, Boelsterli UA, Li SC, Wang J, Zhang Q, Huang M, Xu A: Therapeutic drugs that behave as mechanism-based inhibitors of cytochrome P450 3A4. Curr Drug Metab. 2004 Oct;5(5):415-42.","parent_key":"BE0002638"} {"ref-id":"A14787","pubmed-id":12065442,"citation":"Obach RS, Reed-Hagen AE: Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos. 2002 Jul;30(7):831-7.","parent_key":"BE0002638"} {"ref-id":"A15150","pubmed-id":12814972,"citation":"Patki KC, Von Moltke LL, Greenblatt DJ: In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003 Jul;31(7):938-44.","parent_key":"BE0002362"} {"ref-id":"A15151","pubmed-id":7826796,"citation":"Wandel C, Bocker R, Bohrer H, Browne A, Rugheimer E, Martin E: Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br J Anaesth. 1994 Nov;73(5):658-61.","parent_key":"BE0002362"} {"ref-id":"A14775","pubmed-id":12124305,"citation":"Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA: Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002 Aug;30(8):883-91.","parent_key":"BE0003612"} {"ref-id":"A37144","pubmed-id":11151749,"citation":"Raaska K, Neuvonen PJ: Ciprofloxacin increases serum clozapine and N-desmethylclozapine: a study in patients with schizophrenia. Eur J Clin Pharmacol. 2000 Nov;56(8):585-9.","parent_key":"BE0002433"} {"ref-id":"A187144","pubmed-id":12466373,"citation":"Diederich S, Eigendorff E, Burkhardt P, Quinkler M, Bumke-Vogt C, Rochel M, Seidelmann D, Esperling P, Oelkers W, Bahr V: 11beta-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. J Clin Endocrinol Metab. 2002 Dec;87(12):5695-701. doi: 10.1210/jc.2002-020970.","parent_key":"BE0000131"} {"ref-id":"A187144","pubmed-id":12466373,"citation":"Diederich S, Eigendorff E, Burkhardt P, Quinkler M, Bumke-Vogt C, Rochel M, Seidelmann D, Esperling P, Oelkers W, Bahr V: 11beta-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. J Clin Endocrinol Metab. 2002 Dec;87(12):5695-701. doi: 10.1210/jc.2002-020970.","parent_key":"BE0000329"} {"ref-id":"A15212","pubmed-id":15470161,"citation":"Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P: Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005 Jan;33(1):139-46. Epub 2004 Oct 6.","parent_key":"BE0003538"} {"ref-id":"A180988","pubmed-id":21142265,"citation":"Sherwin CM, Fukuda T, Brunner HI, Goebel J, Vinks AA: The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011 Jan;50(1):1-24. doi: 10.2165/11536640-000000000-00000.","parent_key":"BE0003538"} {"ref-id":"A15212","pubmed-id":15470161,"citation":"Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P: Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005 Jan;33(1):139-46. Epub 2004 Oct 6.","parent_key":"BE0003679"} {"ref-id":"A180898","pubmed-id":24220207,"citation":"Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE: PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9. doi: 10.1097/FPC.0000000000000010.","parent_key":"BE0003679"} {"ref-id":"A1047","pubmed-id":15570183,"citation":"Picard N, Cresteil T, Premaud A, Marquet P: Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit. 2004 Dec;26(6):600-8.","parent_key":"BE0002638"} {"ref-id":"A180898","pubmed-id":24220207,"citation":"Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE: PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9. doi: 10.1097/FPC.0000000000000010.","parent_key":"BE0002638"} {"ref-id":"A1047","pubmed-id":15570183,"citation":"Picard N, Cresteil T, Premaud A, Marquet P: Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit. 2004 Dec;26(6):600-8.","parent_key":"BE0002362"} {"ref-id":"A180898","pubmed-id":24220207,"citation":"Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE: PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9. doi: 10.1097/FPC.0000000000000010.","parent_key":"BE0002362"} {"ref-id":"A1047","pubmed-id":15570183,"citation":"Picard N, Cresteil T, Premaud A, Marquet P: Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit. 2004 Dec;26(6):600-8.","parent_key":"BE0002887"} {"ref-id":"A180898","pubmed-id":24220207,"citation":"Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE: PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9. doi: 10.1097/FPC.0000000000000010.","parent_key":"BE0002887"} {"ref-id":"A15687","pubmed-id":1971572,"citation":"Capello S, Henderson L, DeGrazia F, Liberato D, Garland W, Town C: The effect of the cytochrome P-450 suicide inactivator, 1-aminobenzotriazole, on the in vivo metabolism and pharmacologic activity of flurazepam. Drug Metab Dispos. 1990 Mar-Apr;18(2):190-6.","parent_key":"BE0002638"} {"ref-id":"A15688","pubmed-id":18936109,"citation":"Linder CD, Renaud NA, Hutzler JM: Is 1-aminobenzotriazole an appropriate in vitro tool as a nonspecific cytochrome P450 inactivator? Drug Metab Dispos. 2009 Jan;37(1):10-3. doi: 10.1124/dmd.108.024075. Epub 2008 Oct 20.","parent_key":"BE0002638"} {"ref-id":"A15687","pubmed-id":1971572,"citation":"Capello S, Henderson L, DeGrazia F, Liberato D, Garland W, Town C: The effect of the cytochrome P-450 suicide inactivator, 1-aminobenzotriazole, on the in vivo metabolism and pharmacologic activity of flurazepam. Drug Metab Dispos. 1990 Mar-Apr;18(2):190-6.","parent_key":"BE0003336"} {"ref-id":"A15688","pubmed-id":18936109,"citation":"Linder CD, Renaud NA, Hutzler JM: Is 1-aminobenzotriazole an appropriate in vitro tool as a nonspecific cytochrome P450 inactivator? Drug Metab Dispos. 2009 Jan;37(1):10-3. doi: 10.1124/dmd.108.024075. Epub 2008 Oct 20.","parent_key":"BE0003336"} {"ref-id":"A15870","pubmed-id":11231118,"citation":"Katoh M, Nakajima M, Yamazaki H, Yokoi T: Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci. 2001 Feb;12(4):505-13.","parent_key":"BE0002638"} {"ref-id":"A182942","pubmed-id":15588138,"citation":"Schroterova L, Kaiserova H, Baliharova V, Velik J, Gersl V, Kvasnickova E: The effect of new lipophilic chelators on the activities of cytosolic reductases and P450 cytochromes involved in the metabolism of anthracycline antibiotics: studies in vitro. Physiol Res. 2004;53(6):683-91.","parent_key":"BE0002638"} {"ref-id":"A15152","pubmed-id":12859862,"citation":"Wang T, Chen FY, Han JY, Shao NX, Ou-Yuang RR: [Study of CYP3A5 in drug resistance mechanisms in acute leukemia]. Zhonghua Xue Ye Xue Za Zhi. 2003 Jun;24(6):286-9.","parent_key":"BE0002362"} {"ref-id":"A182942","pubmed-id":15588138,"citation":"Schroterova L, Kaiserova H, Baliharova V, Velik J, Gersl V, Kvasnickova E: The effect of new lipophilic chelators on the activities of cytosolic reductases and P450 cytochromes involved in the metabolism of anthracycline antibiotics: studies in vitro. Physiol Res. 2004;53(6):683-91.","parent_key":"BE0003543"} {"ref-id":"A15038","pubmed-id":9212777,"citation":"Yee SB, Pritsos CA: Reductive activation of doxorubicin by xanthine dehydrogenase from EMT6 mouse mammary carcinoma tumors. Chem Biol Interact. 1997 May 2;104(2-3):87-101.","parent_key":"BE0002204"} {"ref-id":"A14906","pubmed-id":11205892,"citation":"Ladona MG, Gonzalez ML, Rane A, Peter RM, de la Torre R: Cocaine metabolism in human fetal and adult liver microsomes is related to cytochrome P450 3A expression. Life Sci. 2000 Dec 15;68(4):431-43.","parent_key":"BE0002638"} {"ref-id":"A35251","pubmed-id":12695387,"citation":"Wooltorton E: Risk of stroke, gangrene from ergot drug interactions. CMAJ. 2003 Apr 15;168(8):1015.","parent_key":"BE0002638"} {"ref-id":"A14879","pubmed-id":9929503,"citation":"Shellenberger MK, Groves L, Shah J, Novack GD: A controlled pharmacokinetic evaluation of tizanidine and baclofen at steady state. Drug Metab Dispos. 1999 Feb;27(2):201-4.","parent_key":"BE0002433"} {"ref-id":"A38925","pubmed-id":16985100,"citation":"Karjalainen MJ, Neuvonen PJ, Backman JT: Rofecoxib is a potent, metabolism-dependent inhibitor of CYP1A2: implications for in vitro prediction of drug interactions. Drug Metab Dispos. 2006 Dec;34(12):2091-6. doi: 10.1124/dmd.106.011965. Epub 2006 Sep 19.","parent_key":"BE0002433"} {"ref-id":"A39288","pubmed-id":8971425,"citation":"Bottiger Y, Dostert P, Benedetti MS, Bani M, Fiorentini F, Casati M, Poggesti I, Alm C, Alvan G, Bertilsson L: Involvement of CYP2D6 but not CYP2C19 in nicergoline metabolism in humans. Br J Clin Pharmacol. 1996 Dec;42(6):707-11.","parent_key":"BE0002363"} {"ref-id":"A185126","pubmed-id":25243157,"citation":"Saletu B, Garg A, Shoeb A: Safety of nicergoline as an agent for management of cognitive function disorders. Biomed Res Int. 2014;2014:610103. doi: 10.1155/2014/610103. Epub 2014 Aug 28.","parent_key":"BE0002363"} {"ref-id":"A31201","pubmed-id":12433801,"citation":"Cook CS, Berry LM, Kim DH, Burton EG, Hribar JD, Zhang L: Involvement of CYP3A in the metabolism of eplerenone in humans and dogs: differential metabolism by CYP3A4 and CYP3A5. Drug Metab Dispos. 2002 Dec;30(12):1344-51.","parent_key":"BE0002638"} {"ref-id":"A183254","pubmed-id":31408697,"citation":"McGraw J, Cherney M, Bichler K, Gerhardt A, Nauman M: The Relative Role of CYP3A4 and CYP3A5 in Eplerenone Metabolism. Toxicol Lett. 2019 Aug 10. pii: S0378-4274(19)30218-8. doi: 10.1016/j.toxlet.2019.08.003.","parent_key":"BE0002638"} {"ref-id":"A31201","pubmed-id":12433801,"citation":"Cook CS, Berry LM, Kim DH, Burton EG, Hribar JD, Zhang L: Involvement of CYP3A in the metabolism of eplerenone in humans and dogs: differential metabolism by CYP3A4 and CYP3A5. Drug Metab Dispos. 2002 Dec;30(12):1344-51.","parent_key":"BE0002362"} {"ref-id":"A183254","pubmed-id":31408697,"citation":"McGraw J, Cherney M, Bichler K, Gerhardt A, Nauman M: The Relative Role of CYP3A4 and CYP3A5 in Eplerenone Metabolism. Toxicol Lett. 2019 Aug 10. pii: S0378-4274(19)30218-8. doi: 10.1016/j.toxlet.2019.08.003.","parent_key":"BE0002362"} {"ref-id":"A185129","pubmed-id":10722500,"citation":"Brophy DF, Israel DS, Pastor A, Gillotin C, Chittick GE, Symonds WT, Lou Y, Sadler BM, Polk RE: Pharmacokinetic interaction between amprenavir and clarithromycin in healthy male volunteers. Antimicrob Agents Chemother. 2000 Apr;44(4):978-84. doi: 10.1128/aac.44.4.978-984.2000.","parent_key":"BE0002638"} {"ref-id":"A39304","pubmed-id":10868554,"citation":"Fung HB, Kirschenbaum HL, Hameed R: Amprenavir: a new human immunodeficiency virus type 1 protease inhibitor. Clin Ther. 2000 May;22(5):549-72. doi: 10.1016/S0149-2918(00)80044-2.","parent_key":"BE0002638"} {"ref-id":"A38849","pubmed-id":12584153,"citation":"Treluyer JM, Bowers G, Cazali N, Sonnier M, Rey E, Pons G, Cresteil T: Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos. 2003 Mar;31(3):275-81.","parent_key":"BE0002638"} {"ref-id":"A2377","pubmed-id":16485915,"citation":"Wire MB, Shelton MJ, Studenberg S: Fosamprenavir : clinical pharmacokinetics and drug interactions of the amprenavir prodrug. Clin Pharmacokinet. 2006;45(2):137-68. doi: 10.2165/00003088-200645020-00002.","parent_key":"BE0002638"} {"ref-id":"A185132","pubmed-id":10722476,"citation":"Veronese L, Rautaureau J, Sadler BM, Gillotin C, Petite JP, Pillegand B, Delvaux M, Masliah C, Fosse S, Lou Y, Stein DS: Single-dose pharmacokinetics of amprenavir, a human immunodeficiency virus type 1 protease inhibitor, in subjects with normal or impaired hepatic function. Antimicrob Agents Chemother. 2000 Apr;44(4):821-6. doi: 10.1128/aac.44.4.821-826.2000.","parent_key":"BE0003536"} {"ref-id":"A39304","pubmed-id":10868554,"citation":"Fung HB, Kirschenbaum HL, Hameed R: Amprenavir: a new human immunodeficiency virus type 1 protease inhibitor. Clin Ther. 2000 May;22(5):549-72. doi: 10.1016/S0149-2918(00)80044-2.","parent_key":"BE0002793"} {"ref-id":"A39304","pubmed-id":10868554,"citation":"Fung HB, Kirschenbaum HL, Hameed R: Amprenavir: a new human immunodeficiency virus type 1 protease inhibitor. Clin Ther. 2000 May;22(5):549-72. doi: 10.1016/S0149-2918(00)80044-2.","parent_key":"BE0002363"} {"ref-id":"A38849","pubmed-id":12584153,"citation":"Treluyer JM, Bowers G, Cazali N, Sonnier M, Rey E, Pons G, Cresteil T: Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos. 2003 Mar;31(3):275-81.","parent_key":"BE0002362"} {"ref-id":"A14880","pubmed-id":9765359,"citation":"Voorman RL, Maio SM, Payne NA, Zhao Z, Koeplinger KA, Wang X: Microsomal metabolism of delavirdine: evidence for mechanism-based inactivation of human cytochrome P450 3A. J Pharmacol Exp Ther. 1998 Oct;287(1):381-8.","parent_key":"BE0002638"} {"ref-id":"A33196","pubmed-id":11225565,"citation":"von Moltke LL, Greenblatt DJ, Granda BW, Giancarlo GM, Duan SX, Daily JP, Harmatz JS, Shader RI: Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol. 2001 Jan;41(1):85-91. doi: 10.1177/00912700122009728.","parent_key":"BE0002638"} {"ref-id":"A33198","pubmed-id":11327199,"citation":"Tran JQ, Gerber JG, Kerr BM: Delavirdine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet. 2001;40(3):207-26. doi: 10.2165/00003088-200140030-00005.","parent_key":"BE0002638"} {"ref-id":"A33668","pubmed-id":12709342,"citation":"Shelton MJ, Hewitt RG, Adams J, Della-Coletta A, Cox S, Morse GD: Pharmacokinetics of ritonavir and delavirdine in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2003 May;47(5):1694-9. doi: 10.1128/aac.47.5.1694-1699.2003.","parent_key":"BE0002638"} {"ref-id":"A33197","pubmed-id":11124228,"citation":"Voorman RL, Payne NA, Wienkers LC, Hauer MJ, Sanders PE: Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos. 2001 Jan;29(1):41-7.","parent_key":"BE0002363"} {"ref-id":"A33737","pubmed-id":9660845,"citation":"Voorman RL, Maio SM, Hauer MJ, Sanders PE, Payne NA, Ackland MJ: Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos. 1998 Jul;26(7):631-9.","parent_key":"BE0002363"} {"ref-id":"A33196","pubmed-id":11225565,"citation":"von Moltke LL, Greenblatt DJ, Granda BW, Giancarlo GM, Duan SX, Daily JP, Harmatz JS, Shader RI: Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol. 2001 Jan;41(1):85-91. doi: 10.1177/00912700122009728.","parent_key":"BE0002793"} {"ref-id":"A33197","pubmed-id":11124228,"citation":"Voorman RL, Payne NA, Wienkers LC, Hauer MJ, Sanders PE: Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos. 2001 Jan;29(1):41-7.","parent_key":"BE0002793"} {"ref-id":"A33197","pubmed-id":11124228,"citation":"Voorman RL, Payne NA, Wienkers LC, Hauer MJ, Sanders PE: Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos. 2001 Jan;29(1):41-7.","parent_key":"BE0003536"} {"ref-id":"A182960","pubmed-id":9849639,"citation":"Kamimura H, Oishi S, Matsushima H, Watanabe T, Higuchi S, Hall M, Wood SG, Chasseaud LF: Identification of cytochrome P450 isozymes involved in metabolism of the alpha1-adrenoceptor blocker tamsulosin in human liver microsomes. Xenobiotica. 1998 Oct;28(10):909-22. doi: 10.1080/004982598238985 .","parent_key":"BE0002638"} {"ref-id":"A182960","pubmed-id":9849639,"citation":"Kamimura H, Oishi S, Matsushima H, Watanabe T, Higuchi S, Hall M, Wood SG, Chasseaud LF: Identification of cytochrome P450 isozymes involved in metabolism of the alpha1-adrenoceptor blocker tamsulosin in human liver microsomes. Xenobiotica. 1998 Oct;28(10):909-22. doi: 10.1080/004982598238985 .","parent_key":"BE0002363"} {"ref-id":"A39629","pubmed-id":29498947,"citation":"Fisher DM, Chang P, Wada DR, Dahan A, Palmer PP: Pharmacokinetic Properties of a Sufentanil Sublingual Tablet Intended to Treat Acute Pain. Anesthesiology. 2018 May;128(5):943-952. doi: 10.1097/ALN.0000000000002145.","parent_key":"BE0002638"} {"ref-id":"A39481","pubmed-id":25144335,"citation":"Wang L, Bao SH, Pan PP, Xia MM, Chen MC, Liang BQ, Dai DP, Cai JP, Hu GX: Effect of CYP2C9 genetic polymorphism on the metabolism of flurbiprofen in vitro. Drug Dev Ind Pharm. 2015;41(8):1363-7. doi: 10.3109/03639045.2014.950274. Epub 2014 Aug 21.","parent_key":"BE0002793"} {"ref-id":"A39482","pubmed-id":17054666,"citation":"Zgheib NK, Frye RF, Tracy TS, Romkes M, Branch RA: Evaluation of flurbiprofen urinary ratios as in vivo indices for CYP2C9 activity. Br J Clin Pharmacol. 2007 Apr;63(4):477-87. doi: 10.1111/j.1365-2125.2006.02781.x. Epub 2006 Oct 19.","parent_key":"BE0002793"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003681"} {"ref-id":"A1118","pubmed-id":18537577,"citation":"Urichuk L, Prior TI, Dursun S, Baker G: Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab. 2008 Jun;9(5):410-8.","parent_key":"BE0002363"} {"ref-id":"A14881","pubmed-id":9333110,"citation":"Ozdemir V, Naranjo CA, Herrmann N, Reed K, Sellers EM, Kalow W: Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther. 1997 Sep;62(3):334-47.","parent_key":"BE0002363"} {"ref-id":"A181769","pubmed-id":25943764,"citation":"Uttamsingh V, Gallegos R, Liu JF, Harbeson SL, Bridson GW, Cheng C, Wells DS, Graham PB, Zelle R, Tung R: Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine. J Pharmacol Exp Ther. 2015 Jul;354(1):43-54. doi: 10.1124/jpet.115.223768. Epub 2015 May 5.","parent_key":"BE0002363"} {"ref-id":"A19091","pubmed-id":25974703,"citation":"Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, Leeder JS, Graham RL, Chiulli DL, LLerena A, Skaar TC, Scott SA, Stingl JC, Klein TE, Caudle KE, Gaedigk A: Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015 Aug;98(2):127-34. doi: 10.1002/cpt.147. Epub 2015 Jun 29.","parent_key":"BE0002363"} {"ref-id":"A181877","pubmed-id":29955445,"citation":"Hoffelt C, Gross T: A review of significant pharmacokinetic drug interactions with antidepressants and their management. Ment Health Clin. 2016 Mar 8;6(1):35-41. doi: 10.9740/mhc.2016.01.035. eCollection 2016 Jan.","parent_key":"BE0003549"} {"ref-id":"A181880","pubmed-id":21121774,"citation":"Lin KM, Tsou HH, Tsai IJ, Hsiao MC, Hsiao CF, Liu CY, Shen WW, Tang HS, Fang CK, Wu CS, Lu SC, Kuo HW, Liu SC, Chan HW, Hsu YT, Tian JN, Liu YL: CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics. 2010 Nov;11(11):1535-43. doi: 10.2217/pgs.10.128.","parent_key":"BE0002433"} {"ref-id":"A181883","pubmed-id":20007670,"citation":"Jornil J, Jensen KG, Larsen F, Linnet K: Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010 Mar;38(3):376-85. doi: 10.1124/dmd.109.030551. Epub 2009 Dec 10.","parent_key":"BE0002433"} {"ref-id":"A181889","pubmed-id":8880055,"citation":"Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K: Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73-8.","parent_key":"BE0002433"} {"ref-id":"A37700","pubmed-id":24966680,"citation":"Gerotziafas GT, Mahe I, Elalamy I: New orally active anticoagulant agents for the prevention and treatment of venous thromboembolism in cancer patients. Ther Clin Risk Manag. 2014 Jun 13;10:423-36. doi: 10.2147/TCRM.S49063. eCollection 2014.","parent_key":"BE0002638"} {"ref-id":"A181883","pubmed-id":20007670,"citation":"Jornil J, Jensen KG, Larsen F, Linnet K: Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010 Mar;38(3):376-85. doi: 10.1124/dmd.109.030551. Epub 2009 Dec 10.","parent_key":"BE0003536"} {"ref-id":"A181889","pubmed-id":8880055,"citation":"Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K: Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73-8.","parent_key":"BE0003536"} {"ref-id":"A35871","pubmed-id":18356043,"citation":"Korhonen T, Turpeinen M, Tolonen A, Laine K, Pelkonen O: Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. J Steroid Biochem Mol Biol. 2008 May;110(1-2):56-66. doi: 10.1016/j.jsbmb.2007.09.025. Epub 2008 Feb 15.","parent_key":"BE0002638"} {"ref-id":"A35871","pubmed-id":18356043,"citation":"Korhonen T, Turpeinen M, Tolonen A, Laine K, Pelkonen O: Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. J Steroid Biochem Mol Biol. 2008 May;110(1-2):56-66. doi: 10.1016/j.jsbmb.2007.09.025. Epub 2008 Feb 15.","parent_key":"BE0002433"} {"ref-id":"A35871","pubmed-id":18356043,"citation":"Korhonen T, Turpeinen M, Tolonen A, Laine K, Pelkonen O: Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. J Steroid Biochem Mol Biol. 2008 May;110(1-2):56-66. doi: 10.1016/j.jsbmb.2007.09.025. Epub 2008 Feb 15.","parent_key":"BE0003336"} {"ref-id":"A184304","pubmed-id":8272570,"citation":"Bolaji OO, Coutts RT, Baker GB: Metabolism of trimipramine in vitro by human CYP2D6 isozyme. Res Commun Chem Pathol Pharmacol. 1993 Oct;82(1):111-20.","parent_key":"BE0002363"} {"ref-id":"A39409","pubmed-id":14520122,"citation":"Kirchheiner J, Muller G, Meineke I, Wernecke KD, Roots I, Brockmoller J: Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol. 2003 Oct;23(5):459-66. doi: 10.1097/01.jcp.0000088909.24613.92.","parent_key":"BE0002363"} {"ref-id":"A39409","pubmed-id":14520122,"citation":"Kirchheiner J, Muller G, Meineke I, Wernecke KD, Roots I, Brockmoller J: Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol. 2003 Oct;23(5):459-66. doi: 10.1097/01.jcp.0000088909.24613.92.","parent_key":"BE0003536"} {"ref-id":"A39409","pubmed-id":14520122,"citation":"Kirchheiner J, Muller G, Meineke I, Wernecke KD, Roots I, Brockmoller J: Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol. 2003 Oct;23(5):459-66. doi: 10.1097/01.jcp.0000088909.24613.92.","parent_key":"BE0002793"} {"ref-id":"A36865","pubmed-id":16261361,"citation":"Bapiro TE, Sayi J, Hasler JA, Jande M, Rimoy G, Masselle A, Masimirembwa CM: Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. Eur J Clin Pharmacol. 2005 Nov;61(10):755-61. doi: 10.1007/s00228-005-0037-3. Epub 2005 Oct 29.","parent_key":"BE0002433"} {"ref-id":"A17756","pubmed-id":11124226,"citation":"Bapiro TE, Egnell AC, Hasler JA, Masimirembwa CM: Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos. 2001 Jan;29(1):30-5.","parent_key":"BE0002433"} {"ref-id":"A39091","pubmed-id":9565779,"citation":"Coulet M, Dacasto M, Eeckhoutte C, Larrieu G, Sutra JF, Alvinerie M, Mace K, Pfeifer AM, Galtier P: Identification of human and rabbit cytochromes P450 1A2 as major isoforms involved in thiabendazole 5-hydroxylation. Fundam Clin Pharmacol. 1998;12(2):225-35.","parent_key":"BE0002433"} {"ref-id":"A24422","pubmed-id":11226373,"citation":"Delescluse C, Ledirac N, Li R, Piechocki MP, Hines RN, Gidrol X, Rahmani R: Induction of cytochrome P450 1A1 gene expression, oxidative stress, and genotoxicity by carbaryl and thiabendazole in transfected human HepG2 and lymphoblastoid cells. Biochem Pharmacol. 2001 Feb 15;61(4):399-407.","parent_key":"BE0003543"} {"ref-id":"A185189","pubmed-id":10103034,"citation":"Backlund M, Weidolf L, Ingelman-Sundberg M: Structural and mechanistic aspects of transcriptional induction of cytochrome P450 1A1 by benzimidazole derivatives in rat hepatoma H4IIE cells. Eur J Biochem. 1999 Apr;261(1):66-71. doi: 10.1046/j.1432-1327.1999.00225.x.","parent_key":"BE0003543"} {"ref-id":"A39311","pubmed-id":15005635,"citation":"Kirchheiner J, Meineke I, Muller G, Bauer S, Rohde W, Meisel C, Roots I, Brockmoller J: Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin Pharmacokinet. 2004;43(4):267-78. doi: 10.2165/00003088-200443040-00005.","parent_key":"BE0002793"} {"ref-id":"A39485","pubmed-id":20609060,"citation":"Takanohashi T, Kubo S, Nakayama A, Mihara R, Hayashi M: Inhibition of human liver microsomal CYP by nateglinide. J Pharm Pharmacol. 2010 May;62(5):592-7. doi: 10.1211/jpp.62.05.0005.","parent_key":"BE0002793"} {"ref-id":"A183257","pubmed-id":30181852,"citation":"Pakkir Maideen NM, Manavalan G, Balasubramanian K: Drug interactions of meglitinide antidiabetics involving CYP enzymes and OATP1B1 transporter. Ther Adv Endocrinol Metab. 2018 Apr 6;9(8):259-268. doi: 10.1177/2042018818767220. eCollection 2018.","parent_key":"BE0002793"} {"ref-id":"A39485","pubmed-id":20609060,"citation":"Takanohashi T, Kubo S, Nakayama A, Mihara R, Hayashi M: Inhibition of human liver microsomal CYP by nateglinide. J Pharm Pharmacol. 2010 May;62(5):592-7. doi: 10.1211/jpp.62.05.0005.","parent_key":"BE0002638"} {"ref-id":"A183257","pubmed-id":30181852,"citation":"Pakkir Maideen NM, Manavalan G, Balasubramanian K: Drug interactions of meglitinide antidiabetics involving CYP enzymes and OATP1B1 transporter. Ther Adv Endocrinol Metab. 2018 Apr 6;9(8):259-268. doi: 10.1177/2042018818767220. eCollection 2018.","parent_key":"BE0002638"} {"ref-id":"A39311","pubmed-id":15005635,"citation":"Kirchheiner J, Meineke I, Muller G, Bauer S, Rohde W, Meisel C, Roots I, Brockmoller J: Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin Pharmacokinet. 2004;43(4):267-78. doi: 10.2165/00003088-200443040-00005.","parent_key":"BE0002363"} {"ref-id":"A14882","pubmed-id":10048600,"citation":"Fang J, Bourin M, Baker GB: Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch Pharmacol. 1999 Feb;359(2):147-51.","parent_key":"BE0002363"} {"ref-id":"A14883","pubmed-id":19910717,"citation":"Hendset M, Molden E, Refsum H, Hermann M: Impact of CYP2D6 genotype on steady-state serum concentrations of risperidone and 9-hydroxyrisperidone in patients using long-acting injectable risperidone. J Clin Psychopharmacol. 2009 Dec;29(6):537-41. doi: 10.1097/JCP.0b013e3181c17df0.","parent_key":"BE0002363"} {"ref-id":"A14884","pubmed-id":19902987,"citation":"Zhou SF: Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet. 2009;48(12):761-804. doi: 10.2165/11318070-000000000-00000.","parent_key":"BE0002363"} {"ref-id":"A14885","pubmed-id":11560868,"citation":"Yasui-Furukori N, Hidestrand M, Spina E, Facciola G, Scordo MG, Tybring G: Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab Dispos. 2001 Oct;29(10):1263-8.","parent_key":"BE0002363"} {"ref-id":"A14882","pubmed-id":10048600,"citation":"Fang J, Bourin M, Baker GB: Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch Pharmacol. 1999 Feb;359(2):147-51.","parent_key":"BE0002638"} {"ref-id":"A14886","pubmed-id":16961157,"citation":"Klotz U: Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors: a review of a special problem. Int J Clin Pharmacol Ther. 2006 Jul;44(7):297-302.","parent_key":"BE0003536"} {"ref-id":"A183260","pubmed-id":27991432,"citation":"Modak AS, Klyarytska I, Kriviy V, Tsapyak T, Rabotyagova Y: The effect of proton pump inhibitors on the CYP2C19 enzyme activity evaluated by the pantoprazole-(13)C breath test in GERD patients: clinical relevance for personalized medicine. J Breath Res. 2016 Dec 17;10(4):046017. doi: 10.1088/1752-7163/10/4/046017.","parent_key":"BE0003536"} {"ref-id":"A14887","pubmed-id":21299635,"citation":"Afrin LB, Afrin JB: Value of preemptive CYP2C19 genotyping in allogeneic stem cell transplant patients considered for pentamidine administration. Clin Transplant. 2011 May-Jun;25(3):E271-5. doi: 10.1111/j.1399-0012.2011.01399.x. Epub 2011 Feb 7.","parent_key":"BE0003536"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0003543"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0002363"} {"ref-id":"A184826","pubmed-id":28756612,"citation":"Kip AE, Schellens JHM, Beijnen JH, Dorlo TPC: Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs. Clin Pharmacokinet. 2018 Feb;57(2):151-176. doi: 10.1007/s40262-017-0570-0.","parent_key":"BE0002363"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0002362"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0000421"} {"ref-id":"A183314","pubmed-id":17852022,"citation":"Ajroud-Driss S, Saeed M, Khan H, Siddique N, Hung WY, Sufit R, Heller S, Armstrong J, Casey P, Siddique T, Lukas TJ: Riluzole metabolism and CYP1A1/2 polymorphisms in patients with ALS. Amyotroph Lateral Scler. 2007 Oct;8(5):305-9. doi: 10.1080/17482960701500650.","parent_key":"BE0002433"} {"ref-id":"A1124","pubmed-id":15752377,"citation":"van Kan HJ, Groeneveld GJ, Kalmijn S, Spieksma M, van den Berg LH, Guchelaar HJ: Association between CYP1A2 activity and riluzole clearance in patients with amyotrophic lateral sclerosis. Br J Clin Pharmacol. 2005 Mar;59(3):310-3.","parent_key":"BE0002433"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0003543"} {"ref-id":"A182969","pubmed-id":9316860,"citation":"Sanderink GJ, Bournique B, Stevens J, Petry M, Martinet M: Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro. J Pharmacol Exp Ther. 1997 Sep;282(3):1465-72.","parent_key":"BE0003543"} {"ref-id":"A183317","pubmed-id":10772626,"citation":"El-Sankary W, Plant NJ, Gibson GG, Moore DJ: Regulation of the CYP3A4 gene by hydrocortisone and xenobiotics: role of the glucocorticoid and pregnane X receptors. Drug Metab Dispos. 2000 May;28(5):493-6.","parent_key":"BE0002638"} {"ref-id":"A188315","pubmed-id":8274418,"citation":"Abel SM, Back DJ: Cortisol metabolism in vitro--III. Inhibition of microsomal 6 beta-hydroxylase and cytosolic 4-ene-reductase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):827-32. doi: 10.1016/0960-0760(93)90325-q.","parent_key":"BE0002638"} {"ref-id":"A188315","pubmed-id":8274418,"citation":"Abel SM, Back DJ: Cortisol metabolism in vitro--III. Inhibition of microsomal 6 beta-hydroxylase and cytosolic 4-ene-reductase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):827-32. doi: 10.1016/0960-0760(93)90325-q.","parent_key":"BE0002362"} {"ref-id":"A188315","pubmed-id":8274418,"citation":"Abel SM, Back DJ: Cortisol metabolism in vitro--III. Inhibition of microsomal 6 beta-hydroxylase and cytosolic 4-ene-reductase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):827-32. doi: 10.1016/0960-0760(93)90325-q.","parent_key":"BE0003612"} {"ref-id":"A182624","pubmed-id":15356073,"citation":"Freel EM, Shakerdi LA, Friel EC, Wallace AM, Davies E, Fraser R, Connell JM: Studies on the origin of circulating 18-hydroxycortisol and 18-oxocortisol in normal human subjects. J Clin Endocrinol Metab. 2004 Sep;89(9):4628-33. doi: 10.1210/jc.2004-0379.","parent_key":"BE0000731"} {"ref-id":"A38835","pubmed-id":12031713,"citation":"Bauersachs J, Christ M, Ertl G, Michaelis UR, Fisslthaler B, Busse R, Fleming I: Cytochrome P450 2C expression and EDHF-mediated relaxation in porcine coronary arteries is increased by cortisol. Cardiovasc Res. 2002 Jun;54(3):669-75.","parent_key":"BE0002887"} {"ref-id":"A188318","pubmed-id":10487705,"citation":"Finken MJ, Andrews RC, Andrew R, Walker BR: Cortisol metabolism in healthy young adults: sexual dimorphism in activities of A-ring reductases, but not 11beta-hydroxysteroid dehydrogenases. J Clin Endocrinol Metab. 1999 Sep;84(9):3316-21. doi: 10.1210/jcem.84.9.6009.","parent_key":"BE0000131"} {"ref-id":"A188321","pubmed-id":25926431,"citation":"Sarkar U, Rivera-Burgos D, Large EM, Hughes DJ, Ravindra KC, Dyer RL, Ebrahimkhani MR, Wishnok JS, Griffith LG, Tannenbaum SR: Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab Dispos. 2015 Jul;43(7):1091-9. doi: 10.1124/dmd.115.063495. Epub 2015 Apr 29.","parent_key":"BE0000131"} {"ref-id":"A188318","pubmed-id":10487705,"citation":"Finken MJ, Andrews RC, Andrew R, Walker BR: Cortisol metabolism in healthy young adults: sexual dimorphism in activities of A-ring reductases, but not 11beta-hydroxysteroid dehydrogenases. J Clin Endocrinol Metab. 1999 Sep;84(9):3316-21. doi: 10.1210/jcem.84.9.6009.","parent_key":"BE0000329"} {"ref-id":"A188321","pubmed-id":25926431,"citation":"Sarkar U, Rivera-Burgos D, Large EM, Hughes DJ, Ravindra KC, Dyer RL, Ebrahimkhani MR, Wishnok JS, Griffith LG, Tannenbaum SR: Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab Dispos. 2015 Jul;43(7):1091-9. doi: 10.1124/dmd.115.063495. Epub 2015 Apr 29.","parent_key":"BE0000329"} {"ref-id":"A14888","pubmed-id":8654206,"citation":"Machinist JM, Mayer MD, Shet MS, Ferrero JL, Rodrigues AD: Identification of the human liver cytochrome P450 enzymes involved in the metabolism of zileuton (ABT-077) and its N-dehydroxylated metabolite, Abbott-66193. Drug Metab Dispos. 1995 Oct;23(10):1163-74.","parent_key":"BE0002793"} {"ref-id":"A14888","pubmed-id":8654206,"citation":"Machinist JM, Mayer MD, Shet MS, Ferrero JL, Rodrigues AD: Identification of the human liver cytochrome P450 enzymes involved in the metabolism of zileuton (ABT-077) and its N-dehydroxylated metabolite, Abbott-66193. Drug Metab Dispos. 1995 Oct;23(10):1163-74.","parent_key":"BE0002433"} {"ref-id":"A14888","pubmed-id":8654206,"citation":"Machinist JM, Mayer MD, Shet MS, Ferrero JL, Rodrigues AD: Identification of the human liver cytochrome P450 enzymes involved in the metabolism of zileuton (ABT-077) and its N-dehydroxylated metabolite, Abbott-66193. Drug Metab Dispos. 1995 Oct;23(10):1163-74.","parent_key":"BE0002638"} {"ref-id":"A15665","pubmed-id":10820139,"citation":"Robertson P, DeCory HH, Madan A, Parkinson A: In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos. 2000 Jun;28(6):664-71.","parent_key":"BE0003536"} {"ref-id":"A14889","pubmed-id":12537513,"citation":"Robertson P Jr, Hellriegel ET: Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet. 2003;42(2):123-37.","parent_key":"BE0003536"} {"ref-id":"A14889","pubmed-id":12537513,"citation":"Robertson P Jr, Hellriegel ET: Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet. 2003;42(2):123-37.","parent_key":"BE0002638"} {"ref-id":"A15665","pubmed-id":10820139,"citation":"Robertson P, DeCory HH, Madan A, Parkinson A: In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos. 2000 Jun;28(6):664-71.","parent_key":"BE0002638"} {"ref-id":"A15678","pubmed-id":11823757,"citation":"Robertson P Jr, Hellriegel ET, Arora S, Nelson M: Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther. 2002 Jan;71(1):46-56.","parent_key":"BE0002638"} {"ref-id":"A14889","pubmed-id":12537513,"citation":"Robertson P Jr, Hellriegel ET: Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet. 2003;42(2):123-37.","parent_key":"BE0002433"} {"ref-id":"A15665","pubmed-id":10820139,"citation":"Robertson P, DeCory HH, Madan A, Parkinson A: In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos. 2000 Jun;28(6):664-71.","parent_key":"BE0003549"} {"ref-id":"A14889","pubmed-id":12537513,"citation":"Robertson P Jr, Hellriegel ET: Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet. 2003;42(2):123-37.","parent_key":"BE0003549"} {"ref-id":"A15665","pubmed-id":10820139,"citation":"Robertson P, DeCory HH, Madan A, Parkinson A: In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos. 2000 Jun;28(6):664-71.","parent_key":"BE0002793"} {"ref-id":"A39357","pubmed-id":11831544,"citation":"Robertson P Jr, Hellriegel ET, Arora S, Nelson M: Effect of modafinil at steady state on the single-dose pharmacokinetic profile of warfarin in healthy volunteers. J Clin Pharmacol. 2002 Feb;42(2):205-14.","parent_key":"BE0002793"} {"ref-id":"A15678","pubmed-id":11823757,"citation":"Robertson P Jr, Hellriegel ET, Arora S, Nelson M: Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther. 2002 Jan;71(1):46-56.","parent_key":"BE0002362"} {"ref-id":"A15665","pubmed-id":10820139,"citation":"Robertson P, DeCory HH, Madan A, Parkinson A: In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos. 2000 Jun;28(6):664-71.","parent_key":"BE0002362"} {"ref-id":"A15039","pubmed-id":2252579,"citation":"Rinaldo JE, Gorry M: Protection by deferoxamine from endothelial injury: a possible link with inhibition of intracellular xanthine oxidase. Am J Respir Cell Mol Biol. 1990 Dec;3(6):525-33.","parent_key":"BE0002204"} {"ref-id":"A39390","pubmed-id":15370961,"citation":"Tougou K, Gotou H, Ohno Y, Nakamura A: Stereoselective glucuronidation and hydroxylation of etodolac by UGT1A9 and CYP2C9 in man. Xenobiotica. 2004 May;34(5):449-61. doi: 10.1080/00498250410001691280 .","parent_key":"BE0002793"} {"ref-id":"A4638","pubmed-id":9485522,"citation":"Kishimoto W, Hiroi T, Sakai K, Funae Y, Igarashi T: Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol. 1997 Dec;98(3):273-92.","parent_key":"BE0003549"} {"ref-id":"A13529","pubmed-id":15049511,"citation":"Salsali M, Holt A, Baker GB: Inhibitory effects of the monoamine oxidase inhibitor tranylcypromine on the cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP2D6. Cell Mol Neurobiol. 2004 Feb;24(1):63-76.","parent_key":"BE0002363"} {"ref-id":"A39098","pubmed-id":11353760,"citation":"Zhang W, Kilicarslan T, Tyndale RF, Sellers EM: Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos. 2001 Jun;29(6):897-902.","parent_key":"BE0002363"} {"ref-id":"A13529","pubmed-id":15049511,"citation":"Salsali M, Holt A, Baker GB: Inhibitory effects of the monoamine oxidase inhibitor tranylcypromine on the cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP2D6. Cell Mol Neurobiol. 2004 Feb;24(1):63-76.","parent_key":"BE0002793"} {"ref-id":"A15133","pubmed-id":18094038,"citation":"Stadel R, Yang J, Nalwalk JW, Phillips JG, Hough LB: High-affinity binding of [3H]cimetidine to a heme-containing protein in rat brain. Drug Metab Dispos. 2008 Mar;36(3):614-21. Epub 2007 Dec 19.","parent_key":"BE0003536"} {"ref-id":"A13529","pubmed-id":15049511,"citation":"Salsali M, Holt A, Baker GB: Inhibitory effects of the monoamine oxidase inhibitor tranylcypromine on the cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP2D6. Cell Mol Neurobiol. 2004 Feb;24(1):63-76.","parent_key":"BE0003536"} {"ref-id":"A36455","pubmed-id":11181487,"citation":"Taavitsainen P, Juvonen R, Pelkonen O: In vitro inhibition of cytochrome P450 enzymes in human liver microsomes by a potent CYP2A6 inhibitor, trans-2-phenylcyclopropylamine (tranylcypromine), and its nonamine analog, cyclopropylbenzene. Drug Metab Dispos. 2001 Mar;29(3):217-22.","parent_key":"BE0002433"} {"ref-id":"A36455","pubmed-id":11181487,"citation":"Taavitsainen P, Juvonen R, Pelkonen O: In vitro inhibition of cytochrome P450 enzymes in human liver microsomes by a potent CYP2A6 inhibitor, trans-2-phenylcyclopropylamine (tranylcypromine), and its nonamine analog, cyclopropylbenzene. Drug Metab Dispos. 2001 Mar;29(3):217-22.","parent_key":"BE0003533"} {"ref-id":"A36455","pubmed-id":11181487,"citation":"Taavitsainen P, Juvonen R, Pelkonen O: In vitro inhibition of cytochrome P450 enzymes in human liver microsomes by a potent CYP2A6 inhibitor, trans-2-phenylcyclopropylamine (tranylcypromine), and its nonamine analog, cyclopropylbenzene. Drug Metab Dispos. 2001 Mar;29(3):217-22.","parent_key":"BE0003336"} {"ref-id":"A39015","pubmed-id":8214760,"citation":"Kharasch ED, Thummel KE: Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993 Oct;79(4):795-807.","parent_key":"BE0003533"} {"ref-id":"A183320","pubmed-id":10078678,"citation":"Kharasch ED, Hankins DC, Cox K: Clinical isoflurane metabolism by cytochrome P450 2E1. Anesthesiology. 1999 Mar;90(3):766-71. doi: 10.1097/00000542-199903000-00019.","parent_key":"BE0003533"} {"ref-id":"A39167","pubmed-id":7720526,"citation":"Baker MT, Olson MJ, Wang Y, Ronnenberg WC Jr, Johnson JT, Brady AN: Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism. Drug Metab Dispos. 1995 Jan;23(1):60-4.","parent_key":"BE0003549"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0003612"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0003549"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0002887"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0002793"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0002638"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0002362"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0003336"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0003543"} {"ref-id":"A14890","pubmed-id":11093772,"citation":"Marill J, Cresteil T, Lanotte M, Chabot GG: Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol. 2000 Dec;58(6):1341-8.","parent_key":"BE0000421"} {"ref-id":"A14891","pubmed-id":8723743,"citation":"Sanwald P, David M, Dow J: Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron. Comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos. 1996 May;24(5):602-9.","parent_key":"BE0002638"} {"ref-id":"A14891","pubmed-id":8723743,"citation":"Sanwald P, David M, Dow J: Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron. Comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos. 1996 May;24(5):602-9.","parent_key":"BE0002363"} {"ref-id":"A183323","pubmed-id":22427733,"citation":"Roberts SM, Bezinover DS, Janicki PK: Reappraisal of the role of dolasetron in prevention and treatment of nausea and vomiting associated with surgery or chemotherapy. Cancer Manag Res. 2012;4:67-73. doi: 10.2147/JEP.S23105. Epub 2012 Feb 24.","parent_key":"BE0002363"} {"ref-id":"A14893","pubmed-id":12925453,"citation":"Saw J, Steinhubl SR, Berger PB, Kereiakes DJ, Serebruany VL, Brennan D, Topol EJ: Lack of adverse clopidogrel-atorvastatin clinical interaction from secondary analysis of a randomized, placebo-controlled clopidogrel trial. Circulation. 2003 Aug 26;108(8):921-4. Epub 2003 Aug 18.","parent_key":"BE0002638"} {"ref-id":"A14894","pubmed-id":14522569,"citation":"Neubauer H, Gunesdogan B, Hanefeld C, Spiecker M, Mugge A: Lipophilic statins interfere with the inhibitory effects of clopidogrel on platelet function--a flow cytometry study. Eur Heart J. 2003 Oct;24(19):1744-9.","parent_key":"BE0002638"} {"ref-id":"A14895","pubmed-id":14707025,"citation":"Lau WC, Gurbel PA, Watkins PB, Neer CJ, Hopp AS, Carville DG, Guyer KE, Tait AR, Bates ER: Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation. 2004 Jan 20;109(2):166-71. Epub 2004 Jan 5.","parent_key":"BE0002638"} {"ref-id":"A14896","pubmed-id":15604326,"citation":"Mukherjee D, Kline-Rogers E, Fang J, Munir K, Eagle KA: Lack of clopidogrel-CYP3A4 statin interaction in patients with acute coronary syndrome. Heart. 2005 Jan;91(1):23-6.","parent_key":"BE0002638"} {"ref-id":"A14897","pubmed-id":15679472,"citation":"Poulsen TS, Vinholt P, Mickley H, Korsholm L, Kristensen SR, Damkier P: Existence of a clinically relevant interaction between clopidogrel and HMG-CoA reductase inhibitors? Re-evaluating the evidence. Basic Clin Pharmacol Toxicol. 2005 Feb;96(2):103-10.","parent_key":"BE0002638"} {"ref-id":"A14898","pubmed-id":12485953,"citation":"Clarke TA, Waskell LA: The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos. 2003 Jan;31(1):53-9.","parent_key":"BE0002638"} {"ref-id":"A183971","pubmed-id":15961986,"citation":"Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K: Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2005 Jun;77(6):553-9. doi: 10.1016/j.clpt.2005.02.010.","parent_key":"BE0003549"} {"ref-id":"A39047","pubmed-id":20440227,"citation":"Sangkuhl K, Klein TE, Altman RB: Clopidogrel pathway. Pharmacogenet Genomics. 2010 Jul;20(7):463-5. doi: 10.1097/FPC.0b013e3283385420.","parent_key":"BE0003549"} {"ref-id":"A184010","pubmed-id":16754901,"citation":"Turgeon J, Pharand C, Michaud V: Understanding clopidogrel efficacy in the presence of cytochrome P450 polymorphism. CMAJ. 2006 Jun 6;174(12):1729. doi: 10.1503/cmaj.060502.","parent_key":"BE0002362"} {"ref-id":"A14898","pubmed-id":12485953,"citation":"Clarke TA, Waskell LA: The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos. 2003 Jan;31(1):53-9.","parent_key":"BE0002362"} {"ref-id":"A33985","pubmed-id":27196064,"citation":"Ford NF: The Metabolism of Clopidogrel: CYP2C19 Is a Minor Pathway. J Clin Pharmacol. 2016 Dec;56(12):1474-1483. doi: 10.1002/jcph.769. Epub 2016 Jun 22.","parent_key":"BE0003536"} {"ref-id":"A184256","pubmed-id":28164572,"citation":"Chen K, Zhang R, Liu H, Guo X, Li P, Liu X: Impact of the CYP2C19 Gene Polymorphism on Clopidogrel Personalized Drug Regimen and the Clinical Outcomes. Clin Lab. 2016 Sep 1;62(9):1773-1780. doi: 10.7754/Clin.Lab.2016.160216.","parent_key":"BE0003536"} {"ref-id":"A33243","pubmed-id":14563790,"citation":"Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM: Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther. 2004 Jan;308(1):189-97. doi: 10.1124/jpet.103.056127. Epub 2003 Oct 16.","parent_key":"BE0002793"} {"ref-id":"A38622","pubmed-id":17361128,"citation":"Farid NA, Payne CD, Small DS, Winters KJ, Ernest CS 2nd, Brandt JT, Darstein C, Jakubowski JA, Salazar DE: Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther. 2007 May;81(5):735-41. doi: 10.1038/sj.clpt.6100139. Epub 2007 Mar 14.","parent_key":"BE0002793"} {"ref-id":"A39047","pubmed-id":20440227,"citation":"Sangkuhl K, Klein TE, Altman RB: Clopidogrel pathway. Pharmacogenet Genomics. 2010 Jul;20(7):463-5. doi: 10.1097/FPC.0b013e3283385420.","parent_key":"BE0002433"} {"ref-id":"A180535","pubmed-id":25559342,"citation":"Jiang XL, Samant S, Lesko LJ, Schmidt S: Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin Pharmacokinet. 2015 Feb;54(2):147-66. doi: 10.1007/s40262-014-0230-6.","parent_key":"BE0002433"} {"ref-id":"A184628","pubmed-id":25083217,"citation":"Polasek TM, Doogue MP, Miners JO: Metabolic activation of clopidogrel: in vitro data provide conflicting evidence for the contributions of CYP2C19 and PON1. Ther Adv Drug Saf. 2011 Dec;2(6):253-61. doi: 10.1177/2042098611422559.","parent_key":"BE0002433"} {"ref-id":"A182963","pubmed-id":29171020,"citation":"Itkonen MK, Tornio A, Filppula AM, Neuvonen M, Neuvonen PJ, Niemi M, Backman JT: Clopidogrel but Not Prasugrel Significantly Inhibits the CYP2C8-Mediated Metabolism of Montelukast in Humans. Clin Pharmacol Ther. 2018 Sep;104(3):495-504. doi: 10.1002/cpt.947. Epub 2017 Dec 23.","parent_key":"BE0002887"} {"ref-id":"A16883","pubmed-id":9384469,"citation":"Zhao XJ, Ishizaki T: Metabolic interactions of selected antimalarial and non-antimalarial drugs with the major pathway (3-hydroxylation) of quinine in human liver microsomes. Br J Clin Pharmacol. 1997 Nov;44(5):505-11.","parent_key":"BE0002638"} {"ref-id":"A184664","pubmed-id":15206992,"citation":"Bassi PU, Onyeji CO, Ukponmwan OE: Effects of tetracycline on the pharmacokinetics of halofantrine in healthy volunteers. Br J Clin Pharmacol. 2004 Jul;58(1):52-5. doi: 10.1111/j.1365-2125.2004.02087.x.","parent_key":"BE0002638"} {"ref-id":"A1168","pubmed-id":19852077,"citation":"Ramesh M, Ahlawat P, Srinivas NR: Irinotecan and its active metabolite, SN-38: review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomed Chromatogr. 2010 Jan;24(1):104-23. doi: 10.1002/bmc.1345.","parent_key":"BE0002638"} {"ref-id":"A14899","pubmed-id":9726089,"citation":"Kuhn JG: Pharmacology of irinotecan. Oncology (Williston Park). 1998 Aug;12(8 Suppl 6):39-42.","parent_key":"BE0002638"} {"ref-id":"A38430","pubmed-id":10815927,"citation":"Santos A, Zanetta S, Cresteil T, Deroussent A, Pein F, Raymond E, Vernillet L, Risse ML, Boige V, Gouyette A, Vassal G: Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res. 2000 May;6(5):2012-20.","parent_key":"BE0002638"} {"ref-id":"A38430","pubmed-id":10815927,"citation":"Santos A, Zanetta S, Cresteil T, Deroussent A, Pein F, Raymond E, Vernillet L, Risse ML, Boige V, Gouyette A, Vassal G: Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res. 2000 May;6(5):2012-20.","parent_key":"BE0002362"} {"ref-id":"A1169","pubmed-id":9342501,"citation":"Chabot GG: Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet. 1997 Oct;33(4):245-59.","parent_key":"BE0003538"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0002433"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0003336"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0003549"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0003536"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0002793"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0002363"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0003533"} {"ref-id":"A38752","pubmed-id":9172960,"citation":"Guo Z, Raeissi S, White RB, Stevens JC: Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos. 1997 Mar;25(3):390-3.","parent_key":"BE0002638"} {"ref-id":"A184571","pubmed-id":25789213,"citation":"Heidari R, Niknahad H, Jamshidzadeh A, Eghbal MA, Abdoli N: An overview on the proposed mechanisms of antithyroid drugs-induced liver injury. Adv Pharm Bull. 2015 Mar;5(1):1-11. doi: 10.5681/apb.2015.001. Epub 2015 Mar 5.","parent_key":"BE0003606"} {"ref-id":"A184154","pubmed-id":27424662,"citation":"Foti RS, Diaz P, Douguet D: Comparison of the ligand binding site of CYP2C8 with CYP26A1 and CYP26B1: a structural basis for the identification of new inhibitors of the retinoic acid hydroxylases. J Enzyme Inhib Med Chem. 2016;31(sup2):148-161. doi: 10.1080/14756366.2016.1193734. Epub 2016 Jul 17.","parent_key":"BE0002887"} {"ref-id":"A35876","pubmed-id":17165278,"citation":"Berger WE, Milgrom H, Chervinsky P, Noonan M, Weinstein SF, Lutsky BN, Staudinger H: Effects of treatment with mometasone furoate dry powder inhaler in children with persistent asthma. Ann Allergy Asthma Immunol. 2006 Nov;97(5):672-80. doi: 10.1016/S1081-1206(10)61099-X.","parent_key":"BE0002638"} {"ref-id":"A35877","pubmed-id":11511026,"citation":"Sharpe M, Jarvis B: Inhaled mometasone furoate: a review of its use in adults and adolescents with persistent asthma. Drugs. 2001;61(9):1325-50.","parent_key":"BE0002638"} {"ref-id":"A179743","pubmed-id":12433826,"citation":"Kajita J, Inano K, Fuse E, Kuwabara T, Kobayashi H: Effects of olopatadine, a new antiallergic agent, on human liver microsomal cytochrome P450 activities. Drug Metab Dispos. 2002 Dec;30(12):1504-11. doi: 10.1124/dmd.30.12.1504.","parent_key":"BE0002638"} {"ref-id":"A31243","pubmed-id":15557345,"citation":"Buratti FM, D'Aniello A, Volpe MT, Meneguz A, Testai E: Malathion bioactivation in the human liver: the contribution of different cytochrome p450 isoforms. Drug Metab Dispos. 2005 Mar;33(3):295-302. Epub 2004 Nov 22.","parent_key":"BE0002433"} {"ref-id":"A31243","pubmed-id":15557345,"citation":"Buratti FM, D'Aniello A, Volpe MT, Meneguz A, Testai E: Malathion bioactivation in the human liver: the contribution of different cytochrome p450 isoforms. Drug Metab Dispos. 2005 Mar;33(3):295-302. Epub 2004 Nov 22.","parent_key":"BE0003549"} {"ref-id":"A14900","pubmed-id":9732391,"citation":"Kawashiro T, Yamashita K, Zhao XJ, Koyama E, Tani M, Chiba K, Ishizaki T: A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther. 1998 Sep;286(3):1294-300.","parent_key":"BE0002638"} {"ref-id":"A38319","pubmed-id":12181418,"citation":"Schuetz E, Lan L, Yasuda K, Kim R, Kocarek TA, Schuetz J, Strom S: Development of a real-time in vivo transcription assay: application reveals pregnane X receptor-mediated induction of CYP3A4 by cancer chemotherapeutic agents. Mol Pharmacol. 2002 Sep;62(3):439-45.","parent_key":"BE0002638"} {"ref-id":"A38832","pubmed-id":15319341,"citation":"Zhuo X, Zheng N, Felix CA, Blair IA: Kinetics and regulation of cytochrome P450-mediated etoposide metabolism. Drug Metab Dispos. 2004 Sep;32(9):993-1000.","parent_key":"BE0002638"} {"ref-id":"A184778","pubmed-id":19512958,"citation":"Yang J, Bogni A, Schuetz EG, Ratain M, Dolan ME, McLeod H, Gong L, Thorn C, Relling MV, Klein TE, Altman RB: Etoposide pathway. Pharmacogenet Genomics. 2009 Jul;19(7):552-3. doi: 10.1097/FPC.0b013e32832e0e7f.","parent_key":"BE0002638"} {"ref-id":"A183215","pubmed-id":30815023,"citation":"Badowski ME, Burton B, Shaeer KM, Dicristofano J: Oral oncolytic and antiretroviral therapy administration: dose adjustments, drug interactions, and other considerations for clinical use. Drugs Context. 2019 Feb 13;8:212550. doi: 10.7573/dic.212550. eCollection 2019.","parent_key":"BE0002638"} {"ref-id":"A14900","pubmed-id":9732391,"citation":"Kawashiro T, Yamashita K, Zhao XJ, Koyama E, Tani M, Chiba K, Ishizaki T: A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther. 1998 Sep;286(3):1294-300.","parent_key":"BE0002433"} {"ref-id":"A39011","pubmed-id":17315145,"citation":"Li X, Yun JK, Choi JS: Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos. 2007 Apr;28(3):151-6. doi: 10.1002/bdd.539.","parent_key":"BE0002433"} {"ref-id":"A14900","pubmed-id":9732391,"citation":"Kawashiro T, Yamashita K, Zhao XJ, Koyama E, Tani M, Chiba K, Ishizaki T: A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther. 1998 Sep;286(3):1294-300.","parent_key":"BE0003533"} {"ref-id":"A38832","pubmed-id":15319341,"citation":"Zhuo X, Zheng N, Felix CA, Blair IA: Kinetics and regulation of cytochrome P450-mediated etoposide metabolism. Drug Metab Dispos. 2004 Sep;32(9):993-1000.","parent_key":"BE0002362"} {"ref-id":"A184778","pubmed-id":19512958,"citation":"Yang J, Bogni A, Schuetz EG, Ratain M, Dolan ME, McLeod H, Gong L, Thorn C, Relling MV, Klein TE, Altman RB: Etoposide pathway. Pharmacogenet Genomics. 2009 Jul;19(7):552-3. doi: 10.1097/FPC.0b013e32832e0e7f.","parent_key":"BE0002362"} {"ref-id":"A38694","pubmed-id":9806945,"citation":"Yamazaki H, Shimada T: Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab Dispos. 1998 Nov;26(11):1053-7.","parent_key":"BE0002638"} {"ref-id":"A38695","pubmed-id":8948090,"citation":"Yamazaki H, Hiroki S, Urano T, Inoue K, Shimada T: Effects of roxithromycin, erythromycin and troleandomycin on their N-demethylation by rat and human cytochrome P450 enzymes. Xenobiotica. 1996 Nov;26(11):1143-53. doi: 10.3109/00498259609050259.","parent_key":"BE0002638"} {"ref-id":"A12089","pubmed-id":17164692,"citation":"Kaufmann P, Haschke M, Torok M, Beltinger J, Bogman K, Wenk M, Terracciano L, Krahenbuhl S: Mechanisms of venoocclusive disease resulting from the combination of cyclophosphamide and roxithromycin. Ther Drug Monit. 2006 Dec;28(6):766-74.","parent_key":"BE0003549"} {"ref-id":"A15159","pubmed-id":8818569,"citation":"Runge-Morris M, Feng Y, Zangar RC, Novak RF: Effects of hydrazine, phenelzine, and hydralazine treatment on rat hepatic and renal drug-metabolizing enzyme expression. Drug Metab Dispos. 1996 Jul;24(7):734-7.","parent_key":"BE0003533"} {"ref-id":"A36471","pubmed-id":16669850,"citation":"Polasek TM, Elliot DJ, Somogyi AA, Gillam EM, Lewis BC, Miners JO: An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. Br J Clin Pharmacol. 2006 May;61(5):570-84. doi: 10.1111/j.1365-2125.2006.02627.x.","parent_key":"BE0003536"} {"ref-id":"A184847","pubmed-id":21192146,"citation":"Gillman PK: Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J Clin Psychopharmacol. 2011 Feb;31(1):66-74. doi: 10.1097/JCP.0b013e31820469ea.","parent_key":"BE0002638"} {"ref-id":"A33236","pubmed-id":15304522,"citation":"Polasek TM, Elliot DJ, Lewis BC, Miners JO: Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007. doi: 10.1124/jpet.104.071803. Epub 2004 Aug 10.","parent_key":"BE0002638"} {"ref-id":"A36471","pubmed-id":16669850,"citation":"Polasek TM, Elliot DJ, Somogyi AA, Gillam EM, Lewis BC, Miners JO: An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. Br J Clin Pharmacol. 2006 May;61(5):570-84. doi: 10.1111/j.1365-2125.2006.02627.x.","parent_key":"BE0002362"} {"ref-id":"A36471","pubmed-id":16669850,"citation":"Polasek TM, Elliot DJ, Somogyi AA, Gillam EM, Lewis BC, Miners JO: An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. Br J Clin Pharmacol. 2006 May;61(5):570-84. doi: 10.1111/j.1365-2125.2006.02627.x.","parent_key":"BE0003612"} {"ref-id":"A36471","pubmed-id":16669850,"citation":"Polasek TM, Elliot DJ, Somogyi AA, Gillam EM, Lewis BC, Miners JO: An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. Br J Clin Pharmacol. 2006 May;61(5):570-84. doi: 10.1111/j.1365-2125.2006.02627.x.","parent_key":"BE0002363"} {"ref-id":"A36471","pubmed-id":16669850,"citation":"Polasek TM, Elliot DJ, Somogyi AA, Gillam EM, Lewis BC, Miners JO: An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. Br J Clin Pharmacol. 2006 May;61(5):570-84. doi: 10.1111/j.1365-2125.2006.02627.x.","parent_key":"BE0004866"} {"ref-id":"A35838","pubmed-id":16112414,"citation":"Tsuchiya Y, Nakajima M, Yokoi T: Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005 Sep 28;227(2):115-24. doi: 10.1016/j.canlet.2004.10.007. Epub 2004 Nov 19.","parent_key":"BE0002638"} {"ref-id":"A39036","pubmed-id":11741520,"citation":"Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH: Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol Sin. 2001 Feb;22(2):148-54.","parent_key":"BE0002638"} {"ref-id":"A12102","pubmed-id":8530713,"citation":"O'Connell MB: Pharmacokinetic and pharmacologic variation between different estrogen products. J Clin Pharmacol. 1995 Sep;35(9S):18S-24S. doi: 10.1002/j.1552-4604.1995.tb04143.x.","parent_key":"BE0002638"} {"ref-id":"A14754","pubmed-id":12865317,"citation":"Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT: Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.","parent_key":"BE0002433"} {"ref-id":"A38926","pubmed-id":15217502,"citation":"Hong CC, Tang BK, Hammond GL, Tritchler D, Yaffe M, Boyd NF: Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study. Breast Cancer Res. 2004;6(4):R352-65. doi: 10.1186/bcr798. Epub 2004 May 7.","parent_key":"BE0002433"} {"ref-id":"A38927","pubmed-id":27093553,"citation":"Ren J, Chen GG, Liu Y, Su X, Hu B, Leung BC, Wang Y, Ho RL, Yang S, Lu G, Lee CG, Lai PB: Cytochrome P450 1A2 Metabolizes 17beta-Estradiol to Suppress Hepatocellular Carcinoma. PLoS One. 2016 Apr 19;11(4):e0153863. doi: 10.1371/journal.pone.0153863. eCollection 2016.","parent_key":"BE0002433"} {"ref-id":"A38928","pubmed-id":10471985,"citation":"Pollock BG, Wylie M, Stack JA, Sorisio DA, Thompson DS, Kirshner MA, Folan MM, Condifer KA: Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women. J Clin Pharmacol. 1999 Sep;39(9):936-40.","parent_key":"BE0002433"} {"ref-id":"A182930","pubmed-id":15507517,"citation":"Dubey RK, Jackson EK, Gillespie DG, Rosselli M, Barchiesi F, Krust A, Keller H, Zacharia LC, Imthurn B: Cytochromes 1A1/1B1- and catechol-O-methyltransferase-derived metabolites mediate estradiol-induced antimitogenesis in human cardiac fibroblast. J Clin Endocrinol Metab. 2005 Jan;90(1):247-55. doi: 10.1210/jc.2003-032154. Epub 2004 Oct 26.","parent_key":"BE0003543"} {"ref-id":"A182933","pubmed-id":12624000,"citation":"Dubey RK, Gillespie DG, Zacharia LC, Barchiesi F, Imthurn B, Jackson EK: CYP450- and COMT-derived estradiol metabolites inhibit activity of human coronary artery SMCs. Hypertension. 2003 Mar;41(3 Pt 2):807-13. doi: 10.1161/01.HYP.0000048862.28501.72. Epub 2002 Dec 23.","parent_key":"BE0003543"} {"ref-id":"A182930","pubmed-id":15507517,"citation":"Dubey RK, Jackson EK, Gillespie DG, Rosselli M, Barchiesi F, Krust A, Keller H, Zacharia LC, Imthurn B: Cytochromes 1A1/1B1- and catechol-O-methyltransferase-derived metabolites mediate estradiol-induced antimitogenesis in human cardiac fibroblast. J Clin Endocrinol Metab. 2005 Jan;90(1):247-55. doi: 10.1210/jc.2003-032154. Epub 2004 Oct 26.","parent_key":"BE0001111"} {"ref-id":"A182933","pubmed-id":12624000,"citation":"Dubey RK, Gillespie DG, Zacharia LC, Barchiesi F, Imthurn B, Jackson EK: CYP450- and COMT-derived estradiol metabolites inhibit activity of human coronary artery SMCs. Hypertension. 2003 Mar;41(3 Pt 2):807-13. doi: 10.1161/01.HYP.0000048862.28501.72. Epub 2002 Dec 23.","parent_key":"BE0001111"} {"ref-id":"A78775","pubmed-id":23821647,"citation":"Nishida CR, Everett S, Ortiz de Montellano PR: Specificity determinants of CYP1B1 estradiol hydroxylation. Mol Pharmacol. 2013 Sep;84(3):451-8. doi: 10.1124/mol.113.087700. Epub 2013 Jul 2.","parent_key":"BE0001111"} {"ref-id":"A181394","pubmed-id":20675569,"citation":"Mwinyi J, Cavaco I, Pedersen RS, Persson A, Burkhardt S, Mkrtchian S, Ingelman-Sundberg M: Regulation of CYP2C19 expression by estrogen receptor alpha: implications for estrogen-dependent inhibition of drug metabolism. Mol Pharmacol. 2010 Nov;78(5):886-94. doi: 10.1124/mol.110.065540. Epub 2010 Jul 30.","parent_key":"BE0003536"} {"ref-id":"A184760","pubmed-id":18521743,"citation":"Justenhoven C, Hamann U, Pierl CB, Baisch C, Harth V, Rabstein S, Spickenheuer A, Pesch B, Bruning T, Winter S, Ko YD, Brauch H: CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat. 2009 May;115(2):391-6. doi: 10.1007/s10549-008-0076-4. Epub 2008 Jun 3.","parent_key":"BE0003536"} {"ref-id":"A39036","pubmed-id":11741520,"citation":"Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH: Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol Sin. 2001 Feb;22(2):148-54.","parent_key":"BE0003536"} {"ref-id":"A190462","pubmed-id":25466287,"citation":"Tervasmaki A, Winqvist R, Jukkola-Vuorinen A, Pylkas K: Recurrent CYP2C19 deletion allele is associated with triple-negative breast cancer. BMC Cancer. 2014 Dec 2;14:902. doi: 10.1186/1471-2407-14-902.","parent_key":"BE0003536"} {"ref-id":"A39036","pubmed-id":11741520,"citation":"Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH: Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol Sin. 2001 Feb;22(2):148-54.","parent_key":"BE0002887"} {"ref-id":"A190465","pubmed-id":15608133,"citation":"Delaforge M, Pruvost A, Perrin L, Andre F: Cytochrome P450-mediated oxidation of glucuronide derivatives: example of estradiol-17beta-glucuronide oxidation to 2-hydroxy-estradiol-17beta-glucuronide by CYP 2C8. Drug Metab Dispos. 2005 Mar;33(3):466-73. doi: 10.1124/dmd.104.002097. Epub 2004 Dec 17.","parent_key":"BE0002887"} {"ref-id":"A38923","pubmed-id":9625734,"citation":"Yamazaki H, Shaw PM, Guengerich FP, Shimada T: Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem Res Toxicol. 1998 Jun;11(6):659-65. doi: 10.1021/tx970217f.","parent_key":"BE0002793"} {"ref-id":"A15580","pubmed-id":9089421,"citation":"Schmider J, Greenblatt DJ, von Moltke LL, Karsov D, Vena R, Friedman HL, Shader RI: Biotransformation of mestranol to ethinyl estradiol in vitro: the role of cytochrome P-450 2C9 and metabolic inhibitors. J Clin Pharmacol. 1997 Mar;37(3):193-200.","parent_key":"BE0002793"} {"ref-id":"A39036","pubmed-id":11741520,"citation":"Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH: Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol Sin. 2001 Feb;22(2):148-54.","parent_key":"BE0002793"} {"ref-id":"A190684","pubmed-id":27709019,"citation":"Cho SJ, Ning M, Zhang Y, Rubin LH, Jeong H: 17beta-Estradiol up-regulates UDP-glucuronosyltransferase 1A9 expression via estrogen receptor alpha. Acta Pharm Sin B. 2016 Sep;6(5):504-509. doi: 10.1016/j.apsb.2016.04.005. Epub 2016 May 20.","parent_key":"BE0009758"} {"ref-id":"A190687","pubmed-id":12386134,"citation":"Williams JA, Ring BJ, Cantrell VE, Campanale K, Jones DR, Hall SD, Wrighton SA: Differential modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed estradiol-3-glucuronidation by the addition of UGT1A1 substrates and other compounds to human liver microsomes. Drug Metab Dispos. 2002 Nov;30(11):1266-73. doi: 10.1124/dmd.30.11.1266.","parent_key":"BE0009758"} {"ref-id":"A190690","pubmed-id":8474433,"citation":"Ebner T, Remmel RP, Burchell B: Human bilirubin UDP-glucuronosyltransferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol. 1993 Apr;43(4):649-54.","parent_key":"BE0009758"} {"ref-id":"A39391","pubmed-id":25372302,"citation":"Venkataraman H, den Braver MW, Vermeulen NP, Commandeur JN: Cytochrome P450-mediated bioactivation of mefenamic acid to quinoneimine intermediates and inactivation by human glutathione S-transferases. Chem Res Toxicol. 2014 Dec 15;27(12):2071-81. doi: 10.1021/tx500288b. Epub 2014 Nov 18.","parent_key":"BE0002793"} {"ref-id":"A184580","pubmed-id":21911547,"citation":"Jenkins SM, Zvyaga T, Johnson SR, Hurley J, Wagner A, Burrell R, Turley W, Leet JE, Philip T, Rodrigues AD: Studies to further investigate the inhibition of human liver microsomal CYP2C8 by the acyl-beta-glucuronide of gemfibrozil. Drug Metab Dispos. 2011 Dec;39(12):2421-30. doi: 10.1124/dmd.111.041947. Epub 2011 Sep 12.","parent_key":"BE0002887"} {"ref-id":"A38985","pubmed-id":9248768,"citation":"Tracy TS, Marra C, Wrighton SA, Gonzalez FJ, Korzekwa KR: Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation. Eur J Clin Pharmacol. 1997;52(4):293-8.","parent_key":"BE0002793"} {"ref-id":"A38985","pubmed-id":9248768,"citation":"Tracy TS, Marra C, Wrighton SA, Gonzalez FJ, Korzekwa KR: Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation. Eur J Clin Pharmacol. 1997;52(4):293-8.","parent_key":"BE0002433"} {"ref-id":"A184244","pubmed-id":8866821,"citation":"Miners JO, Coulter S, Tukey RH, Veronese ME, Birkett DJ: Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol. 1996 Apr 26;51(8):1003-8. doi: 10.1016/0006-2952(96)85085-4.","parent_key":"BE0002433"} {"ref-id":"A39160","pubmed-id":24697979,"citation":"Frost C, Shenker A, Gandhi MD, Pursley J, Barrett YC, Wang J, Zhang D, Byon W, Boyd RA, LaCreta F: Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban. Br J Clin Pharmacol. 2014 Oct;78(4):877-85. doi: 10.1111/bcp.12393.","parent_key":"BE0002433"} {"ref-id":"A38985","pubmed-id":9248768,"citation":"Tracy TS, Marra C, Wrighton SA, Gonzalez FJ, Korzekwa KR: Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation. Eur J Clin Pharmacol. 1997;52(4):293-8.","parent_key":"BE0002887"} {"ref-id":"A184358","pubmed-id":25640739,"citation":"Jaja C, Bowman L, Wells L, Patel N, Xu H, Lyon M, Kutlar A: Preemptive Genotyping of CYP2C8 and CYP2C9 Allelic Variants Involved in NSAIDs Metabolism for Sickle Cell Disease Pain Management. Clin Transl Sci. 2015 Aug;8(4):272-80. doi: 10.1111/cts.12260. Epub 2015 Feb 2.","parent_key":"BE0002887"} {"ref-id":"A38675","pubmed-id":19422321,"citation":"Agundez JA, Garcia-Martin E, Martinez C: Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol. 2009 Jun;5(6):607-20. doi: 10.1517/17425250902970998 .","parent_key":"BE0002887"} {"ref-id":"A179191","pubmed-id":16187975,"citation":"Bowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Swedmark S, Miners JO: S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. Br J Clin Pharmacol. 2005 Oct;60(4):423-33. doi: 10.1111/j.1365-2125.2005.02446.x.","parent_key":"BE0003679"} {"ref-id":"A179191","pubmed-id":16187975,"citation":"Bowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Swedmark S, Miners JO: S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. Br J Clin Pharmacol. 2005 Oct;60(4):423-33. doi: 10.1111/j.1365-2125.2005.02446.x.","parent_key":"BE0003677"} {"ref-id":"A179191","pubmed-id":16187975,"citation":"Bowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Swedmark S, Miners JO: S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. Br J Clin Pharmacol. 2005 Oct;60(4):423-33. doi: 10.1111/j.1365-2125.2005.02446.x.","parent_key":"BE0003538"} {"ref-id":"A39458","pubmed-id":11936702,"citation":"He N, Zhang WQ, Shockley D, Edeki T: Inhibitory effects of H1-antihistamines on CYP2D6- and CYP2C9-mediated drug metabolic reactions in human liver microsomes. Eur J Clin Pharmacol. 2002 Feb;57(12):847-51.","parent_key":"BE0002363"} {"ref-id":"A185927","pubmed-id":25515681,"citation":"Zaccara G, Perucca E: Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014 Dec;16(4):409-31. doi: 10.1684/epd.2014.0714.","parent_key":"BE0002793"} {"ref-id":"A35660","pubmed-id":24385718,"citation":"Hedera P, Cibulcik F, Davis TL: Pharmacotherapy of essential tremor. J Cent Nerv Syst Dis. 2013 Dec 22;5:43-55. doi: 10.4137/JCNSD.S6561.","parent_key":"BE0002793"} {"ref-id":"A189477","pubmed-id":29955442,"citation":"Marvanova M: Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Ment Health Clin. 2016 Mar 8;6(1):8-20. doi: 10.9740/mhc.2015.01.008. eCollection 2016 Jan.","parent_key":"BE0002793"} {"ref-id":"A38649","pubmed-id":10380060,"citation":"Tanaka E: Clinically significant pharmacokinetic drug interactions between antiepileptic drugs. J Clin Pharm Ther. 1999 Apr;24(2):87-92. doi: 10.1046/j.1365-2710.1999.00201.x.","parent_key":"BE0003536"} {"ref-id":"A185927","pubmed-id":25515681,"citation":"Zaccara G, Perucca E: Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014 Dec;16(4):409-31. doi: 10.1684/epd.2014.0714.","parent_key":"BE0003536"} {"ref-id":"A189477","pubmed-id":29955442,"citation":"Marvanova M: Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Ment Health Clin. 2016 Mar 8;6(1):8-20. doi: 10.9740/mhc.2015.01.008. eCollection 2016 Jan.","parent_key":"BE0003536"} {"ref-id":"A185927","pubmed-id":25515681,"citation":"Zaccara G, Perucca E: Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014 Dec;16(4):409-31. doi: 10.1684/epd.2014.0714.","parent_key":"BE0003533"} {"ref-id":"A189477","pubmed-id":29955442,"citation":"Marvanova M: Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Ment Health Clin. 2016 Mar 8;6(1):8-20. doi: 10.9740/mhc.2015.01.008. eCollection 2016 Jan.","parent_key":"BE0003533"} {"ref-id":"A182924","pubmed-id":31385988,"citation":"Benit CP, Vecht CJ: Seizures and cancer: drug interactions of anticonvulsants with chemotherapeutic agents, tyrosine kinase inhibitors and glucocorticoids. Neurooncol Pract. 2016 Dec;3(4):245-260. doi: 10.1093/nop/npv038. Epub 2015 Oct 11.","parent_key":"BE0002638"} {"ref-id":"A38649","pubmed-id":10380060,"citation":"Tanaka E: Clinically significant pharmacokinetic drug interactions between antiepileptic drugs. J Clin Pharm Ther. 1999 Apr;24(2):87-92. doi: 10.1046/j.1365-2710.1999.00201.x.","parent_key":"BE0002638"} {"ref-id":"A35660","pubmed-id":24385718,"citation":"Hedera P, Cibulcik F, Davis TL: Pharmacotherapy of essential tremor. J Cent Nerv Syst Dis. 2013 Dec 22;5:43-55. doi: 10.4137/JCNSD.S6561.","parent_key":"BE0002638"} {"ref-id":"A189477","pubmed-id":29955442,"citation":"Marvanova M: Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Ment Health Clin. 2016 Mar 8;6(1):8-20. doi: 10.9740/mhc.2015.01.008. eCollection 2016 Jan.","parent_key":"BE0002638"} {"ref-id":"A35660","pubmed-id":24385718,"citation":"Hedera P, Cibulcik F, Davis TL: Pharmacotherapy of essential tremor. J Cent Nerv Syst Dis. 2013 Dec 22;5:43-55. doi: 10.4137/JCNSD.S6561.","parent_key":"BE0002433"} {"ref-id":"A189477","pubmed-id":29955442,"citation":"Marvanova M: Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Ment Health Clin. 2016 Mar 8;6(1):8-20. doi: 10.9740/mhc.2015.01.008. eCollection 2016 Jan.","parent_key":"BE0002433"} {"ref-id":"A33734","pubmed-id":21358975,"citation":"Johannessen SI, Landmark CJ: Antiepileptic drug interactions - principles and clinical implications. Curr Neuropharmacol. 2010 Sep;8(3):254-67. doi: 10.2174/157015910792246254.","parent_key":"BE0009758"} {"ref-id":"A189477","pubmed-id":29955442,"citation":"Marvanova M: Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Ment Health Clin. 2016 Mar 8;6(1):8-20. doi: 10.9740/mhc.2015.01.008. eCollection 2016 Jan.","parent_key":"BE0009758"} {"ref-id":"A182918","pubmed-id":12642475,"citation":"Attar M, Dong D, Ling KH, Tang-Liu DD: Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans. Drug Metab Dispos. 2003 Apr;31(4):476-81. doi: 10.1124/dmd.31.4.476.","parent_key":"BE0002887"} {"ref-id":"A14901","pubmed-id":15557344,"citation":"Klees TM, Sheffels P, Dale O, Kharasch ED: Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos. 2005 Mar;33(3):303-11. Epub 2004 Nov 22.","parent_key":"BE0002638"} {"ref-id":"A183326","pubmed-id":10392320,"citation":"Kharasch ED, Jubert C, Senn T, Bowdle TA, Thummel KE: Intraindividual variability in male hepatic CYP3A4 activity assessed by alfentanil and midazolam clearance. J Clin Pharmacol. 1999 Jul;39(7):664-9.","parent_key":"BE0002638"} {"ref-id":"A15270","pubmed-id":15731592,"citation":"Klees TM, Sheffels P, Thummel KE, Kharasch ED: Pharmacogenetic determinants of human liver microsomal alfentanil metabolism and the role of cytochrome P450 3A5. Anesthesiology. 2005 Mar;102(3):550-6.","parent_key":"BE0002638"} {"ref-id":"A14901","pubmed-id":15557344,"citation":"Klees TM, Sheffels P, Dale O, Kharasch ED: Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos. 2005 Mar;33(3):303-11. Epub 2004 Nov 22.","parent_key":"BE0002362"} {"ref-id":"A15270","pubmed-id":15731592,"citation":"Klees TM, Sheffels P, Thummel KE, Kharasch ED: Pharmacogenetic determinants of human liver microsomal alfentanil metabolism and the role of cytochrome P450 3A5. Anesthesiology. 2005 Mar;102(3):550-6.","parent_key":"BE0002362"} {"ref-id":"A185162","pubmed-id":19661215,"citation":"Chico LK, Behanna HA, Hu W, Zhong G, Roy SM, Watterson DM: Molecular properties and CYP2D6 substrates: central nervous system therapeutics case study and pattern analysis of a substrate database. Drug Metab Dispos. 2009 Nov;37(11):2204-11. doi: 10.1124/dmd.109.028134. Epub 2009 Aug 6.","parent_key":"BE0002363"} {"ref-id":"A185165","pubmed-id":27942231,"citation":"Puangpetch A, Vanwong N, Nuntamool N, Hongkaew Y, Chamnanphon M, Sukasem C: CYP2D6 polymorphisms and their influence on risperidone treatment. Pharmgenomics Pers Med. 2016 Dec 1;9:131-147. doi: 10.2147/PGPM.S107772. eCollection 2016.","parent_key":"BE0002363"} {"ref-id":"A31220","pubmed-id":9394024,"citation":"Lee SH, Slattery JT: Cytochrome P450 isozymes involved in lisofylline metabolism to pentoxifylline in human liver microsomes. Drug Metab Dispos. 1997 Dec;25(12):1354-8.","parent_key":"BE0002433"} {"ref-id":"A184829","pubmed-id":15194011,"citation":"Peterson TC, Peterson MR, Wornell PA, Blanchard MG, Gonzalez FJ: Role of CYP1A2 and CYP2E1 in the pentoxifylline ciprofloxacin drug interaction. Biochem Pharmacol. 2004 Jul 15;68(2):395-402. doi: 10.1016/j.bcp.2004.03.035.","parent_key":"BE0002433"} {"ref-id":"A17553","pubmed-id":19074530,"citation":"Sun H, Moore C, Dansette PM, Kumar S, Halpert JR, Yost GS: Dehydrogenation of the indoline-containing drug 4-chloro-N-(2-methyl-1-indolinyl)-3-sulfamoylbenzamide (indapamide) by CYP3A4: correlation with in silico predictions. Drug Metab Dispos. 2009 Mar;37(3):672-84. doi: 10.1124/dmd.108.022707. Epub 2008 Dec 12.","parent_key":"BE0002638"} {"ref-id":"A185168","pubmed-id":14571354,"citation":"Ieiri I, Yamada S, Seto K, Morita T, Kaneda T, Mamiya K, Tashiro N, Higuchi S, Otsubo K: A CYP2D6 phenotype-genotype mismatch in Japanese psychiatric patients. Pharmacopsychiatry. 2003 Sep;36(5):192-6. doi: 10.1055/s-2003-43049.","parent_key":"BE0002363"} {"ref-id":"A21545","pubmed-id":10219967,"citation":"Ogg MS, Williams JM, Tarbit M, Goldfarb PS, Gray TJ, Gibson GG: A reporter gene assay to assess the molecular mechanisms of xenobiotic-dependent induction of the human CYP3A4 gene in vitro. Xenobiotica. 1999 Mar;29(3):269-79.","parent_key":"BE0002638"} {"ref-id":"A31212","pubmed-id":8886601,"citation":"Feierman DE, Lasker JM: Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. Drug Metab Dispos. 1996 Sep;24(9):932-9.","parent_key":"BE0002638"} {"ref-id":"A14902","pubmed-id":9493314,"citation":"Chesne C, Guyomard C, Guillouzo A, Schmid J, Ludwig E, Sauter T: Metabolism of Meloxicam in human liver involves cytochromes P4502C9 and 3A4. Xenobiotica. 1998 Jan;28(1):1-13. doi: 10.1080/004982598239704.","parent_key":"BE0002793"} {"ref-id":"A14903","pubmed-id":10381752,"citation":"Ludwig E, Schmid J, Beschke K, Ebner T: Activation of human cytochrome P-450 3A4-catalyzed meloxicam 5'-methylhydroxylation by quinidine and hydroquinidine in vitro. J Pharmacol Exp Ther. 1999 Jul;290(1):1-8.","parent_key":"BE0002793"} {"ref-id":"A190189","pubmed-id":30774225,"citation":"Bekker A, Kloepping C, Collingwood S: Meloxicam in the management of post-operative pain: Narrative review. J Anaesthesiol Clin Pharmacol. 2018 Oct-Dec;34(4):450-457. doi: 10.4103/joacp.JOACP_133_18.","parent_key":"BE0002793"} {"ref-id":"A14902","pubmed-id":9493314,"citation":"Chesne C, Guyomard C, Guillouzo A, Schmid J, Ludwig E, Sauter T: Metabolism of Meloxicam in human liver involves cytochromes P4502C9 and 3A4. Xenobiotica. 1998 Jan;28(1):1-13. doi: 10.1080/004982598239704.","parent_key":"BE0002638"} {"ref-id":"A14903","pubmed-id":10381752,"citation":"Ludwig E, Schmid J, Beschke K, Ebner T: Activation of human cytochrome P-450 3A4-catalyzed meloxicam 5'-methylhydroxylation by quinidine and hydroquinidine in vitro. J Pharmacol Exp Ther. 1999 Jul;290(1):1-8.","parent_key":"BE0002638"} {"ref-id":"A14816","pubmed-id":16118328,"citation":"Rodrigues AD: Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab Dispos. 2005 Nov;33(11):1567-75. Epub 2005 Aug 23.","parent_key":"BE0002887"} {"ref-id":"A38542","pubmed-id":21190921,"citation":"Shahzadi A, Javed I, Aslam B, Muhammad F, Asi MR, Ashraf MY, Zia-ur-Rahman: Therapeutic effects of ciprofloxacin on the pharmacokinetics of carbamazepine in healthy adult male volunteers. Pak J Pharm Sci. 2011 Jan;24(1):63-8.","parent_key":"BE0002433"} {"ref-id":"A39453","pubmed-id":27826892,"citation":"Mikstacki A, Zakerska-Banaszak O, Skrzypczak-Zielinska M, Tamowicz B, Prendecki M, Dorszewska J, Molinska-Glura M, Waszak M, Slomski R: The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on individual differences in propofol pharmacokinetics among Polish patients undergoing general anaesthesia. J Appl Genet. 2017 May;58(2):213-220. doi: 10.1007/s13353-016-0373-2. Epub 2016 Nov 8.","parent_key":"BE0002793"} {"ref-id":"A39454","pubmed-id":25788855,"citation":"Ouchi K, Sugiyama K: Required propofol dose for anesthesia and time to emerge are affected by the use of antiepileptics: prospective cohort study. BMC Anesthesiol. 2015 Mar 15;15:34. doi: 10.1186/s12871-015-0006-z. eCollection 2015.","parent_key":"BE0002793"} {"ref-id":"A183974","pubmed-id":26141406,"citation":"Mourao AL, de Abreu FG, Fiegenbaum M: Impact of the Cytochrome P450 2B6 (CYP2B6) Gene Polymorphism c.516G>T (rs3745274) on Propofol Dose Variability. Eur J Drug Metab Pharmacokinet. 2016 Oct;41(5):511-5. doi: 10.1007/s13318-015-0289-y.","parent_key":"BE0003549"} {"ref-id":"A183977","pubmed-id":28154789,"citation":"Eugene AR: CYP2B6 Genotype Guided Dosing of Propofol Anesthesia in the Elderly based on Nonparametric Population Pharmacokinetic Modeling and Simulations. Int J Clin Pharmacol Toxicol. 2017;6(1):242-249. Epub 2017 Jan 3.","parent_key":"BE0003549"} {"ref-id":"A15211","pubmed-id":18816295,"citation":"Takahashi H, Maruo Y, Mori A, Iwai M, Sato H, Takeuchi Y: Effect of D256N and Y483D on propofol glucuronidation by human uridine 5'-diphosphate glucuronosyltransferase (UGT1A9). Basic Clin Pharmacol Toxicol. 2008 Aug;103(2):131-6. doi: 10.1111/j.1742-7843.2008.00247.x.","parent_key":"BE0003538"} {"ref-id":"A16579","pubmed-id":7772432,"citation":"Chen TL, Ueng TH, Chen SH, Lee PH, Fan SZ, Liu CC: Human cytochrome P450 mono-oxygenase system is suppressed by propofol. Br J Anaesth. 1995 May;74(5):558-62.","parent_key":"BE0003533"} {"ref-id":"A184439","pubmed-id":12234619,"citation":"Lejus C, Fautrel A, Malledant Y, Guillouzo A: Inhibition of cytochrome P450 2E1 by propofol in human and porcine liver microsomes. Biochem Pharmacol. 2002 Oct 1;64(7):1151-6. doi: 10.1016/s0006-2952(02)01226-1.","parent_key":"BE0003533"} {"ref-id":"A184442","pubmed-id":12970884,"citation":"Yang LQ, Yu WF, Cao YF, Gong B, Chang Q, Yang GS: Potential inhibition of cytochrome P450 3A4 by propofol in human primary hepatocytes. World J Gastroenterol. 2003 Sep;9(9):1959-62. doi: 10.3748/wjg.v9.i9.1959.","parent_key":"BE0003533"} {"ref-id":"A16579","pubmed-id":7772432,"citation":"Chen TL, Ueng TH, Chen SH, Lee PH, Fan SZ, Liu CC: Human cytochrome P450 mono-oxygenase system is suppressed by propofol. Br J Anaesth. 1995 May;74(5):558-62.","parent_key":"BE0001111"} {"ref-id":"A16579","pubmed-id":7772432,"citation":"Chen TL, Ueng TH, Chen SH, Lee PH, Fan SZ, Liu CC: Human cytochrome P450 mono-oxygenase system is suppressed by propofol. Br J Anaesth. 1995 May;74(5):558-62.","parent_key":"BE0003543"} {"ref-id":"A184445","pubmed-id":27531257,"citation":"Campos SP, de Lurdes Pinto M, Gomes G, de Pinho PG, Monteiro JA, Felix LM, Branco PS, Ferreira LM, Antunes LM: Expression of CYP1A1 and CYP1A2 in the liver and kidney of rabbits after prolonged infusion of propofol. Exp Toxicol Pathol. 2016 Oct;68(9):521-531. doi: 10.1016/j.etp.2016.07.006. Epub 2016 Aug 13.","parent_key":"BE0003543"} {"ref-id":"A184442","pubmed-id":12970884,"citation":"Yang LQ, Yu WF, Cao YF, Gong B, Chang Q, Yang GS: Potential inhibition of cytochrome P450 3A4 by propofol in human primary hepatocytes. World J Gastroenterol. 2003 Sep;9(9):1959-62. doi: 10.3748/wjg.v9.i9.1959.","parent_key":"BE0003543"} {"ref-id":"A33205","pubmed-id":9764927,"citation":"McKillop D, Wild MJ, Butters CJ, Simcock C: Effects of propofol on human hepatic microsomal cytochrome P450 activities. Xenobiotica. 1998 Sep;28(9):845-53. doi: 10.1080/004982598239092 .","parent_key":"BE0002433"} {"ref-id":"A182621","pubmed-id":9771309,"citation":"Guitton J, Buronfosse T, Desage M, Flinois JP, Perdrix JP, Brazier JL, Beaune P: Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95. doi: 10.1093/bja/80.6.788.","parent_key":"BE0003536"} {"ref-id":"A39454","pubmed-id":25788855,"citation":"Ouchi K, Sugiyama K: Required propofol dose for anesthesia and time to emerge are affected by the use of antiepileptics: prospective cohort study. BMC Anesthesiol. 2015 Mar 15;15:34. doi: 10.1186/s12871-015-0006-z. eCollection 2015.","parent_key":"BE0003536"} {"ref-id":"A182621","pubmed-id":9771309,"citation":"Guitton J, Buronfosse T, Desage M, Flinois JP, Perdrix JP, Brazier JL, Beaune P: Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95. doi: 10.1093/bja/80.6.788.","parent_key":"BE0002887"} {"ref-id":"A183329","pubmed-id":25744459,"citation":"Takahiro R, Nakamura S, Kohno H, Yoshimura N, Nakamura T, Ozawa S, Hirono K, Ichida F, Taguchi M: Contribution of CYP3A isoforms to dealkylation of PDE5 inhibitors: a comparison between sildenafil N-demethylation and tadalafil demethylenation. Biol Pharm Bull. 2015;38(1):58-65. doi: 10.1248/bpb.b14-00566.","parent_key":"BE0002638"} {"ref-id":"A183329","pubmed-id":25744459,"citation":"Takahiro R, Nakamura S, Kohno H, Yoshimura N, Nakamura T, Ozawa S, Hirono K, Ichida F, Taguchi M: Contribution of CYP3A isoforms to dealkylation of PDE5 inhibitors: a comparison between sildenafil N-demethylation and tadalafil demethylenation. Biol Pharm Bull. 2015;38(1):58-65. doi: 10.1248/bpb.b14-00566.","parent_key":"BE0002362"} {"ref-id":"A39745","pubmed-id":8513656,"citation":"Kharasch ED, Thummel KE, Mhyre J, Lillibridge JH: Single-dose disulfiram inhibition of chlorzoxazone metabolism: a clinical probe for P450 2E1. Clin Pharmacol Ther. 1993 Jun;53(6):643-50. doi: 10.1038/clpt.1993.85.","parent_key":"BE0003533"} {"ref-id":"A181391","pubmed-id":10490907,"citation":"Emery MG, Jubert C, Thummel KE, Kharasch ED: Duration of cytochrome P-450 2E1 (CYP2E1) inhibition and estimation of functional CYP2E1 enzyme half-life after single-dose disulfiram administration in humans. J Pharmacol Exp Ther. 1999 Oct;291(1):213-9.","parent_key":"BE0003533"} {"ref-id":"A34181","pubmed-id":24118434,"citation":"McCance-Katz EF, Gruber VA, Beatty G, Lum P, Ma Q, DiFrancesco R, Hochreiter J, Wallace PK, Faiman MD, Morse GD: Interaction of disulfiram with antiretroviral medications: efavirenz increases while atazanavir decreases disulfiram effect on enzymes of alcohol metabolism. Am J Addict. 2014 Mar-Apr;23(2):137-44. doi: 10.1111/j.1521-0391.2013.12081.x. Epub 2013 Oct 11.","parent_key":"BE0002638"} {"ref-id":"A36802","pubmed-id":9756035,"citation":"Madan A, Parkinson A, Faiman MD: Identification of the human P-450 enzymes responsible for the sulfoxidation and thiono-oxidation of diethyldithiocarbamate methyl ester: role of P-450 enzymes in disulfiram bioactivation. Alcohol Clin Exp Res. 1998 Sep;22(6):1212-9.","parent_key":"BE0002638"} {"ref-id":"A184715","pubmed-id":8654205,"citation":"Madan A, Parkinson A, Faiman MD: Identification of the human and rat P450 enzymes responsible for the sulfoxidation of S-methyl N,N-diethylthiolcarbamate (DETC-ME). The terminal step in the bioactivation of disulfiram. Drug Metab Dispos. 1995 Oct;23(10):1153-62.","parent_key":"BE0002638"} {"ref-id":"A36802","pubmed-id":9756035,"citation":"Madan A, Parkinson A, Faiman MD: Identification of the human P-450 enzymes responsible for the sulfoxidation and thiono-oxidation of diethyldithiocarbamate methyl ester: role of P-450 enzymes in disulfiram bioactivation. Alcohol Clin Exp Res. 1998 Sep;22(6):1212-9.","parent_key":"BE0002362"} {"ref-id":"A184715","pubmed-id":8654205,"citation":"Madan A, Parkinson A, Faiman MD: Identification of the human and rat P450 enzymes responsible for the sulfoxidation of S-methyl N,N-diethylthiolcarbamate (DETC-ME). The terminal step in the bioactivation of disulfiram. Drug Metab Dispos. 1995 Oct;23(10):1153-62.","parent_key":"BE0002362"} {"ref-id":"A39486","pubmed-id":24552479,"citation":"Calcaterra NE, Barrow JC: Classics in chemical neuroscience: diazepam (valium). ACS Chem Neurosci. 2014 Apr 16;5(4):253-60. doi: 10.1021/cn5000056. Epub 2014 Feb 27.","parent_key":"BE0002793"} {"ref-id":"A38698","pubmed-id":9020195,"citation":"Iribarne C, Dreano Y, Bardou LG, Menez JF, Berthou F: Interaction of methadone with substrates of human hepatic cytochrome P450 3A4. Toxicology. 1997 Feb 14;117(1):13-23.","parent_key":"BE0002638"} {"ref-id":"A15579","pubmed-id":9029042,"citation":"Jung F, Richardson TH, Raucy JL, Johnson EF: Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases. Drug Metab Dispos. 1997 Feb;25(2):133-9.","parent_key":"BE0003536"} {"ref-id":"A34376","pubmed-id":12708941,"citation":"Murphy A, Wilbur K: Phenytoin-diazepam interaction. Ann Pharmacother. 2003 May;37(5):659-63. doi: 10.1345/aph.1C413.","parent_key":"BE0003536"} {"ref-id":"A38722","pubmed-id":9923577,"citation":"Rasmussen BB, Nielsen TL, Brosen K: Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol. 1998 Nov-Dec;54(9-10):735-40.","parent_key":"BE0003536"} {"ref-id":"A184283","pubmed-id":10525096,"citation":"Mei Q, Tang C, Assang C, Lin Y, Slaughter D, Rodrigues AD, Baillie TA, Rushmore TH, Shou M: Role of a potent inhibitory monoclonal antibody to cytochrome P-450 3A4 in assessment of human drug metabolism. J Pharmacol Exp Ther. 1999 Nov;291(2):749-59.","parent_key":"BE0002362"} {"ref-id":"A14755","pubmed-id":11259318,"citation":"Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, Rushmore TH, Shou M: Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos. 2001 Apr;29(4 Pt 1):368-74.","parent_key":"BE0003549"} {"ref-id":"A182654","pubmed-id":10771285,"citation":"Shou M, Lu T, Krausz KW, Sai Y, Yang T, Korzekwa KR, Gonzalez FJ, Gelboin HV: Use of inhibitory monoclonal antibodies to assess the contribution of cytochromes P450 to human drug metabolism. Eur J Pharmacol. 2000 Apr 14;394(2-3):199-209. doi: 10.1016/s0014-2999(00)00079-0.","parent_key":"BE0002887"} {"ref-id":"A15040","pubmed-id":8483075,"citation":"Hirata Y, Ishii K, Taguchi T, Suita S, Takeshige K: Conversion of xanthine dehydrogenase to xanthine oxidase during ischemia of the rat small intestine and the effect of trifluoperazine on the conversion. J Pediatr Surg. 1993 Apr;28(4):597-600.","parent_key":"BE0002204"} {"ref-id":"A15041","pubmed-id":8304479,"citation":"Greene EL, Paller MS: Calcium and free radicals in hypoxia/reoxygenation injury of renal epithelial cells. Am J Physiol. 1994 Jan;266(1 Pt 2):F13-20.","parent_key":"BE0002204"} {"ref-id":"A21684","pubmed-id":15466163,"citation":"Yueh MF, Kawahara M, Raucy J: High volume bioassays to assess CYP3A4-mediated drug interactions: induction and inhibition in a single cell line. Drug Metab Dispos. 2005 Jan;33(1):38-48. Epub 2004 Oct 1.","parent_key":"BE0002638"} {"ref-id":"A38056","pubmed-id":9697076,"citation":"Jang GR, Benet LZ: Antiprogestin pharmacodynamics, pharmacokinetics, and metabolism: implications for their long-term use. J Pharmacokinet Biopharm. 1997 Dec;25(6):647-72.","parent_key":"BE0002638"} {"ref-id":"A181439","pubmed-id":9532615,"citation":"Jang GR, Benet LZ: Antiprogestin-mediated inactivation of cytochrome P450 3A4. Pharmacology. 1998 Mar;56(3):150-7. doi: 10.1159/000028193.","parent_key":"BE0002638"} {"ref-id":"A181442","pubmed-id":17460031,"citation":"Ma B, Polsky-Fisher SL, Vickers S, Cui D, Rodrigues AD: Cytochrome P450 3A-dependent metabolism of a potent and selective gamma-aminobutyric acid Aalpha2/3 receptor agonist in vitro: involvement of cytochrome P450 3A5 displaying biphasic kinetics. Drug Metab Dispos. 2007 Aug;35(8):1301-7. doi: 10.1124/dmd.107.014753. Epub 2007 Apr 25.","parent_key":"BE0002638"} {"ref-id":"A184805","pubmed-id":29785610,"citation":"Reinen J, Smit M, Wenker M: Evaluation of Strategies for the Assessment of Drug-Drug Interactions Involving Cytochrome P450 Enzymes. Eur J Drug Metab Pharmacokinet. 2018 Dec;43(6):737-750. doi: 10.1007/s13318-018-0485-7.","parent_key":"BE0002638"} {"ref-id":"A38839","pubmed-id":16684709,"citation":"Soars MG, Grime K, Riley RJ: Comparative analysis of substrate and inhibitor interactions with CYP3A4 and CYP3A5. Xenobiotica. 2006 Apr;36(4):287-99. doi: 10.1080/00498250500446208 .","parent_key":"BE0002362"} {"ref-id":"A38840","pubmed-id":12167563,"citation":"Khan KK, He YQ, Correia MA, Halpert JR: Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: selective inactivation of P450 3A4. Drug Metab Dispos. 2002 Sep;30(9):985-90.","parent_key":"BE0002362"} {"ref-id":"A38564","pubmed-id":9918590,"citation":"He K, Woolf TF, Hollenberg PF: Mechanism-based inactivation of cytochrome P-450-3A4 by mifepristone (RU486). J Pharmacol Exp Ther. 1999 Feb;288(2):791-7.","parent_key":"BE0002363"} {"ref-id":"A6249","pubmed-id":18192961,"citation":"Baker DE: Loperamide: a pharmacological review. Rev Gastroenterol Disord. 2007;7 Suppl 3:S11-8.","parent_key":"BE0002638"} {"ref-id":"A14904","pubmed-id":15365656,"citation":"Kim KA, Chung J, Jung DH, Park JY: Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol. 2004 Oct;60(8):575-81. Epub 2004 Sep 8.","parent_key":"BE0002638"} {"ref-id":"A37906","pubmed-id":16415122,"citation":"Marechal JD, Yu J, Brown S, Kapelioukh I, Rankin EM, Wolf CR, Roberts GC, Paine MJ, Sutcliffe MJ: In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab Dispos. 2006 Apr;34(4):534-8. doi: 10.1124/dmd.105.007625. Epub 2006 Jan 13.","parent_key":"BE0002638"} {"ref-id":"A14904","pubmed-id":15365656,"citation":"Kim KA, Chung J, Jung DH, Park JY: Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol. 2004 Oct;60(8):575-81. Epub 2004 Sep 8.","parent_key":"BE0002887"} {"ref-id":"A14904","pubmed-id":15365656,"citation":"Kim KA, Chung J, Jung DH, Park JY: Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol. 2004 Oct;60(8):575-81. Epub 2004 Sep 8.","parent_key":"BE0003549"} {"ref-id":"A14904","pubmed-id":15365656,"citation":"Kim KA, Chung J, Jung DH, Park JY: Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol. 2004 Oct;60(8):575-81. Epub 2004 Sep 8.","parent_key":"BE0002363"} {"ref-id":"A18016","pubmed-id":12386133,"citation":"Court MH, Duan SX, Guillemette C, Journault K, Krishnaswamy S, Von Moltke LL, Greenblatt DJ: Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos. 2002 Nov;30(11):1257-65.","parent_key":"BE0003679"} {"ref-id":"A18016","pubmed-id":12386133,"citation":"Court MH, Duan SX, Guillemette C, Journault K, Krishnaswamy S, Von Moltke LL, Greenblatt DJ: Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos. 2002 Nov;30(11):1257-65.","parent_key":"BE0003538"} {"ref-id":"A182330","pubmed-id":26952092,"citation":"Coin A, Pamio MV, Alexopoulos C, Granziera S, Groppa F, de Rosa G, Girardi A, Sergi G, Manzato E, Padrini R: Donepezil plasma concentrations, CYP2D6 and CYP3A4 phenotypes, and cognitive outcome in Alzheimer's disease. Eur J Clin Pharmacol. 2016 Jun;72(6):711-7. doi: 10.1007/s00228-016-2033-1. Epub 2016 Mar 8.","parent_key":"BE0002363"} {"ref-id":"A182330","pubmed-id":26952092,"citation":"Coin A, Pamio MV, Alexopoulos C, Granziera S, Groppa F, de Rosa G, Girardi A, Sergi G, Manzato E, Padrini R: Donepezil plasma concentrations, CYP2D6 and CYP3A4 phenotypes, and cognitive outcome in Alzheimer's disease. Eur J Clin Pharmacol. 2016 Jun;72(6):711-7. doi: 10.1007/s00228-016-2033-1. Epub 2016 Mar 8.","parent_key":"BE0002638"} {"ref-id":"A39476","pubmed-id":26603528,"citation":"Lu J, Wan L, Zhong Y, Yu Q, Han Y, Chen P, Wang B, Li W, Miao Y, Guo C: Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease. J Pharmacol Sci. 2015 Nov;129(3):188-95. doi: 10.1016/j.jphs.2015.10.010. Epub 2015 Nov 5.","parent_key":"BE0002793"} {"ref-id":"A185069","pubmed-id":24663015,"citation":"Horita Y, Doi N: Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein. Antimicrob Agents Chemother. 2014 Jun;58(6):3168-76. doi: 10.1128/AAC.02278-13. Epub 2014 Mar 24.","parent_key":"BE0002638"} {"ref-id":"A185072","pubmed-id":29038231,"citation":"Sangana R, Gu H, Chun DY, Einolf HJ: Evaluation of Clinical Drug Interaction Potential of Clofazimine Using Static and Dynamic Modeling Approaches. Drug Metab Dispos. 2018 Jan;46(1):26-32. doi: 10.1124/dmd.117.077834. Epub 2017 Oct 16.","parent_key":"BE0002638"} {"ref-id":"A38621","pubmed-id":2879902,"citation":"Hall SD, Guengerich FP, Branch RA, Wilkinson GR: Characterization and inhibition of mephenytoin 4-hydroxylase activity in human liver microsomes. J Pharmacol Exp Ther. 1987 Jan;240(1):216-22.","parent_key":"BE0003536"} {"ref-id":"A14905","pubmed-id":8689810,"citation":"Linnet K, Wiborg O: Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther. 1996 Jul;60(1):41-7.","parent_key":"BE0002363"} {"ref-id":"A39117","pubmed-id":11136295,"citation":"Olesen OV, Linnet K: Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol. 2000 Dec;50(6):563-71. doi: 10.1046/j.1365-2125.2000.00298.x.","parent_key":"BE0002433"} {"ref-id":"A184838","pubmed-id":19843655,"citation":"Jin Y, Pollock BG, Coley K, Miller D, Marder SR, Florian J, Schneider L, Lieberman J, Kirshner M, Bies RR: Population pharmacokinetics of perphenazine in schizophrenia patients from CATIE: impact of race and smoking. J Clin Pharmacol. 2010 Jan;50(1):73-80. doi: 10.1177/0091270009343694. Epub 2009 Oct 20.","parent_key":"BE0002433"} {"ref-id":"A39117","pubmed-id":11136295,"citation":"Olesen OV, Linnet K: Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol. 2000 Dec;50(6):563-71. doi: 10.1046/j.1365-2125.2000.00298.x.","parent_key":"BE0003536"} {"ref-id":"A39117","pubmed-id":11136295,"citation":"Olesen OV, Linnet K: Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol. 2000 Dec;50(6):563-71. doi: 10.1046/j.1365-2125.2000.00298.x.","parent_key":"BE0002887"} {"ref-id":"A39117","pubmed-id":11136295,"citation":"Olesen OV, Linnet K: Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol. 2000 Dec;50(6):563-71. doi: 10.1046/j.1365-2125.2000.00298.x.","parent_key":"BE0002793"} {"ref-id":"A39117","pubmed-id":11136295,"citation":"Olesen OV, Linnet K: Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol. 2000 Dec;50(6):563-71. doi: 10.1046/j.1365-2125.2000.00298.x.","parent_key":"BE0002638"} {"ref-id":"A38929","pubmed-id":10473105,"citation":"Reid JM, Kuffel MJ, Miller JK, Rios R, Ames MM: Metabolic activation of dacarbazine by human cytochromes P450: the role of CYP1A1, CYP1A2, and CYP2E1. Clin Cancer Res. 1999 Aug;5(8):2192-7.","parent_key":"BE0003543"} {"ref-id":"A182693","pubmed-id":21816953,"citation":"Lewis BC, Mackenzie PI, Miners JO: Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine. Mol Pharmacol. 2011 Nov;80(5):879-88. doi: 10.1124/mol.111.072124. Epub 2011 Aug 4.","parent_key":"BE0003543"} {"ref-id":"A38929","pubmed-id":10473105,"citation":"Reid JM, Kuffel MJ, Miller JK, Rios R, Ames MM: Metabolic activation of dacarbazine by human cytochromes P450: the role of CYP1A1, CYP1A2, and CYP2E1. Clin Cancer Res. 1999 Aug;5(8):2192-7.","parent_key":"BE0002433"} {"ref-id":"A38930","pubmed-id":29305638,"citation":"Kantrowitz-Gordon I, Hays K, Kayode O, Kumar AR, Kaplan HG, Reid JM, Safgren SL, Ames MM, Easterling TR, Hebert MF: Pharmacokinetics of dacarbazine (DTIC) in pregnancy. Cancer Chemother Pharmacol. 2018 Mar;81(3):455-460. doi: 10.1007/s00280-017-3511-6. Epub 2018 Jan 5.","parent_key":"BE0002433"} {"ref-id":"A38929","pubmed-id":10473105,"citation":"Reid JM, Kuffel MJ, Miller JK, Rios R, Ames MM: Metabolic activation of dacarbazine by human cytochromes P450: the role of CYP1A1, CYP1A2, and CYP2E1. Clin Cancer Res. 1999 Aug;5(8):2192-7.","parent_key":"BE0003533"} {"ref-id":"A182696","pubmed-id":11751525,"citation":"Long L, Dolan ME: Role of cytochrome P450 isoenzymes in metabolism of O(6)-benzylguanine: implications for dacarbazine activation. Clin Cancer Res. 2001 Dec;7(12):4239-44.","parent_key":"BE0003533"} {"ref-id":"A17681","pubmed-id":17035600,"citation":"Medina-Diaz IM, Arteaga-Illan G, de Leon MB, Cisneros B, Sierra-Santoyo A, Vega L, Gonzalez FJ, Elizondo G: Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane. Drug Metab Dispos. 2007 Jan;35(1):95-102. Epub 2006 Oct 11.","parent_key":"BE0002638"} {"ref-id":"A17682","pubmed-id":17692354,"citation":"Petersen MS, Halling J, Damkier P, Nielsen F, Grandjean P, Weihe P, Brosen K: Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults. Toxicol Appl Pharmacol. 2007 Oct 15;224(2):202-6. Epub 2007 Jul 14.","parent_key":"BE0002638"} {"ref-id":"A17683","pubmed-id":2778,"citation":"Springer RH, Dimmitt MK, Novinson T, O'Brien DE, Robins RK, Simon LN, Miller JP: Synthesis and enzymic activity of some novel xanthine oxidase inhibitors. 3-Substituted 5,7-dihydroxypyrazolo(1,5-alpha)pyrimidines. J Med Chem. 1976 Feb;19(2):291-6.","parent_key":"BE0002204"} {"ref-id":"A38984","pubmed-id":10460803,"citation":"Vickers AE, Sinclair JR, Zollinger M, Heitz F, Glanzel U, Johanson L, Fischer V: Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos. 1999 Sep;27(9):1029-38.","parent_key":"BE0002793"} {"ref-id":"A38984","pubmed-id":10460803,"citation":"Vickers AE, Sinclair JR, Zollinger M, Heitz F, Glanzel U, Johanson L, Fischer V: Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos. 1999 Sep;27(9):1029-38.","parent_key":"BE0002433"} {"ref-id":"A38984","pubmed-id":10460803,"citation":"Vickers AE, Sinclair JR, Zollinger M, Heitz F, Glanzel U, Johanson L, Fischer V: Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos. 1999 Sep;27(9):1029-38.","parent_key":"BE0002638"} {"ref-id":"A38984","pubmed-id":10460803,"citation":"Vickers AE, Sinclair JR, Zollinger M, Heitz F, Glanzel U, Johanson L, Fischer V: Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos. 1999 Sep;27(9):1029-38.","parent_key":"BE0002887"} {"ref-id":"A38984","pubmed-id":10460803,"citation":"Vickers AE, Sinclair JR, Zollinger M, Heitz F, Glanzel U, Johanson L, Fischer V: Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos. 1999 Sep;27(9):1029-38.","parent_key":"BE0003536"} {"ref-id":"A15183","pubmed-id":10383919,"citation":"Abdel-Rahman SM, Marcucci K, Boge T, Gotschall RR, Kearns GL, Leeder JS: Potent inhibition of cytochrome P-450 2D6-mediated dextromethorphan O-demethylation by terbinafine. Drug Metab Dispos. 1999 Jul;27(7):770-5.","parent_key":"BE0002363"} {"ref-id":"A15184","pubmed-id":12412819,"citation":"Madani S, Barilla D, Cramer J, Wang Y, Paul C: Effect of terbinafine on the pharmacokinetics and pharmacodynamics of desipramine in healthy volunteers identified as cytochrome P450 2D6 (CYP2D6) extensive metabolizers. J Clin Pharmacol. 2002 Nov;42(11):1211-8.","parent_key":"BE0002363"} {"ref-id":"A15185","pubmed-id":11475469,"citation":"Debruyne D, Coquerel A: Pharmacokinetics of antifungal agents in onychomycoses. Clin Pharmacokinet. 2001;40(6):441-72.","parent_key":"BE0002363"} {"ref-id":"A15186","pubmed-id":10340911,"citation":"Abdel-Rahman SM, Gotschall RR, Kauffman RE, Leeder JS, Kearns GL: Investigation of terbinafine as a CYP2D6 inhibitor in vivo. Clin Pharmacol Ther. 1999 May;65(5):465-72.","parent_key":"BE0002363"} {"ref-id":"A182699","pubmed-id":27800121,"citation":"Sheweita SA, Wally M, Hassan M: Erectile Dysfunction Drugs Changed the Protein Expressions and Activities of Drug-Metabolising Enzymes in the Liver of Male Rats. Oxid Med Cell Longev. 2016;2016:4970906. doi: 10.1155/2016/4970906. Epub 2016 Oct 9.","parent_key":"BE0002638"} {"ref-id":"A33696","pubmed-id":24049429,"citation":"Huang SA, Lie JD: Phosphodiesterase-5 (PDE5) Inhibitors In the Management of Erectile Dysfunction. P T. 2013 Jul;38(7):407-19.","parent_key":"BE0002638"} {"ref-id":"A33696","pubmed-id":24049429,"citation":"Huang SA, Lie JD: Phosphodiesterase-5 (PDE5) Inhibitors In the Management of Erectile Dysfunction. P T. 2013 Jul;38(7):407-19.","parent_key":"BE0002362"} {"ref-id":"A39187","pubmed-id":17948937,"citation":"Zhou Q, Yan XF, Zhang ZM, Pan WS, Zeng S: Rational prescription of drugs within similar therapeutic or structural class for gastrointestinal disease treatment: drug metabolism and its related interactions. World J Gastroenterol. 2007 Nov 14;13(42):5618-28.","parent_key":"BE0002433"} {"ref-id":"A176816","pubmed-id":20439629,"citation":"Sideras K, Ingle JN, Ames MM, Loprinzi CL, Mrazek DP, Black JL, Weinshilboum RM, Hawse JR, Spelsberg TC, Goetz MP: Coprescription of tamoxifen and medications that inhibit CYP2D6. J Clin Oncol. 2010 Jun 1;28(16):2768-76. doi: 10.1200/JCO.2009.23.8931. Epub 2010 May 3.","parent_key":"BE0002363"} {"ref-id":"A183221","pubmed-id":12694072,"citation":"Zheng H, Webber S, Zeevi A, Schuetz E, Zhang J, Bowman P, Boyle G, Law Y, Miller S, Lamba J, Burckart GJ: Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant. 2003 Apr;3(4):477-83.","parent_key":"BE0002362"} {"ref-id":"A183236","pubmed-id":15951320,"citation":"Kamdem LK, Streit F, Zanger UM, Brockmoller J, Oellerich M, Armstrong VW, Wojnowski L: Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem. 2005 Aug;51(8):1374-81. doi: 10.1373/clinchem.2005.050047. Epub 2005 Jun 10.","parent_key":"BE0002362"} {"ref-id":"A183242","pubmed-id":17635182,"citation":"Op den Buijsch RA, Christiaans MH, Stolk LM, de Vries JE, Cheung CY, Undre NA, van Hooff JP, van Dieijen-Visser MP, Bekers O: Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundam Clin Pharmacol. 2007 Aug;21(4):427-35. doi: 10.1111/j.1472-8206.2007.00504.x.","parent_key":"BE0002362"} {"ref-id":"A183248","pubmed-id":14747421,"citation":"Zheng H, Zeevi A, Schuetz E, Lamba J, McCurry K, Griffith BP, Webber S, Ristich J, Dauber J, Iacono A, Grgurich W, Zaldonis D, McDade K, Zhang J, Burckart GJ: Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol. 2004 Feb;44(2):135-40. doi: 10.1177/0091270003262108.","parent_key":"BE0002362"} {"ref-id":"A174748","pubmed-id":8689938,"citation":"Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, Gonschior AK, Dralle H, Hackbarth I, Sewing KF: Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos. 1995 Dec;23(12):1315-24.","parent_key":"BE0002638"} {"ref-id":"A15679","pubmed-id":8486332,"citation":"Seree EJ, Pisano PJ, Placidi M, Rahmani R, Barra YA: Identification of the human and animal hepatic cytochromes P450 involved in clonazepam metabolism. Fundam Clin Pharmacol. 1993;7(2):69-75.","parent_key":"BE0002638"} {"ref-id":"A16578","pubmed-id":15769884,"citation":"Bumpus NN, Sridar C, Kent UM, Hollenberg PF: The naturally occurring cytochrome P450 (P450) 2B6 K262R mutant of P450 2B6 exhibits alterations in substrate metabolism and inactivation. Drug Metab Dispos. 2005 Jun;33(6):795-802. Epub 2005 Mar 15.","parent_key":"BE0003549"} {"ref-id":"A16577","pubmed-id":19144770,"citation":"Shebley M, Kent UM, Ballou DP, Hollenberg PF: Mechanistic analysis of the inactivation of cytochrome P450 2B6 by phencyclidine: effects on substrate binding, electron transfer, and uncoupling. Drug Metab Dispos. 2009 Apr;37(4):745-52. doi: 10.1124/dmd.108.024661. Epub 2009 Jan 14.","parent_key":"BE0003549"} {"ref-id":"A181343","pubmed-id":25369508,"citation":"Sicras-Mainar A, Guijarro P, Armada B, Blanca-Tamayo M, Navarro-Artieda R: Influence of the CYP2D6 isoenzyme in patients treated with venlafaxine for major depressive disorder: clinical and economic consequences. PLoS One. 2014 Nov 4;9(11):e90453. doi: 10.1371/journal.pone.0090453. eCollection 2014.","parent_key":"BE0002363"} {"ref-id":"A190552","pubmed-id":7895610,"citation":"Hasegawa T, Hara K, Kenmochi T, Hata S: In vitro metabolism of dorzolamide, a novel potent carbonic anhydrase inhibitor, in rat liver microsomes. Drug Metab Dispos. 1994 Nov-Dec;22(6):916-21.","parent_key":"BE0003533"} {"ref-id":"A17578","pubmed-id":18838506,"citation":"Hutzler JM, Balogh LM, Zientek M, Kumar V, Tracy TS: Mechanism-based inactivation of cytochrome P450 2C9 by tienilic acid and (+/-)-suprofen: a comparison of kinetics and probe substrate selection. Drug Metab Dispos. 2009 Jan;37(1):59-65. doi: 10.1124/dmd.108.023358. Epub 2008 Oct 6.","parent_key":"BE0002793"} {"ref-id":"A39392","pubmed-id":14570769,"citation":"O'Donnell JP, Dalvie DK, Kalgutkar AS, Obach RS: Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab Dispos. 2003 Nov;31(11):1369-77. doi: 10.1124/dmd.31.11.1369.","parent_key":"BE0002793"} {"ref-id":"A39487","pubmed-id":7654690,"citation":"Mancy A, Broto P, Dijols S, Dansette PM, Mansuy D: The substrate binding site of human liver cytochrome P450 2C9: an approach using designed tienilic acid derivatives and molecular modeling. Biochemistry. 1995 Aug 22;34(33):10365-75.","parent_key":"BE0002793"} {"ref-id":"A1309","pubmed-id":17919259,"citation":"Ali F, Raufi MA, Washington B, Ghali JK: Conivaptan: a dual vasopressin receptor v1a/v2 antagonist [corrected]. Cardiovasc Drug Rev. 2007 Fall;25(3):261-79.","parent_key":"BE0002638"} {"ref-id":"A35848","pubmed-id":15686733,"citation":"Sadaba B, Campanero MA, Quetglas EG, Azanza JR: Clinical relevance of sirolimus drug interactions in transplant patients. Transplant Proc. 2004 Dec;36(10):3226-8. doi: 10.1016/j.transproceed.2004.10.056.","parent_key":"BE0002638"} {"ref-id":"A182702","pubmed-id":3806514,"citation":"O'Keefe RK, Marrone BL: Inhibition of androgen and oestrogen production by clomiphene citrate in avian theca cells. J Reprod Fertil. 1986 Nov;78(2):541-8. doi: 10.1530/jrf.0.0780541.","parent_key":"BE0000344"} {"ref-id":"A38967","pubmed-id":16621933,"citation":"Vuppugalla R, Mehvar R: Selective effects of nitric oxide on the disposition of chlorzoxazone and dextromethorphan in isolated perfused rat livers. Drug Metab Dispos. 2006 Jul;34(7):1160-6. doi: 10.1124/dmd.105.009050. Epub 2006 Apr 18.","parent_key":"BE0003533"} {"ref-id":"A1345","pubmed-id":12943486,"citation":"Tan M: Granisetron: new insights into its use for the treatment of chemotherapy-induced nausea and vomiting. Expert Opin Pharmacother. 2003 Sep;4(9):1563-71.","parent_key":"BE0002638"} {"ref-id":"A14892","pubmed-id":16192915,"citation":"Janicki PK: Cytochrome P450 2D6 metabolism and 5-hydroxytryptamine type 3 receptor antagonists for postoperative nausea and vomiting. Med Sci Monit. 2005 Oct;11(10):RA322-8. Epub 2005 Sep 26.","parent_key":"BE0002638"} {"ref-id":"A15171","pubmed-id":16248838,"citation":"Nakamura H, Ariyoshi N, Okada K, Nakasa H, Nakazawa K, Kitada M: CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr Drug Metab. 2005 Oct;6(5):469-80.","parent_key":"BE0002638"} {"ref-id":"A15171","pubmed-id":16248838,"citation":"Nakamura H, Ariyoshi N, Okada K, Nakasa H, Nakazawa K, Kitada M: CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr Drug Metab. 2005 Oct;6(5):469-80.","parent_key":"BE0003543"} {"ref-id":"A184037","pubmed-id":27809336,"citation":"Bustos ML, Zhao Y, Chen H, Caritis SN, Venkataramanan R: Polymorphisms in CYP1A1 and CYP3A5 Genes Contribute to the Variability in Granisetron Clearance and Exposure in Pregnant Women with Nausea and Vomiting. Pharmacotherapy. 2016 Dec;36(12):1238-1244. doi: 10.1002/phar.1860. Epub 2016 Dec 5.","parent_key":"BE0003543"} {"ref-id":"A184040","pubmed-id":30950278,"citation":"Lang D, Radtke M, Bairlein M: Highly Variable Expression of CYP1A1 in Human Liver and Impact on Pharmacokinetics of Riociguat and Granisetron in Humans. Chem Res Toxicol. 2019 Jun 17;32(6):1115-1122. doi: 10.1021/acs.chemrestox.8b00413. Epub 2019 Apr 16.","parent_key":"BE0003543"} {"ref-id":"A35932","pubmed-id":20966043,"citation":"Shukla SJ, Sakamuru S, Huang R, Moeller TA, Shinn P, Vanleer D, Auld DS, Austin CP, Xia M: Identification of clinically used drugs that activate pregnane X receptors. Drug Metab Dispos. 2011 Jan;39(1):151-9. doi: 10.1124/dmd.110.035105. Epub 2010 Oct 21.","parent_key":"BE0002638"} {"ref-id":"A183710","pubmed-id":11124232,"citation":"Schrag ML, Wienkers LC: Triazolam substrate inhibition: evidence of competition for heme-bound reactive oxygen within the CYP3A4 active site. Drug Metab Dispos. 2001 Jan;29(1):70-5.","parent_key":"BE0002638"} {"ref-id":"A14775","pubmed-id":12124305,"citation":"Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA: Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002 Aug;30(8):883-91.","parent_key":"BE0002362"} {"ref-id":"A37586","pubmed-id":9929510,"citation":"Busby WF Jr, Ackermann JM, Crespi CL: Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos. 1999 Feb;27(2):246-9.","parent_key":"BE0003543"} {"ref-id":"A37596","pubmed-id":11236840,"citation":"Salmela KS, Tsyrlov IB, Lieber CS: Azide inhibits human cytochrome P -4502E1, 1A2, and 3A4. Alcohol Clin Exp Res. 2001 Feb;25(2):253-60.","parent_key":"BE0002433"} {"ref-id":"A37586","pubmed-id":9929510,"citation":"Busby WF Jr, Ackermann JM, Crespi CL: Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos. 1999 Feb;27(2):246-9.","parent_key":"BE0003549"} {"ref-id":"A38541","pubmed-id":19252308,"citation":"Tatsumi A, Ikegami Y, Morii R, Sugiyama M, Kadobayashi M, Iwakawa S: Effect of ethanol on S-warfarin and diclofenac metabolism by recombinant human CYP2C9.1. Biol Pharm Bull. 2009 Mar;32(3):517-9.","parent_key":"BE0002793"} {"ref-id":"A39463","pubmed-id":28805981,"citation":"Thu OKF, Spigset O, Hellum B: Noncompetitive inhibition of human CYP2C9 in vitro by a commercial Rhodiola rosea product. Pharmacol Res Perspect. 2017 Aug;5(4). doi: 10.1002/prp2.324.","parent_key":"BE0002793"} {"ref-id":"A37586","pubmed-id":9929510,"citation":"Busby WF Jr, Ackermann JM, Crespi CL: Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos. 1999 Feb;27(2):246-9.","parent_key":"BE0003536"} {"ref-id":"A14829","pubmed-id":11996013,"citation":"Lewis DF, Modi S, Dickins M: Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002 Feb-May;34(1-2):69-82.","parent_key":"BE0003533"} {"ref-id":"A37671","pubmed-id":12707490,"citation":"Nakamura K, Iwahashi K, Ameno K, Sekine Y, Suzuki K, Minabe Y, Mori N: CYP2E1 and clinical features in alcoholics. Neuropsychobiology. 2003;47(2):86-9. doi: 10.1159/000070014.","parent_key":"BE0003533"} {"ref-id":"A37678","pubmed-id":8659683,"citation":"Ueshima Y, Tsutsumi M, Takase S, Matsuda Y, Kawahara H: Acetaminophen metabolism in patients with different cytochrome P-4502E1 genotypes. Alcohol Clin Exp Res. 1996 Feb;20(1 Suppl):25A-28A.","parent_key":"BE0003533"} {"ref-id":"A37685","pubmed-id":7802633,"citation":"Roberts BJ, Shoaf SE, Jeong KS, Song BJ: Induction of CYP2E1 in liver, kidney, brain and intestine during chronic ethanol administration and withdrawal: evidence that CYP2E1 possesses a rapid phase half-life of 6 hours or less. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1064-71. doi: 10.1006/bbrc.1994.2774.","parent_key":"BE0003533"} {"ref-id":"A37686","pubmed-id":10872641,"citation":"Thummel KE, Slattery JT, Ro H, Chien JY, Nelson SD, Lown KE, Watkins PB: Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin Pharmacol Ther. 2000 Jun;67(6):591-9. doi: 10.1067/mcp.2000.106574.","parent_key":"BE0003533"} {"ref-id":"A37698","pubmed-id":10064561,"citation":"Dupont I, Berthou F, Bodenez P, Bardou L, Guirriec C, Stephan N, Dreano Y, Lucas D: Involvement of cytochromes P-450 2E1 and 3A4 in the 5-hydroxylation of salicylate in humans. Drug Metab Dispos. 1999 Mar;27(3):322-6.","parent_key":"BE0002638"} {"ref-id":"A37703","pubmed-id":12824820,"citation":"Feierman DE, Melinkov Z, Nanji AA: Induction of CYP3A by ethanol in multiple in vitro and in vivo models. Alcohol Clin Exp Res. 2003 Jun;27(6):981-8. doi: 10.1097/01.ALC.0000071738.53337.F4.","parent_key":"BE0002638"} {"ref-id":"A37706","pubmed-id":7574728,"citation":"Kostrubsky VE, Strom SC, Wood SG, Wrighton SA, Sinclair PR, Sinclair JF: Ethanol and isopentanol increase CYP3A and CYP2E in primary cultures of human hepatocytes. Arch Biochem Biophys. 1995 Oct 1;322(2):516-20. doi: 10.1006/abbi.1995.1495.","parent_key":"BE0002638"} {"ref-id":"A37596","pubmed-id":11236840,"citation":"Salmela KS, Tsyrlov IB, Lieber CS: Azide inhibits human cytochrome P -4502E1, 1A2, and 3A4. Alcohol Clin Exp Res. 2001 Feb;25(2):253-60.","parent_key":"BE0002638"} {"ref-id":"A31812","pubmed-id":15285839,"citation":"Patki KC, Greenblatt DJ, von Moltke LL: Ethanol inhibits in-vitro metabolism of nifedipine, triazolam and testosterone in human liver microsomes. J Pharm Pharmacol. 2004 Aug;56(8):963-6. doi: 10.1211/0022357043950.","parent_key":"BE0002638"} {"ref-id":"A37586","pubmed-id":9929510,"citation":"Busby WF Jr, Ackermann JM, Crespi CL: Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos. 1999 Feb;27(2):246-9.","parent_key":"BE0002638"} {"ref-id":"A37614","pubmed-id":10773044,"citation":"Cummings BS, Lasker JM, Lash LH: Expression of glutathione-dependent enzymes and cytochrome P450s in freshly isolated and primary cultures of proximal tubular cells from human kidney. J Pharmacol Exp Ther. 2000 May;293(2):677-85.","parent_key":"BE0000421"} {"ref-id":"A38932","pubmed-id":8591723,"citation":"Dixon CM, Colthup PV, Serabjit-Singh CJ, Kerr BM, Boehlert CC, Park GR, Tarbit MH: Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995 Nov;23(11):1225-30.","parent_key":"BE0002638"} {"ref-id":"A38931","pubmed-id":16946512,"citation":"Niwa T, Yamamoto S, Saito M, Kobayashi N, Ikeda K, Noda Y, Takagi A: Effects of serotonin-3 receptor antagonists on cytochrome P450 activities in human liver microsomes. Biol Pharm Bull. 2006 Sep;29(9):1931-5.","parent_key":"BE0002433"} {"ref-id":"A38932","pubmed-id":8591723,"citation":"Dixon CM, Colthup PV, Serabjit-Singh CJ, Kerr BM, Boehlert CC, Park GR, Tarbit MH: Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995 Nov;23(11):1225-30.","parent_key":"BE0002433"} {"ref-id":"A38932","pubmed-id":8591723,"citation":"Dixon CM, Colthup PV, Serabjit-Singh CJ, Kerr BM, Boehlert CC, Park GR, Tarbit MH: Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995 Nov;23(11):1225-30.","parent_key":"BE0002363"} {"ref-id":"A14891","pubmed-id":8723743,"citation":"Sanwald P, David M, Dow J: Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron. Comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos. 1996 May;24(5):602-9.","parent_key":"BE0003533"} {"ref-id":"A182720","pubmed-id":10714305,"citation":"Pita-Calandre E: [Clinical implications of pharmacology and pharmacokinetics of tiagabine]. Rev Neurol. 1999 Feb 1-15;28(3):337-9.","parent_key":"BE0002638"} {"ref-id":"A182723","pubmed-id":9825084,"citation":"Luer MS, Rhoney DH: Tiagabine: a novel antiepileptic drug. Ann Pharmacother. 1998 Nov;32(11):1173-80. doi: 10.1345/aph.18053.","parent_key":"BE0002638"} {"ref-id":"A183716","pubmed-id":27224254,"citation":"Chen X, Zheng X, Zhan M, Zhou Z, Zhan CG, Zheng F: Metabolic Enzymes of Cocaine Metabolite Benzoylecgonine. ACS Chem Biol. 2016 Aug 19;11(8):2186-94. doi: 10.1021/acschembio.6b00277. Epub 2016 Jun 9.","parent_key":"BE0002638"} {"ref-id":"A33211","pubmed-id":17470523,"citation":"Shen H, He MM, Liu H, Wrighton SA, Wang L, Guo B, Li C: Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos. 2007 Aug;35(8):1292-300. doi: 10.1124/dmd.107.015354. Epub 2007 Apr 30.","parent_key":"BE0002363"} {"ref-id":"A38770","pubmed-id":19702536,"citation":"Chen Y, Goldstein JA: The transcriptional regulation of the human CYP2C genes. Curr Drug Metab. 2009 Jul;10(6):567-78. Epub 2009 Jul 15.","parent_key":"BE0002887"} {"ref-id":"A21704","pubmed-id":16188404,"citation":"Malaplate-Armand C, Ferrari L, Masson C, Visvikis-Siest S, Lambert H, Batt AM: Down-regulation of astroglial CYP2C, glucocorticoid receptor and constitutive androstane receptor genes in response to cocaine in human U373 MG astrocytoma cells. Toxicol Lett. 2005 Dec 15;159(3):203-11. doi: 10.1016/j.toxlet.2005.04.005. Epub 2005 Sep 26.","parent_key":"BE0002887"} {"ref-id":"A37174","pubmed-id":22459173,"citation":"Berka K, Anzenbacherova E, Hendrychova T, Lange R, Masek V, Anzenbacher P, Otyepka M: Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. J Inorg Biochem. 2012 May;110:46-50. doi: 10.1016/j.jinorgbio.2012.02.010. Epub 2012 Feb 22.","parent_key":"BE0002363"} {"ref-id":"A37176","pubmed-id":10702886,"citation":"Bramer SL, Suri A: Inhibition of CYP2D6 by quinidine and its effects on the metabolism of cilostazol. Clin Pharmacokinet. 1999;37 Suppl 2:41-51.","parent_key":"BE0002363"} {"ref-id":"A181364","pubmed-id":11061580,"citation":"Branch RA, Adedoyin A, Frye RF, Wilson JW, Romkes M: In vivo modulation of CYP enzymes by quinidine and rifampin. Clin Pharmacol Ther. 2000 Oct;68(4):401-11. doi: 10.1067/mcp.2000.110561.","parent_key":"BE0002363"} {"ref-id":"A33659","pubmed-id":16162505,"citation":"McLaughlin LA, Paine MJ, Kemp CA, Marechal JD, Flanagan JU, Ward CJ, Sutcliffe MJ, Roberts GC, Wolf CR: Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding. J Biol Chem. 2005 Nov 18;280(46):38617-24. doi: 10.1074/jbc.M505974200. Epub 2005 Sep 14.","parent_key":"BE0002363"} {"ref-id":"A37822","pubmed-id":11765139,"citation":"Ching MS, Blake CL, Malek NA, Angus PW, Ghabrial H: Differential inhibition of human CYP1A1 and CYP1A2 by quinidine and quinine. Xenobiotica. 2001 Nov;31(11):757-67. doi: 10.1080/00498250110065603 .","parent_key":"BE0002433"} {"ref-id":"A39093","pubmed-id":1765139,"citation":"Munch M, Heegaard C, Jensen PH, Andreasen PA: Type-1 inhibitor of plasminogen activators. Distinction between latent, activated and reactive centre-cleaved forms with thermal stability and monoclonal antibodies. FEBS Lett. 1991 Dec 16;295(1-3):102-6.","parent_key":"BE0002433"} {"ref-id":"A37825","pubmed-id":10086984,"citation":"Nielsen TL, Rasmussen BB, Flinois JP, Beaune P, Brosen K: In vitro metabolism of quinidine: the (3S)-3-hydroxylation of quinidine is a specific marker reaction for cytochrome P-4503A4 activity in human liver microsomes. J Pharmacol Exp Ther. 1999 Apr;289(1):31-7.","parent_key":"BE0003533"} {"ref-id":"A15172","pubmed-id":10490898,"citation":"van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, Meier PJ: Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999 Oct;291(1):147-52.","parent_key":"BE0003543"} {"ref-id":"A184055","pubmed-id":12642457,"citation":"Lu AY, Wang RW, Lin JH: Cytochrome P450 in vitro reaction phenotyping: a re-evaluation of approaches used for P450 isoform identification. Drug Metab Dispos. 2003 Apr;31(4):345-50. doi: 10.1124/dmd.31.4.345.","parent_key":"BE0003543"} {"ref-id":"A37823","pubmed-id":8886607,"citation":"Spracklin DK, Thummel KE, Kharasch ED: Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Drug Metab Dispos. 1996 Sep;24(9):976-83.","parent_key":"BE0003549"} {"ref-id":"A15160","pubmed-id":10821163,"citation":"Sai Y, Dai R, Yang TJ, Krausz KW, Gonzalez FJ, Gelboin HV, Shou M: Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica. 2000 Apr;30(4):327-43.","parent_key":"BE0002793"} {"ref-id":"A14907","pubmed-id":8341274,"citation":"Nakasa H, Komiya M, Ohmori S, Rikihisa T, Kiuchi M, Kitada M: Characterization of human liver microsomal cytochrome P450 involved in the reductive metabolism of zonisamide. Mol Pharmacol. 1993 Jul;44(1):216-21.","parent_key":"BE0002638"} {"ref-id":"A1382","pubmed-id":20001433,"citation":"Schulze-Bonhage A: Zonisamide in the treatment of epilepsy. Expert Opin Pharmacother. 2010 Jan;11(1):115-26. doi: 10.1517/14656560903468728.","parent_key":"BE0002638"} {"ref-id":"A5879","pubmed-id":19557119,"citation":"Zaccara G, Specchio LM: Long-term safety and effectiveness of zonisamide in the treatment of epilepsy: a review of the literature. Neuropsychiatr Dis Treat. 2009;5:249-59. Epub 2009 May 20.","parent_key":"BE0002638"} {"ref-id":"A14908","pubmed-id":9626925,"citation":"Nakasa H, Nakamura H, Ono S, Tsutsui M, Kiuchi M, Ohmori S, Kitada M: Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur J Clin Pharmacol. 1998 Apr;54(2):177-83.","parent_key":"BE0002638"} {"ref-id":"A15057","pubmed-id":8742231,"citation":"Sugihara K, Kitamura S, Tatsumi K: Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Drug Metab Dispos. 1996 Feb;24(2):199-202.","parent_key":"BE0003539"} {"ref-id":"A15058","pubmed-id":11456132,"citation":"Kitamura S, Ohashi KNK, Sugihara K, Hosokawa R, Akagawa Y, Ohta S: Extremely high drug-reductase activity based on aldehyde oxidase in monkey liver. Biol Pharm Bull. 2001 Jul;24(7):856-9.","parent_key":"BE0003539"} {"ref-id":"A14908","pubmed-id":9626925,"citation":"Nakasa H, Nakamura H, Ono S, Tsutsui M, Kiuchi M, Ohmori S, Kitada M: Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur J Clin Pharmacol. 1998 Apr;54(2):177-83.","parent_key":"BE0003536"} {"ref-id":"A37927","pubmed-id":15519127,"citation":"Ragueneau-Majlessi I, Levy RH, Bergen D, Garnett W, Rosenfeld W, Mather G, Shah J, Grundy JS: Carbamazepine pharmacokinetics are not affected by zonisamide: in vitro mechanistic study and in vivo clinical study in epileptic patients. Epilepsy Res. 2004 Nov;62(1):1-11. doi: 10.1016/j.eplepsyres.2004.06.008.","parent_key":"BE0003536"} {"ref-id":"A14908","pubmed-id":9626925,"citation":"Nakasa H, Nakamura H, Ono S, Tsutsui M, Kiuchi M, Ohmori S, Kitada M: Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur J Clin Pharmacol. 1998 Apr;54(2):177-83.","parent_key":"BE0002362"} {"ref-id":"A14910","pubmed-id":12919179,"citation":"Bidstrup TB, Bjornsdottir I, Sidelmann UG, Thomsen MS, Hansen KT: CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol. 2003 Sep;56(3):305-14.","parent_key":"BE0002638"} {"ref-id":"A182711","pubmed-id":16176562,"citation":"Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT: Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol. 2005 Oct;97(4):249-56. doi: 10.1111/j.1742-7843.2005.pto_157.x.","parent_key":"BE0002638"} {"ref-id":"A14910","pubmed-id":12919179,"citation":"Bidstrup TB, Bjornsdottir I, Sidelmann UG, Thomsen MS, Hansen KT: CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol. 2003 Sep;56(3):305-14.","parent_key":"BE0002887"} {"ref-id":"A185075","pubmed-id":24913012,"citation":"Shah RR, Smith RL: Addressing phenoconversion: the Achilles' heel of personalized medicine. Br J Clin Pharmacol. 2015 Feb;79(2):222-40. doi: 10.1111/bcp.12441.","parent_key":"BE0002363"} {"ref-id":"A185078","pubmed-id":23233435,"citation":"Kopec KT, Kowalski MJ: Metformin-associated lactic acidosis (MALA): case files of the Einstein Medical Center medical toxicology fellowship. J Med Toxicol. 2013 Mar;9(1):61-6. doi: 10.1007/s13181-012-0278-3.","parent_key":"BE0002363"} {"ref-id":"A37893","pubmed-id":25470432,"citation":"Kudo T, Endo Y, Taguchi R, Yatsu M, Ito K: Metronidazole reduces the expression of cytochrome P450 enzymes in HepaRG cells and cryopreserved human hepatocytes. Xenobiotica. 2015 May;45(5):413-9. doi: 10.3109/00498254.2014.990948. Epub 2014 Dec 3.","parent_key":"BE0002793"} {"ref-id":"A39394","pubmed-id":26053779,"citation":"Hersh EV, Moore PA: Three Serious Drug Interactions that Every Dentist Should Know About. Compend Contin Educ Dent. 2015 Jun;36(6):408-13; quiz 414, 416.","parent_key":"BE0002793"} {"ref-id":"A39488","pubmed-id":29780235,"citation":"Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, Otdelenov VA, Denisenko NP, Barreto GE, Aliev G: The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther. 2018 May 8;12:1147-1156. doi: 10.2147/DDDT.S149069. eCollection 2018.","parent_key":"BE0002793"} {"ref-id":"A37893","pubmed-id":25470432,"citation":"Kudo T, Endo Y, Taguchi R, Yatsu M, Ito K: Metronidazole reduces the expression of cytochrome P450 enzymes in HepaRG cells and cryopreserved human hepatocytes. Xenobiotica. 2015 May;45(5):413-9. doi: 10.3109/00498254.2014.990948. Epub 2014 Dec 3.","parent_key":"BE0002638"} {"ref-id":"A37893","pubmed-id":25470432,"citation":"Kudo T, Endo Y, Taguchi R, Yatsu M, Ito K: Metronidazole reduces the expression of cytochrome P450 enzymes in HepaRG cells and cryopreserved human hepatocytes. Xenobiotica. 2015 May;45(5):413-9. doi: 10.3109/00498254.2014.990948. Epub 2014 Dec 3.","parent_key":"BE0002887"} {"ref-id":"A181144","pubmed-id":23813797,"citation":"Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL: The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013 Sep;41(9):1686-94. doi: 10.1124/dmd.113.052548. Epub 2013 Jun 27.","parent_key":"BE0003336"} {"ref-id":"A181144","pubmed-id":23813797,"citation":"Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL: The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013 Sep;41(9):1686-94. doi: 10.1124/dmd.113.052548. Epub 2013 Jun 27.","parent_key":"BE0002362"} {"ref-id":"A181144","pubmed-id":23813797,"citation":"Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL: The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013 Sep;41(9):1686-94. doi: 10.1124/dmd.113.052548. Epub 2013 Jun 27.","parent_key":"BE0003612"} {"ref-id":"A14911","pubmed-id":12642466,"citation":"Salva M, Jansat JM, Martinez-Tobed A, Palacios JM: Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos. 2003 Apr;31(4):404-11.","parent_key":"BE0002638"} {"ref-id":"A14912","pubmed-id":15762767,"citation":"McEnroe JD, Fleishaker JC: Clinical pharmacokinetics of almotriptan, a serotonin 5-HT(1B/1D) receptor agonist for the treatment of migraine. Clin Pharmacokinet. 2005;44(3):237-46.","parent_key":"BE0002638"} {"ref-id":"A14912","pubmed-id":15762767,"citation":"McEnroe JD, Fleishaker JC: Clinical pharmacokinetics of almotriptan, a serotonin 5-HT(1B/1D) receptor agonist for the treatment of migraine. Clin Pharmacokinet. 2005;44(3):237-46.","parent_key":"BE0002363"} {"ref-id":"A14911","pubmed-id":12642466,"citation":"Salva M, Jansat JM, Martinez-Tobed A, Palacios JM: Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos. 2003 Apr;31(4):404-11.","parent_key":"BE0002363"} {"ref-id":"A14911","pubmed-id":12642466,"citation":"Salva M, Jansat JM, Martinez-Tobed A, Palacios JM: Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos. 2003 Apr;31(4):404-11.","parent_key":"BE0003606"} {"ref-id":"A14911","pubmed-id":12642466,"citation":"Salva M, Jansat JM, Martinez-Tobed A, Palacios JM: Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos. 2003 Apr;31(4):404-11.","parent_key":"BE0003536"} {"ref-id":"A14911","pubmed-id":12642466,"citation":"Salva M, Jansat JM, Martinez-Tobed A, Palacios JM: Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos. 2003 Apr;31(4):404-11.","parent_key":"BE0003533"} {"ref-id":"A14911","pubmed-id":12642466,"citation":"Salva M, Jansat JM, Martinez-Tobed A, Palacios JM: Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos. 2003 Apr;31(4):404-11.","parent_key":"BE0002887"} {"ref-id":"A14913","pubmed-id":9698298,"citation":"Kobayashi K, Yamamoto T, Chiba K, Tani M, Shimada N, Ishizaki T, Kuroiwa Y: Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Drug Metab Dispos. 1998 Aug;26(8):818-21.","parent_key":"BE0002638"} {"ref-id":"A34007","pubmed-id":20132117,"citation":"McCance-Katz EF, Sullivan LE, Nallani S: Drug interactions of clinical importance among the opioids, methadone and buprenorphine, and other frequently prescribed medications: a review. Am J Addict. 2010 Jan-Feb;19(1):4-16. doi: 10.1111/j.1521-0391.2009.00005.x.","parent_key":"BE0002638"} {"ref-id":"A37830","pubmed-id":12756210,"citation":"Zhang W, Ramamoorthy Y, Tyndale RF, Sellers EM: Interaction of buprenorphine and its metabolite norbuprenorphine with cytochromes p450 in vitro. Drug Metab Dispos. 2003 Jun;31(6):768-72. doi: 10.1124/dmd.31.6.768.","parent_key":"BE0002638"} {"ref-id":"A187430","pubmed-id":30531584,"citation":"Coe MA, Lofwall MR, Walsh SL: Buprenorphine Pharmacology Review: Update on Transmucosal and Long-acting Formulations. J Addict Med. 2019 Mar/Apr;13(2):93-103. doi: 10.1097/ADM.0000000000000457.","parent_key":"BE0002362"} {"ref-id":"A37828","pubmed-id":15743975,"citation":"Picard N, Cresteil T, Djebli N, Marquet P: In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005 May;33(5):689-95. doi: 10.1124/dmd.105.003681. Epub 2005 Mar 2.","parent_key":"BE0002793"} {"ref-id":"A38691","pubmed-id":19500085,"citation":"Moody DE, Chang Y, Huang W, McCance-Katz EF: The in vivo response of novel buprenorphine metabolites, M1 and M3, to antiretroviral inducers and inhibitors of buprenorphine metabolism. Basic Clin Pharmacol Toxicol. 2009 Sep;105(3):211-5. doi: 10.1111/j.1742-7843.2009.00432.x. Epub 2009 Jun 4.","parent_key":"BE0002887"} {"ref-id":"A37828","pubmed-id":15743975,"citation":"Picard N, Cresteil T, Djebli N, Marquet P: In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005 May;33(5):689-95. doi: 10.1124/dmd.105.003681. Epub 2005 Mar 2.","parent_key":"BE0002887"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003612"} {"ref-id":"A37828","pubmed-id":15743975,"citation":"Picard N, Cresteil T, Djebli N, Marquet P: In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005 May;33(5):689-95. doi: 10.1124/dmd.105.003681. Epub 2005 Mar 2.","parent_key":"BE0003612"} {"ref-id":"A37829","pubmed-id":15684471,"citation":"Umeda S, Harakawa N, Yamamoto M, Ueno K: Effect of nonspecific binding to microsomes and metabolic elimination of buprenorphine on the inhibition of cytochrome P4502D6. Biol Pharm Bull. 2005 Feb;28(2):212-6.","parent_key":"BE0002363"} {"ref-id":"A37830","pubmed-id":12756210,"citation":"Zhang W, Ramamoorthy Y, Tyndale RF, Sellers EM: Interaction of buprenorphine and its metabolite norbuprenorphine with cytochromes p450 in vitro. Drug Metab Dispos. 2003 Jun;31(6):768-72. doi: 10.1124/dmd.31.6.768.","parent_key":"BE0002363"} {"ref-id":"A184307","pubmed-id":12033517,"citation":"Umehara K, Shimokawa Y, Miyamoto G: Inhibition of human drug metabolizing cytochrome P450 by buprenorphine. Biol Pharm Bull. 2002 May;25(5):682-5. doi: 10.1248/bpb.25.682.","parent_key":"BE0002363"} {"ref-id":"A184307","pubmed-id":12033517,"citation":"Umehara K, Shimokawa Y, Miyamoto G: Inhibition of human drug metabolizing cytochrome P450 by buprenorphine. Biol Pharm Bull. 2002 May;25(5):682-5. doi: 10.1248/bpb.25.682.","parent_key":"BE0003536"} {"ref-id":"A184388","pubmed-id":17598095,"citation":"Bomsien S, Skopp G: An in vitro approach to potential methadone metabolic-inhibition interactions. Eur J Clin Pharmacol. 2007 Sep;63(9):821-7. doi: 10.1007/s00228-007-0327-z. Epub 2007 Jun 28.","parent_key":"BE0003536"} {"ref-id":"A37828","pubmed-id":15743975,"citation":"Picard N, Cresteil T, Djebli N, Marquet P: In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005 May;33(5):689-95. doi: 10.1124/dmd.105.003681. Epub 2005 Mar 2.","parent_key":"BE0003536"} {"ref-id":"A14914","pubmed-id":8818577,"citation":"Wang RW, Liu L, Cheng H: Identification of human liver cytochrome P450 isoforms involved in the in vitro metabolism of cyclobenzaprine. Drug Metab Dispos. 1996 Jul;24(7):786-91.","parent_key":"BE0002638"} {"ref-id":"A31312","pubmed-id":25050056,"citation":"Witenko C, Moorman-Li R, Motycka C, Duane K, Hincapie-Castillo J, Leonard P, Valaer C: Considerations for the appropriate use of skeletal muscle relaxants for the management of acute low back pain. P T. 2014 Jun;39(6):427-35.","parent_key":"BE0002638"} {"ref-id":"A14914","pubmed-id":8818577,"citation":"Wang RW, Liu L, Cheng H: Identification of human liver cytochrome P450 isoforms involved in the in vitro metabolism of cyclobenzaprine. Drug Metab Dispos. 1996 Jul;24(7):786-91.","parent_key":"BE0002433"} {"ref-id":"A14914","pubmed-id":8818577,"citation":"Wang RW, Liu L, Cheng H: Identification of human liver cytochrome P450 isoforms involved in the in vitro metabolism of cyclobenzaprine. Drug Metab Dispos. 1996 Jul;24(7):786-91.","parent_key":"BE0002363"} {"ref-id":"A18462","pubmed-id":25829094,"citation":"Darwish M, Bond M, Hellriegel E, Robertson P Jr, Chovan JP: Pharmacokinetic and pharmacodynamic profile of bendamustine and its metabolites. Cancer Chemother Pharmacol. 2015 Jun;75(6):1143-54. doi: 10.1007/s00280-015-2727-6. Epub 2015 Apr 1.","parent_key":"BE0002433"} {"ref-id":"A1428","pubmed-id":17712762,"citation":"Temesgen Z, Feinberg J: Tipranavir: a new option for the treatment of drug-resistant HIV infection. Clin Infect Dis. 2007 Sep 15;45(6):761-9. Epub 2007 Aug 7.","parent_key":"BE0002638"} {"ref-id":"A1429","pubmed-id":18158073,"citation":"Luna B, Townsend MU: Tipranavir: the first nonpeptidic protease inhibitor for the treatment of protease resistance. Clin Ther. 2007 Nov;29(11):2309-18.","parent_key":"BE0002638"} {"ref-id":"A14915","pubmed-id":20103582,"citation":"Li F, Wang L, Guo GL, Ma X: Metabolism-mediated drug interactions associated with ritonavir-boosted tipranavir in mice. Drug Metab Dispos. 2010 May;38(5):871-8. doi: 10.1124/dmd.109.030817. Epub 2010 Jan 26.","parent_key":"BE0002638"} {"ref-id":"A14916","pubmed-id":20147896,"citation":"Dumond JB, Vourvahis M, Rezk NL, Patterson KB, Tien HC, White N, Jennings SH, Choi SO, Li J, Wagner MJ, La-Beck NM, Drulak M, Sabo JP, Castles MA, Macgregor TR, Kashuba AD: A phenotype-genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin Pharmacol Ther. 2010 Jun;87(6):735-42. doi: 10.1038/clpt.2009.253. Epub 2010 Feb 10.","parent_key":"BE0002638"} {"ref-id":"A14915","pubmed-id":20103582,"citation":"Li F, Wang L, Guo GL, Ma X: Metabolism-mediated drug interactions associated with ritonavir-boosted tipranavir in mice. Drug Metab Dispos. 2010 May;38(5):871-8. doi: 10.1124/dmd.109.030817. Epub 2010 Jan 26.","parent_key":"BE0002363"} {"ref-id":"A14916","pubmed-id":20147896,"citation":"Dumond JB, Vourvahis M, Rezk NL, Patterson KB, Tien HC, White N, Jennings SH, Choi SO, Li J, Wagner MJ, La-Beck NM, Drulak M, Sabo JP, Castles MA, Macgregor TR, Kashuba AD: A phenotype-genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin Pharmacol Ther. 2010 Jun;87(6):735-42. doi: 10.1038/clpt.2009.253. Epub 2010 Feb 10.","parent_key":"BE0002363"} {"ref-id":"A14915","pubmed-id":20103582,"citation":"Li F, Wang L, Guo GL, Ma X: Metabolism-mediated drug interactions associated with ritonavir-boosted tipranavir in mice. Drug Metab Dispos. 2010 May;38(5):871-8. doi: 10.1124/dmd.109.030817. Epub 2010 Jan 26.","parent_key":"BE0003536"} {"ref-id":"A14916","pubmed-id":20147896,"citation":"Dumond JB, Vourvahis M, Rezk NL, Patterson KB, Tien HC, White N, Jennings SH, Choi SO, Li J, Wagner MJ, La-Beck NM, Drulak M, Sabo JP, Castles MA, Macgregor TR, Kashuba AD: A phenotype-genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin Pharmacol Ther. 2010 Jun;87(6):735-42. doi: 10.1038/clpt.2009.253. Epub 2010 Feb 10.","parent_key":"BE0003536"} {"ref-id":"A35826","pubmed-id":17542771,"citation":"Vourvahis M, Kashuba AD: Mechanisms of pharmacokinetic and pharmacodynamic drug interactions associated with ritonavir-enhanced tipranavir. Pharmacotherapy. 2007 Jun;27(6):888-909. doi: 10.1592/phco.27.6.888.","parent_key":"BE0003536"} {"ref-id":"A39295","pubmed-id":12682803,"citation":"Berecz R, de la Rubia A, Dorado P, Fernandez-Salguero P, Dahl ML, LLerena A: Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur J Clin Pharmacol. 2003 May;59(1):45-50. doi: 10.1007/s00228-003-0576-4. Epub 2003 Mar 28.","parent_key":"BE0002363"} {"ref-id":"A185084","pubmed-id":10942178,"citation":"Llerena A, Berecz R, de la Rubia A, Norberto MJ, Benitez J: Use of the mesoridazine/thioridazine ratio as a marker for CYP2D6 enzyme activity. Ther Drug Monit. 2000 Aug;22(4):397-401. doi: 10.1097/00007691-200008000-00006.","parent_key":"BE0002363"} {"ref-id":"A14917","pubmed-id":12071336,"citation":"Brachtendorf L, Jetter A, Beckurts KT, Holscher AH, Fuhr U: Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol. 2002 Mar;90(3):144-9.","parent_key":"BE0002363"} {"ref-id":"A183731","pubmed-id":8018460,"citation":"Firkusny L, Gleiter CH: Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol. 1994 Apr;37(4):383-8. doi: 10.1111/j.1365-2125.1994.tb04293.x.","parent_key":"BE0002363"} {"ref-id":"A14917","pubmed-id":12071336,"citation":"Brachtendorf L, Jetter A, Beckurts KT, Holscher AH, Fuhr U: Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol. 2002 Mar;90(3):144-9.","parent_key":"BE0002433"} {"ref-id":"A39474","pubmed-id":25840124,"citation":"Bojic M, Sedgeman CA, Nagy LD, Guengerich FP: Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450. Eur J Pharm Sci. 2015 Jun 20;73:49-56. doi: 10.1016/j.ejps.2015.03.015. Epub 2015 Mar 31.","parent_key":"BE0002793"} {"ref-id":"A183737","pubmed-id":11825095,"citation":"Cazzola M, Testi R, Matera MG: Clinical pharmacokinetics of salmeterol. Clin Pharmacokinet. 2002;41(1):19-30. doi: 10.2165/00003088-200241010-00003.","parent_key":"BE0002638"} {"ref-id":"A183737","pubmed-id":11825095,"citation":"Cazzola M, Testi R, Matera MG: Clinical pharmacokinetics of salmeterol. Clin Pharmacokinet. 2002;41(1):19-30. doi: 10.2165/00003088-200241010-00003.","parent_key":"BE0002362"} {"ref-id":"A183737","pubmed-id":11825095,"citation":"Cazzola M, Testi R, Matera MG: Clinical pharmacokinetics of salmeterol. Clin Pharmacokinet. 2002;41(1):19-30. doi: 10.2165/00003088-200241010-00003.","parent_key":"BE0003612"} {"ref-id":"A38852","pubmed-id":12621391,"citation":"Chen XP, Tan ZR, Huang SL, Huang Z, Ou-Yang DS, Zhou HH: Isozyme-specific induction of low-dose aspirin on cytochrome P450 in healthy subjects. Clin Pharmacol Ther. 2003 Mar;73(3):264-71. doi: 10.1067/mcp.2003.14.","parent_key":"BE0003536"} {"ref-id":"A177406","pubmed-id":21966608,"citation":"Palikhe NS, Kim SH, Nam YH, Ye YM, Park HS: Polymorphisms of Aspirin-Metabolizing Enzymes CYP2C9, NAT2 and UGT1A6 in Aspirin-Intolerant Urticaria. Allergy Asthma Immunol Res. 2011 Oct;3(4):273-6. doi: 10.4168/aair.2011.3.4.273. Epub 2011 Jul 1.","parent_key":"BE0002793"} {"ref-id":"A36853","pubmed-id":15054565,"citation":"Ufer M, Svensson JO, Krausz KW, Gelboin HV, Rane A, Tybring G: Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol. 2004 May;60(3):173-82. doi: 10.1007/s00228-004-0740-5. Epub 2004 Mar 31.","parent_key":"BE0002887"} {"ref-id":"A185087","pubmed-id":15213846,"citation":"Visser LE, van Schaik RH, van Vliet M, Trienekens PH, De Smet PA, Vulto AG, Hofman A, van Duijn CM, Stricker BH: The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost. 2004 Jul;92(1):61-6. doi: 10.1160/TH03-12-0741.","parent_key":"BE0002887"} {"ref-id":"A5941","pubmed-id":17192772,"citation":"Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM, Egberts AC, de Boer A: VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther. 2007 Feb;81(2):185-93. Epub 2006 Dec 27.","parent_key":"BE0002793"} {"ref-id":"A185093","pubmed-id":16863464,"citation":"Daly AK, King BP: Contribution of CYP2C9 to variability in vitamin K antagonist metabolism. Expert Opin Drug Metab Toxicol. 2006 Feb;2(1):3-15. doi: 10.1517/17425255.2.1.3 .","parent_key":"BE0002793"} {"ref-id":"A36853","pubmed-id":15054565,"citation":"Ufer M, Svensson JO, Krausz KW, Gelboin HV, Rane A, Tybring G: Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol. 2004 May;60(3):173-82. doi: 10.1007/s00228-004-0740-5. Epub 2004 Mar 31.","parent_key":"BE0002638"} {"ref-id":"A182747","pubmed-id":15094758,"citation":"Robertson JF, Harrison M: Fulvestrant: pharmacokinetics and pharmacology. Br J Cancer. 2004 Mar;90 Suppl 1:S7-10. doi: 10.1038/sj.bjc.6601630.","parent_key":"BE0002638"} {"ref-id":"A179236","pubmed-id":30214302,"citation":"Rocca A, Maltoni R, Bravaccini S, Donati C, Andreis D: Clinical utility of fulvestrant in the treatment of breast cancer: a report on the emerging clinical evidence. Cancer Manag Res. 2018 Aug 30;10:3083-3099. doi: 10.2147/CMAR.S137772. eCollection 2018.","parent_key":"BE0002638"} {"ref-id":"A33818","pubmed-id":9314612,"citation":"Glue P, Banfield CR, Perhach JL, Mather GG, Racha JK, Levy RH: Pharmacokinetic interactions with felbamate. In vitro-in vivo correlation. Clin Pharmacokinet. 1997 Sep;33(3):214-24. doi: 10.2165/00003088-199733030-00004.","parent_key":"BE0002638"} {"ref-id":"A35763","pubmed-id":15038401,"citation":"Turnheim K: [Drug interactions with antiepileptic agents]. Wien Klin Wochenschr. 2004 Feb 28;116(4):112-8.","parent_key":"BE0003536"} {"ref-id":"A33818","pubmed-id":9314612,"citation":"Glue P, Banfield CR, Perhach JL, Mather GG, Racha JK, Levy RH: Pharmacokinetic interactions with felbamate. In vitro-in vivo correlation. Clin Pharmacokinet. 1997 Sep;33(3):214-24. doi: 10.2165/00003088-199733030-00004.","parent_key":"BE0003533"} {"ref-id":"A182759","pubmed-id":15481247,"citation":"Pietrzak B, Czarnecka E: Influence of felbamate on selected central effects of ethanol in experimental animals. Acta Pol Pharm. 2004 May-Jun;61(3):209-13.","parent_key":"BE0003533"} {"ref-id":"A33818","pubmed-id":9314612,"citation":"Glue P, Banfield CR, Perhach JL, Mather GG, Racha JK, Levy RH: Pharmacokinetic interactions with felbamate. In vitro-in vivo correlation. Clin Pharmacokinet. 1997 Sep;33(3):214-24. doi: 10.2165/00003088-199733030-00004.","parent_key":"BE0002793"} {"ref-id":"A14984","pubmed-id":12642468,"citation":"Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A: Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos. 2003 Apr;31(4):421-31.","parent_key":"BE0003533"} {"ref-id":"A33235","pubmed-id":8354023,"citation":"Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, Wright JM: Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther. 1993 Aug;54(2):142-9.","parent_key":"BE0003533"} {"ref-id":"A33237","pubmed-id":12803597,"citation":"Spracklin DK, Emery ME, Thummel KE, Kharasch ED: Concordance between trifluoroacetic acid and hepatic protein trifluoroacetylation after disulfiram inhibition of halothane metabolism in rats. Acta Anaesthesiol Scand. 2003 Jul;47(6):765-70.","parent_key":"BE0003533"} {"ref-id":"A33238","pubmed-id":9728894,"citation":"Leclercq I, Desager JP, Horsmans Y: Inhibition of chlorzoxazone metabolism, a clinical probe for CYP2E1, by a single ingestion of watercress. Clin Pharmacol Ther. 1998 Aug;64(2):144-9. doi: 10.1016/S0009-9236(98)90147-3.","parent_key":"BE0003533"} {"ref-id":"A36642","pubmed-id":15528841,"citation":"Nishimura Y, Kurata N, Sakurai E, Yasuhara H: Inhibitory effect of antituberculosis drugs on human cytochrome P450-mediated activities. J Pharmacol Sci. 2004 Nov;96(3):293-300. Epub 2004 Nov 5.","parent_key":"BE0002793"} {"ref-id":"A36640","pubmed-id":11158730,"citation":"Desta Z, Soukhova NV, Flockhart DA: Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother. 2001 Feb;45(2):382-92. doi: 10.1128/AAC.45.2.382-392.2001.","parent_key":"BE0002433"} {"ref-id":"A36639","pubmed-id":11868802,"citation":"Wen X, Wang JS, Neuvonen PJ, Backman JT: Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol. 2002 Jan;57(11):799-804.","parent_key":"BE0002433"} {"ref-id":"A36640","pubmed-id":11158730,"citation":"Desta Z, Soukhova NV, Flockhart DA: Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother. 2001 Feb;45(2):382-92. doi: 10.1128/AAC.45.2.382-392.2001.","parent_key":"BE0002363"} {"ref-id":"A36642","pubmed-id":15528841,"citation":"Nishimura Y, Kurata N, Sakurai E, Yasuhara H: Inhibitory effect of antituberculosis drugs on human cytochrome P450-mediated activities. J Pharmacol Sci. 2004 Nov;96(3):293-300. Epub 2004 Nov 5.","parent_key":"BE0003536"} {"ref-id":"A36640","pubmed-id":11158730,"citation":"Desta Z, Soukhova NV, Flockhart DA: Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother. 2001 Feb;45(2):382-92. doi: 10.1128/AAC.45.2.382-392.2001.","parent_key":"BE0003536"} {"ref-id":"A36639","pubmed-id":11868802,"citation":"Wen X, Wang JS, Neuvonen PJ, Backman JT: Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol. 2002 Jan;57(11):799-804.","parent_key":"BE0003336"} {"ref-id":"A36642","pubmed-id":15528841,"citation":"Nishimura Y, Kurata N, Sakurai E, Yasuhara H: Inhibitory effect of antituberculosis drugs on human cytochrome P450-mediated activities. J Pharmacol Sci. 2004 Nov;96(3):293-300. Epub 2004 Nov 5.","parent_key":"BE0003336"} {"ref-id":"A184535","pubmed-id":24820076,"citation":"Court MH, Almutairi FE, Greenblatt DJ, Hazarika S, Sheng H, Klein K, Zanger UM, Bourgea J, Patten CJ, Kwara A: Isoniazid mediates the CYP2B6*6 genotype-dependent interaction between efavirenz and antituberculosis drug therapy through mechanism-based inactivation of CYP2A6. Antimicrob Agents Chemother. 2014 Jul;58(7):4145-52. doi: 10.1128/AAC.02532-14. Epub 2014 May 12.","parent_key":"BE0003336"} {"ref-id":"A14920","pubmed-id":14998425,"citation":"Hutchinson MR, Menelaou A, Foster DJ, Coller JK, Somogyi AA: CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br J Clin Pharmacol. 2004 Mar;57(3):287-97.","parent_key":"BE0002363"} {"ref-id":"A183740","pubmed-id":25156930,"citation":"Monte AA, Heard KJ, Campbell J, Hamamura D, Weinshilboum RM, Vasiliou V: The effect of CYP2D6 drug-drug interactions on hydrocodone effectiveness. Acad Emerg Med. 2014 Aug;21(8):879-85. doi: 10.1111/acem.12431. Epub 2014 Aug 24.","parent_key":"BE0002363"} {"ref-id":"A14920","pubmed-id":14998425,"citation":"Hutchinson MR, Menelaou A, Foster DJ, Coller JK, Somogyi AA: CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br J Clin Pharmacol. 2004 Mar;57(3):287-97.","parent_key":"BE0002638"} {"ref-id":"A183740","pubmed-id":25156930,"citation":"Monte AA, Heard KJ, Campbell J, Hamamura D, Weinshilboum RM, Vasiliou V: The effect of CYP2D6 drug-drug interactions on hydrocodone effectiveness. Acad Emerg Med. 2014 Aug;21(8):879-85. doi: 10.1111/acem.12431. Epub 2014 Aug 24.","parent_key":"BE0002638"} {"ref-id":"A35883","pubmed-id":28283499,"citation":"Ahire D, Sinha S, Brock B, Iyer R, Mandlekar S, Subramanian M: Metabolite Identification, Reaction Phenotyping, and Retrospective Drug-Drug Interaction Predictions of 17-Deacetylnorgestimate, the Active Component of the Oral Contraceptive Norgestimate. Drug Metab Dispos. 2017 Jun;45(6):676-685. doi: 10.1124/dmd.116.073940. Epub 2017 Mar 10.","parent_key":"BE0002638"} {"ref-id":"A190981","pubmed-id":29403920,"citation":"Saxena A, Gupta AK, Kumar VP, Nainar MS, Bob M, Kasibhatta R: Quantification of 17-desacetyl norgestimate in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application to bioequivalence study. J Pharm Anal. 2015 Apr;5(2):93-100. doi: 10.1016/j.jpha.2014.09.004. Epub 2014 Sep 22.","parent_key":"BE0002638"} {"ref-id":"A35883","pubmed-id":28283499,"citation":"Ahire D, Sinha S, Brock B, Iyer R, Mandlekar S, Subramanian M: Metabolite Identification, Reaction Phenotyping, and Retrospective Drug-Drug Interaction Predictions of 17-Deacetylnorgestimate, the Active Component of the Oral Contraceptive Norgestimate. Drug Metab Dispos. 2017 Jun;45(6):676-685. doi: 10.1124/dmd.116.073940. Epub 2017 Mar 10.","parent_key":"BE0003549"} {"ref-id":"A35883","pubmed-id":28283499,"citation":"Ahire D, Sinha S, Brock B, Iyer R, Mandlekar S, Subramanian M: Metabolite Identification, Reaction Phenotyping, and Retrospective Drug-Drug Interaction Predictions of 17-Deacetylnorgestimate, the Active Component of the Oral Contraceptive Norgestimate. Drug Metab Dispos. 2017 Jun;45(6):676-685. doi: 10.1124/dmd.116.073940. Epub 2017 Mar 10.","parent_key":"BE0002793"} {"ref-id":"A17649","pubmed-id":12420797,"citation":"Husai K, Jagannathan R, Hasan Z, Trammell GL, Rybak LP, Hazelrigg SR, Somani SM: Dose response of carboplatin-induced nephrotoxicity in rats. Pharmacol Toxicol. 2002 Aug;91(2):83-9.","parent_key":"BE0002204"} {"ref-id":"A17650","pubmed-id":15225673,"citation":"Husain K, Whitworth C, Rybak LP: Time response of carboplatin-induced nephrotoxicity in rats. Pharmacol Res. 2004 Sep;50(3):291-300.","parent_key":"BE0002204"} {"ref-id":"A17651","pubmed-id":11520631,"citation":"Husain K, Whitworth C, Somani SM, Rybak LP: Carboplatin-induced oxidative stress in rat cochlea. Hear Res. 2001 Sep;159(1-2):14-22.","parent_key":"BE0002204"} {"ref-id":"A17652","pubmed-id":14555405,"citation":"Husain K, Whitworth C, Hazelrigg S, Rybak L: Carboplatin-induced oxidative injury in rat inferior colliculus. Int J Toxicol. 2003 Sep-Oct;22(5):335-42.","parent_key":"BE0002204"} {"ref-id":"A188763","pubmed-id":24171394,"citation":"Malatkova P, Wsol V: Carbonyl reduction pathways in drug metabolism. Drug Metab Rev. 2014 Feb;46(1):96-123. doi: 10.3109/03602532.2013.853078. Epub 2013 Oct 31.","parent_key":"BE0009795"} {"ref-id":"A188757","pubmed-id":3732369,"citation":"Szefler SJ, Ebling WF, Georgitis JW, Jusko WJ: Methylprednisolone versus prednisolone pharmacokinetics in relation to dose in adults. Eur J Clin Pharmacol. 1986;30(3):323-9. doi: 10.1007/bf00541537.","parent_key":"BE0009795"} {"ref-id":"A188757","pubmed-id":3732369,"citation":"Szefler SJ, Ebling WF, Georgitis JW, Jusko WJ: Methylprednisolone versus prednisolone pharmacokinetics in relation to dose in adults. Eur J Clin Pharmacol. 1986;30(3):323-9. doi: 10.1007/bf00541537.","parent_key":"BE0009796"} {"ref-id":"A183743","pubmed-id":16638735,"citation":"Lee SJ, Jusko WJ, Salaita CG, Calis KA, Jann MW, Spratlin VE, Goldstein JA, Hon YY: Reduced methylprednisolone clearance causing prolonged pharmacodynamics in a healthy subject was not associated with CYP3A5*3 allele or a change in diet composition. J Clin Pharmacol. 2006 May;46(5):515-26. doi: 10.1177/0091270006287588.","parent_key":"BE0002638"} {"ref-id":"A21032","pubmed-id":24555085,"citation":"Roberts JK, Moore CD, Romero EG, Ward RM, Yost GS, Reilly CA: Regulation of CYP3A genes by glucocorticoids in human lung cells. F1000Res. 2013 Aug 13;2:173. doi: 10.12688/f1000research.2-173.v2. eCollection 2013.","parent_key":"BE0004866"} {"ref-id":"A31214","pubmed-id":1472073,"citation":"Smith DA, Jones BC: Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes. Biochem Pharmacol. 1992 Dec 1;44(11):2089-98.","parent_key":"BE0002363"} {"ref-id":"A39210","pubmed-id":1675413,"citation":"Ferrari S, Leemann T, Dayer P: The role of lipophilicity in the inhibition of polymorphic cytochrome P450IID6 oxidation by beta-blocking agents in vitro. Life Sci. 1991;48(23):2259-65.","parent_key":"BE0002363"} {"ref-id":"A183746","pubmed-id":23651075,"citation":"Tanoue C, Sugihara K, Uramaru N, Tayama Y, Watanabe Y, Horie T, Ohta S, Kitamura S: Prediction of human metabolism of the sedative-hypnotic zaleplon using chimeric mice transplanted with human hepatocytes. Xenobiotica. 2013 Nov;43(11):956-62. doi: 10.3109/00498254.2013.788232. Epub 2013 May 8.","parent_key":"BE0002638"} {"ref-id":"A183749","pubmed-id":9604298,"citation":"Renwick AB, Mistry H, Ball SE, Walters DG, Kao J, Lake BG: Metabolism of Zaleplon by human hepatic microsomal cytochrome P450 isoforms. Xenobiotica. 1998 Apr;28(4):337-48. doi: 10.1080/004982598239452 .","parent_key":"BE0002638"} {"ref-id":"A15059","pubmed-id":12419014,"citation":"Lake BG, Ball SE, Kao J, Renwick AB, Price RJ, Scatina JA: Metabolism of zaleplon by human liver: evidence for involvement of aldehyde oxidase. Xenobiotica. 2002 Oct;32(10):835-47.","parent_key":"BE0003539"} {"ref-id":"A183299","pubmed-id":23516440,"citation":"Lake JE, Tseng CH, Currier JS: A pilot study of telmisartan for visceral adiposity in HIV infection: the metabolic abnormalities, telmisartan, and HIV infection (MATH) trial. PLoS One. 2013;8(3):e58135. doi: 10.1371/journal.pone.0058135. Epub 2013 Mar 14.","parent_key":"BE0003536"} {"ref-id":"A39946","pubmed-id":21691256,"citation":"Ieiri I, Nishimura C, Maeda K, Sasaki T, Kimura M, Chiyoda T, Hirota T, Irie S, Shimizu H, Noguchi T, Yoshida K, Sugiyama Y: Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose. Pharmacogenet Genomics. 2011 Aug;21(8):495-505. doi: 10.1097/FPC.0b013e3283489ce2.","parent_key":"BE0003677"} {"ref-id":"A39947","pubmed-id":21829131,"citation":"Yamada A, Maeda K, Ishiguro N, Tsuda Y, Igarashi T, Ebner T, Roth W, Ikushiro S, Sugiyama Y: The impact of pharmacogenetics of metabolic enzymes and transporters on the pharmacokinetics of telmisartan in healthy volunteers. Pharmacogenet Genomics. 2011 Sep;21(9):523-30. doi: 10.1097/FPC.0b013e3283482502.","parent_key":"BE0003677"} {"ref-id":"A39948","pubmed-id":22275465,"citation":"Gill KL, Houston JB, Galetin A: Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012 Apr;40(4):825-35. doi: 10.1124/dmd.111.043984. Epub 2012 Jan 24.","parent_key":"BE0003677"} {"ref-id":"A38893","pubmed-id":15233703,"citation":"Koch KM, Corrigan BW, Manzo J, James CD, Scott RJ, Stead AG, Kersey KE: Alosetron repeat dose pharmacokinetics, effects on enzyme activities, and influence of demographic factors. Aliment Pharmacol Ther. 2004 Jul 15;20(2):223-30. doi: 10.1111/j.1365-2036.2004.02031.x.","parent_key":"BE0002433"} {"ref-id":"A34252","pubmed-id":21180598,"citation":"Lucak SL: Optimizing outcomes with alosetron hydrochloride in severe diarrhea-predominant irritable bowel syndrome. Therap Adv Gastroenterol. 2010 May;3(3):165-72. doi: 10.1177/1756283X10362277.","parent_key":"BE0002433"} {"ref-id":"A39484","pubmed-id":11304902,"citation":"D'Souza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM: Effect of alosetron on the pharmacokinetics of alprazolam. J Clin Pharmacol. 2001 Apr;41(4):452-4.","parent_key":"BE0002638"} {"ref-id":"A39483","pubmed-id":11304903,"citation":"D'Souza DL, Dimmitt DC, Robbins DK, Nezamis J, Simms L, Koch KM: Effect of alosetron on the pharmacokinetics of fluoxetine. J Clin Pharmacol. 2001 Apr;41(4):455-8.","parent_key":"BE0002793"} {"ref-id":"A39484","pubmed-id":11304902,"citation":"D'Souza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM: Effect of alosetron on the pharmacokinetics of alprazolam. J Clin Pharmacol. 2001 Apr;41(4):452-4.","parent_key":"BE0002793"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0002638"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0002638"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0002363"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0002363"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0002433"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0003536"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0003536"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0003543"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0003543"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0002362"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0002793"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0002793"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0002887"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0003336"} {"ref-id":"A38655","pubmed-id":10570018,"citation":"Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T: Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999 Dec;27(12):1381-91.","parent_key":"BE0003336"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0003533"} {"ref-id":"A38720","pubmed-id":10383922,"citation":"Nakajima M, Ohyama K, Nakamura S, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of azelastine and its metabolites on drug oxidation catalyzed by human cytochrome P-450 enzymes. Drug Metab Dispos. 1999 Jul;27(7):792-7.","parent_key":"BE0003549"} {"ref-id":"A15201","pubmed-id":21368751,"citation":"Oswald S, Nassif A, Modess C, Keiser M, Ulrich A, Runge D, Hanke U, Lutjohann D, Engel A, Weitschies W, Siegmund W: Drug interactions between the immunosuppressant tacrolimus and the cholesterol absorption inhibitor ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2011 Apr;89(4):524-8. doi: 10.1038/clpt.2011.4. Epub 2011 Mar 2.","parent_key":"BE0003677"} {"ref-id":"A15202","pubmed-id":15871634,"citation":"Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB: Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467-94.","parent_key":"BE0003677"} {"ref-id":"A17546","pubmed-id":14977865,"citation":"Ghosal A, Hapangama N, Yuan Y, Achanfuo-Yeboah J, Iannucci R, Chowdhury S, Alton K, Patrick JE, Zbaida S: Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of ezetimibe (Zetia). Drug Metab Dispos. 2004 Mar;32(3):314-20.","parent_key":"BE0003679"} {"ref-id":"A15202","pubmed-id":15871634,"citation":"Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB: Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467-94.","parent_key":"BE0003679"} {"ref-id":"A15202","pubmed-id":15871634,"citation":"Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB: Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467-94.","parent_key":"BE0002638"} {"ref-id":"A15202","pubmed-id":15871634,"citation":"Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB: Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467-94.","parent_key":"BE0002887"} {"ref-id":"A14921","pubmed-id":11601667,"citation":"Bearden DT, Neuhauser MM, Garey KW: Telithromycin: an oral ketolide for respiratory infections. Pharmacotherapy. 2001 Oct;21(10):1204-22.","parent_key":"BE0002638"} {"ref-id":"A14922","pubmed-id":12149046,"citation":"Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM, Gin AS, Douthwaite S, Hoban DJ: The ketolides: a critical review. Drugs. 2002;62(12):1771-804.","parent_key":"BE0002638"} {"ref-id":"A14923","pubmed-id":15598962,"citation":"Reed M, Wall GC, Shah NP, Heun JM, Hicklin GA: Verapamil toxicity resulting from a probable interaction with telithromycin. Ann Pharmacother. 2005 Feb;39(2):357-60. Epub 2004 Dec 14.","parent_key":"BE0002638"} {"ref-id":"A14924","pubmed-id":15792396,"citation":"Shi J, Chapel S, Montay G, Hardy P, Barrett JS, Sica D, Swan SK, Noveck R, Leroy B, Bhargava VO: Effect of ketoconazole on the pharmacokinetics and safety of telithromycin and clarithromycin in older subjects with renal impairment. Int J Clin Pharmacol Ther. 2005 Mar;43(3):123-33.","parent_key":"BE0002638"} {"ref-id":"A14925","pubmed-id":16199242,"citation":"Nguyen M, Chung EP: Telithromycin: the first ketolide antimicrobial. Clin Ther. 2005 Aug;27(8):1144-63.","parent_key":"BE0002638"} {"ref-id":"A14926","pubmed-id":15304426,"citation":"Wang B, Sanchez RI, Franklin RB, Evans DC, Huskey SE: The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinylestradiol. Drug Metab Dispos. 2004 Nov;32(11):1209-12. Epub 2004 Aug 10.","parent_key":"BE0002638"} {"ref-id":"A191125","pubmed-id":29637542,"citation":"Ezuruike U, Humphries H, Dickins M, Neuhoff S, Gardner I, Rowland Yeo K: Risk-Benefit Assessment of Ethinylestradiol Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin Pharmacol Ther. 2018 Dec;104(6):1229-1239. doi: 10.1002/cpt.1085. Epub 2018 Apr 27.","parent_key":"BE0002638"} {"ref-id":"A191125","pubmed-id":29637542,"citation":"Ezuruike U, Humphries H, Dickins M, Neuhoff S, Gardner I, Rowland Yeo K: Risk-Benefit Assessment of Ethinylestradiol Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin Pharmacol Ther. 2018 Dec;104(6):1229-1239. doi: 10.1002/cpt.1085. Epub 2018 Apr 27.","parent_key":"BE0002887"} {"ref-id":"A191125","pubmed-id":29637542,"citation":"Ezuruike U, Humphries H, Dickins M, Neuhoff S, Gardner I, Rowland Yeo K: Risk-Benefit Assessment of Ethinylestradiol Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin Pharmacol Ther. 2018 Dec;104(6):1229-1239. doi: 10.1002/cpt.1085. Epub 2018 Apr 27.","parent_key":"BE0002793"} {"ref-id":"A191125","pubmed-id":29637542,"citation":"Ezuruike U, Humphries H, Dickins M, Neuhoff S, Gardner I, Rowland Yeo K: Risk-Benefit Assessment of Ethinylestradiol Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin Pharmacol Ther. 2018 Dec;104(6):1229-1239. doi: 10.1002/cpt.1085. Epub 2018 Apr 27.","parent_key":"BE0002433"} {"ref-id":"A191146","pubmed-id":28579309,"citation":"Stegeman BH, Vos HL, Helmerhorst FM, Rosendaal FR, Reitsma PH, van Hylckama Vlieg A: Genetic variation in the first-pass metabolism of ethinylestradiol, sex hormone binding globulin levels and venous thrombosis risk. Eur J Intern Med. 2017 Jul;42:54-60. doi: 10.1016/j.ejim.2017.05.019. Epub 2017 Jun 1.","parent_key":"BE0002362"} {"ref-id":"A191146","pubmed-id":28579309,"citation":"Stegeman BH, Vos HL, Helmerhorst FM, Rosendaal FR, Reitsma PH, van Hylckama Vlieg A: Genetic variation in the first-pass metabolism of ethinylestradiol, sex hormone binding globulin levels and venous thrombosis risk. Eur J Intern Med. 2017 Jul;42:54-60. doi: 10.1016/j.ejim.2017.05.019. Epub 2017 Jun 1.","parent_key":"BE0003677"} {"ref-id":"A190690","pubmed-id":8474433,"citation":"Ebner T, Remmel RP, Burchell B: Human bilirubin UDP-glucuronosyltransferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol. 1993 Apr;43(4):649-54.","parent_key":"BE0003538"} {"ref-id":"A191146","pubmed-id":28579309,"citation":"Stegeman BH, Vos HL, Helmerhorst FM, Rosendaal FR, Reitsma PH, van Hylckama Vlieg A: Genetic variation in the first-pass metabolism of ethinylestradiol, sex hormone binding globulin levels and venous thrombosis risk. Eur J Intern Med. 2017 Jul;42:54-60. doi: 10.1016/j.ejim.2017.05.019. Epub 2017 Jun 1.","parent_key":"BE0003679"} {"ref-id":"A181367","pubmed-id":23844835,"citation":"Pedersen RS, Noehr-Jensen L, Brosen K: Inhibitory effect of oral contraceptives on CYP2C19 activity is not significant in carriers of the CYP2C19*17 allele. Clin Exp Pharmacol Physiol. 2013 Oct;40(10):683-8. doi: 10.1111/1440-1681.12153.","parent_key":"BE0003536"} {"ref-id":"A181370","pubmed-id":12895199,"citation":"Palovaara S, Tybring G, Laine K: The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol. 2003 Aug;56(2):232-7. doi: 10.1046/j.1365-2125.2003.01868.x.","parent_key":"BE0003536"} {"ref-id":"A184766","pubmed-id":19454483,"citation":"Chang SY, Chen C, Yang Z, Rodrigues AD: Further assessment of 17alpha-ethinyl estradiol as an inhibitor of different human cytochrome P450 forms in vitro. Drug Metab Dispos. 2009 Aug;37(8):1667-75. doi: 10.1124/dmd.109.026997. Epub 2009 May 19.","parent_key":"BE0003536"} {"ref-id":"A14927","pubmed-id":20478852,"citation":"Obach RS, Ryder TF: Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010 Aug;38(8):1381-91. doi: 10.1124/dmd.110.034009. Epub 2010 May 17.","parent_key":"BE0002433"} {"ref-id":"A38933","pubmed-id":18728808,"citation":"Neubauer DN: A review of ramelteon in the treatment of sleep disorders. Neuropsychiatr Dis Treat. 2008 Feb;4(1):69-79.","parent_key":"BE0002433"} {"ref-id":"A14927","pubmed-id":20478852,"citation":"Obach RS, Ryder TF: Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010 Aug;38(8):1381-91. doi: 10.1124/dmd.110.034009. Epub 2010 May 17.","parent_key":"BE0003536"} {"ref-id":"A38632","pubmed-id":23861638,"citation":"Pandi-Perumal SR, Spence DW, Verster JC, Srinivasan V, Brown GM, Cardinali DP, Hardeland R: Pharmacotherapy of insomnia with ramelteon: safety, efficacy and clinical applications. J Cent Nerv Syst Dis. 2011 Apr 12;3:51-65. doi: 10.4137/JCNSD.S1611. Print 2011.","parent_key":"BE0003536"} {"ref-id":"A14927","pubmed-id":20478852,"citation":"Obach RS, Ryder TF: Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010 Aug;38(8):1381-91. doi: 10.1124/dmd.110.034009. Epub 2010 May 17.","parent_key":"BE0002638"} {"ref-id":"A39161","pubmed-id":15116059,"citation":"Hendrix CW, Jackson KA, Whitmore E, Guidos A, Kretzer R, Liss CM, Shah LP, Khoo KC, McLane J, Trapnell CB: The effect of isotretinoin on the pharmacokinetics and pharmacodynamics of ethinyl estradiol and norethindrone. Clin Pharmacol Ther. 2004 May;75(5):464-75. doi: 10.1016/j.clpt.2004.01.003.","parent_key":"BE0002638"} {"ref-id":"A182771","pubmed-id":30920135,"citation":"Su M, Chang YT, Hernandez D, Jones RJ, Ghiaur G: Regulation of drug metabolizing enzymes in the leukaemic bone marrow microenvironment. J Cell Mol Med. 2019 Jun;23(6):4111-4117. doi: 10.1111/jcmm.14298. Epub 2019 Mar 28.","parent_key":"BE0002638"} {"ref-id":"A1556","pubmed-id":19436613,"citation":"Robinson A: A review of the use of exemestane in early breast cancer. Ther Clin Risk Manag. 2009 Feb;5(1):91-8. Epub 2009 Mar 26.","parent_key":"BE0002638"} {"ref-id":"A38418","pubmed-id":20876785,"citation":"Kamdem LK, Flockhart DA, Desta Z: In vitro cytochrome P450-mediated metabolism of exemestane. Drug Metab Dispos. 2011 Jan;39(1):98-105. doi: 10.1124/dmd.110.032276. Epub 2010 Sep 28.","parent_key":"BE0002638"} {"ref-id":"A38417","pubmed-id":28603633,"citation":"Peterson A, Xia Z, Chen G, Lazarus P: In vitro metabolism of exemestane by hepatic cytochrome P450s: impact of nonsynonymous polymorphisms on formation of the active metabolite 17beta-dihydroexemestane. Pharmacol Res Perspect. 2017 Apr 27;5(3):e00314. doi: 10.1002/prp2.314. eCollection 2017 Jun.","parent_key":"BE0002638"} {"ref-id":"A14289","pubmed-id":15354273,"citation":"Dubinsky MC: Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety. Clin Gastroenterol Hepatol. 2004 Sep;2(9):731-43.","parent_key":"BE0002204"} {"ref-id":"A189600","pubmed-id":14531535,"citation":"Reuther LO, Sonne J, Larsen NE, Larsen B, Christensen S, Rasmussen SN, Tofteng F, Haaber A, Johansen N, Kjeldsen J, Schmiegelow K: Pharmacological monitoring of azathioprine therapy. Scand J Gastroenterol. 2003 Sep;38(9):972-7. doi: 10.1080/00365520310005082.","parent_key":"BE0002204"} {"ref-id":"A36862","pubmed-id":10837004,"citation":"Lampe JW, King IB, Li S, Grate MT, Barale KV, Chen C, Feng Z, Potter JD: Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis. 2000 Jun;21(6):1157-62.","parent_key":"BE0002433"} {"ref-id":"A14932","pubmed-id":19011599,"citation":"Lu H, Chen CS, Waxman DJ: Potentiation of methoxymorpholinyl doxorubicin antitumor activity by P450 3A4 gene transfer. Cancer Gene Ther. 2009 May;16(5):393-404. doi: 10.1038/cgt.2008.93. Epub 2008 Nov 14.","parent_key":"BE0002638"} {"ref-id":"A183767","pubmed-id":31105885,"citation":"Diaz Flaque MC, Cayrol MF, Sterle HA, Del Rosario Aschero M, Diaz Albuja JA, Isse B, Farias RN, Cerchietti L, Rosemblit C, Cremaschi GA: Thyroid hormones induce doxorubicin chemosensitivity through enzymes involved in chemotherapy metabolism in lymphoma T cells. Oncotarget. 2019 Apr 30;10(32):3051-3065. doi: 10.18632/oncotarget.26890. eCollection 2019 Apr 30.","parent_key":"BE0002638"} {"ref-id":"A15670","pubmed-id":21642392,"citation":"Masek V, Anzenbacherova E, Etrych T, Strohalm J, Ulbrich K, Anzenbacher P: Interaction of N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates with human liver microsomal cytochromes P450: comparison with free doxorubicin. Drug Metab Dispos. 2011 Sep;39(9):1704-10. doi: 10.1124/dmd.110.037986. Epub 2011 Jun 3.","parent_key":"BE0003549"} {"ref-id":"A182801","pubmed-id":18707023,"citation":"Zordoky BN, El-Kadi AO: Induction of several cytochrome P450 genes by doxorubicin in H9c2 cells. Vascul Pharmacol. 2008 Oct-Dec;49(4-6):166-72. doi: 10.1016/j.vph.2008.07.004. Epub 2008 Jul 25.","parent_key":"BE0001111"} {"ref-id":"A182810","pubmed-id":21571947,"citation":"Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO: Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Metab Dispos. 2011 Aug;39(8):1440-50. doi: 10.1124/dmd.111.039123. Epub 2011 May 13.","parent_key":"BE0001111"} {"ref-id":"A182813","pubmed-id":28078076,"citation":"Grant MK, Seelig DM, Sharkey LC, Zordoky BN: Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice. Biol Sex Differ. 2017 Jan 7;8:1. doi: 10.1186/s13293-016-0124-4. eCollection 2017.","parent_key":"BE0001111"} {"ref-id":"A18035","pubmed-id":12688675,"citation":"Pawlowska J, Tarasiuk J, Wolf CR, Paine MJ, Borowski E: Differential ability of cytostatics from anthraquinone group to generate free radicals in three enzymatic systems: NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase. Oncol Res. 2003;13(5):245-52.","parent_key":"BE0002204"} {"ref-id":"A18036","pubmed-id":10860924,"citation":"Niitsu N, Kasukabe T, Yokoyama A, Okabe-Kado J, Yamamoto-Yamaguchi Y, Umeda M, Honma Y: Anticancer derivative of butyric acid (Pivalyloxymethyl butyrate) specifically potentiates the cytotoxicity of doxorubicin and daunorubicin through the suppression of microsomal glycosidic activity. Mol Pharmacol. 2000 Jul;58(1):27-36.","parent_key":"BE0002204"} {"ref-id":"A1581","pubmed-id":11735616,"citation":"Easthope SE, Goa KL: Frovatriptan. CNS Drugs. 2001;15(12):969-76; discussion 977-8.","parent_key":"BE0002433"} {"ref-id":"A14933","pubmed-id":12028321,"citation":"Buchan P, Keywood C, Wade A, Ward C: Clinical pharmacokinetics of frovatriptan. Headache. 2002 Apr;42 Suppl 2:S54-62.","parent_key":"BE0002433"} {"ref-id":"A6075","pubmed-id":12028322,"citation":"Buchan P, Wade A, Ward C, Oliver SD, Stewart AJ, Freestone S: Frovatriptan: a review of drug-drug interactions. Headache. 2002 Apr;42 Suppl 2:S63-73.","parent_key":"BE0002433"} {"ref-id":"A38936","pubmed-id":24249993,"citation":"Bajwa SJ, Kaur J: Clinical profile of levobupivacaine in regional anesthesia: A systematic review. J Anaesthesiol Clin Pharmacol. 2013 Oct;29(4):530-9. doi: 10.4103/0970-9185.119172.","parent_key":"BE0002638"} {"ref-id":"A38934","pubmed-id":25693764,"citation":"Gurbuzel M, Karaca U, Karayilan N: Genotoxic evaluation of bupivacaine and levobupivacaine in the Drosophila wing spot test. Cytotechnology. 2016 Aug;68(4):979-86. doi: 10.1007/s10616-015-9852-2. Epub 2015 Feb 19.","parent_key":"BE0002433"} {"ref-id":"A38935","pubmed-id":16100236,"citation":"Chalkiadis GA, Anderson BJ, Tay M, Bjorksten A, Kelly JJ: Pharmacokinetics of levobupivacaine after caudal epidural administration in infants less than 3 months of age. Br J Anaesth. 2005 Oct;95(4):524-9. doi: 10.1093/bja/aei218. Epub 2005 Aug 12.","parent_key":"BE0002433"} {"ref-id":"A38936","pubmed-id":24249993,"citation":"Bajwa SJ, Kaur J: Clinical profile of levobupivacaine in regional anesthesia: A systematic review. J Anaesthesiol Clin Pharmacol. 2013 Oct;29(4):530-9. doi: 10.4103/0970-9185.119172.","parent_key":"BE0002433"} {"ref-id":"A39265","pubmed-id":17517247,"citation":"Brousseau DC, McCarver DG, Drendel AL, Divakaran K, Panepinto JA: The effect of CYP2D6 polymorphisms on the response to pain treatment for pediatric sickle cell pain crisis. J Pediatr. 2007 Jun;150(6):623-6. doi: 10.1016/j.jpeds.2007.01.049.","parent_key":"BE0002363"} {"ref-id":"A33288","pubmed-id":19198839,"citation":"Jeong S, Woo MM, Flockhart DA, Desta Z: Inhibition of drug metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major oxidative metabolite 4,4'-methanol-bisbenzonitrile in vitro. Cancer Chemother Pharmacol. 2009 Oct;64(5):867-75. doi: 10.1007/s00280-009-0935-7. Epub 2009 Feb 7.","parent_key":"BE0002638"} {"ref-id":"A190546","pubmed-id":17912633,"citation":"Bhatnagar AS: The discovery and mechanism of action of letrozole. Breast Cancer Res Treat. 2007;105 Suppl 1:7-17. doi: 10.1007/s10549-007-9696-3. Epub 2007 Oct 3.","parent_key":"BE0002638"} {"ref-id":"A33288","pubmed-id":19198839,"citation":"Jeong S, Woo MM, Flockhart DA, Desta Z: Inhibition of drug metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major oxidative metabolite 4,4'-methanol-bisbenzonitrile in vitro. Cancer Chemother Pharmacol. 2009 Oct;64(5):867-75. doi: 10.1007/s00280-009-0935-7. Epub 2009 Feb 7.","parent_key":"BE0003336"} {"ref-id":"A183770","pubmed-id":30094551,"citation":"Borrie AE, Rose RV, Choi YH, Perera FE, Read N, Sexton T, Lock M, Vandenberg TA, Hahn K, Dinniwell R, Younus J, Logan D, Potvin K, Yaremko B, Yu E, Lenehan J, Welch S, Tyndale RF, Teft WA, Kim RB: Letrozole concentration is associated with CYP2A6 variation but not with arthralgia in patients with breast cancer. Breast Cancer Res Treat. 2018 Nov;172(2):371-379. doi: 10.1007/s10549-018-4910-z. Epub 2018 Aug 9.","parent_key":"BE0003336"} {"ref-id":"A190546","pubmed-id":17912633,"citation":"Bhatnagar AS: The discovery and mechanism of action of letrozole. Breast Cancer Res Treat. 2007;105 Suppl 1:7-17. doi: 10.1007/s10549-007-9696-3. Epub 2007 Oct 3.","parent_key":"BE0003336"} {"ref-id":"A190549","pubmed-id":23965986,"citation":"Precht JC, Schroth W, Klein K, Brauch H, Krynetskiy E, Schwab M, Murdter TE: The letrozole phase 1 metabolite carbinol as a novel probe drug for UGT2B7. Drug Metab Dispos. 2013 Nov;41(11):1906-13. doi: 10.1124/dmd.113.053405. Epub 2013 Aug 21.","parent_key":"BE0003679"} {"ref-id":"A17830","pubmed-id":11854151,"citation":"Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM: Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002 Mar;30(3):314-8.","parent_key":"BE0003536"} {"ref-id":"A38831","pubmed-id":16430569,"citation":"Sweeney BP, Bromilow J: Liver enzyme induction and inhibition: implications for anaesthesia. Anaesthesia. 2006 Feb;61(2):159-77. doi: 10.1111/j.1365-2044.2005.04462.x.","parent_key":"BE0003536"} {"ref-id":"A17830","pubmed-id":11854151,"citation":"Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM: Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002 Mar;30(3):314-8.","parent_key":"BE0003533"} {"ref-id":"A17830","pubmed-id":11854151,"citation":"Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM: Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002 Mar;30(3):314-8.","parent_key":"BE0002638"} {"ref-id":"A38262","pubmed-id":28857712,"citation":"Sweiss K, Quigley JG, Oh A, Lee J, Ye R, Rondelli D, Patel P: A novel drug interaction between busulfan and blinatumomab. J Oncol Pharm Pract. 2017 Jan 1:1078155217729745. doi: 10.1177/1078155217729745.","parent_key":"BE0002638"} {"ref-id":"A184553","pubmed-id":21516380,"citation":"Glowka F, Karazniewicz-Lada M, Grzeskowiak E, Rogozinska D, Romanowski W: Clinical pharmacokinetics of ketoprofen enantiomers in wild type of Cyp 2c8 and Cyp 2c9 patients with rheumatoid arthritis. Eur J Drug Metab Pharmacokinet. 2011 Sep;36(3):167-73. doi: 10.1007/s13318-011-0041-1. Epub 2011 Apr 24.","parent_key":"BE0002793"} {"ref-id":"A184553","pubmed-id":21516380,"citation":"Glowka F, Karazniewicz-Lada M, Grzeskowiak E, Rogozinska D, Romanowski W: Clinical pharmacokinetics of ketoprofen enantiomers in wild type of Cyp 2c8 and Cyp 2c9 patients with rheumatoid arthritis. Eur J Drug Metab Pharmacokinet. 2011 Sep;36(3):167-73. doi: 10.1007/s13318-011-0041-1. Epub 2011 Apr 24.","parent_key":"BE0002887"} {"ref-id":"A182834","pubmed-id":3978021,"citation":"Pelkonen O, Sotaniemi EA, Ahokas JT: Coumarin 7-hydroxylase activity in human liver microsomes. Properties of the enzyme and interspecies comparisons. Br J Clin Pharmacol. 1985 Jan;19(1):59-66. doi: 10.1111/j.1365-2125.1985.tb02613.x.","parent_key":"BE0003336"} {"ref-id":"A182837","pubmed-id":8863822,"citation":"Liu C, Zhuo X, Gonzalez FJ, Ding X: Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants. Mol Pharmacol. 1996 Oct;50(4):781-8.","parent_key":"BE0003336"} {"ref-id":"A38709","pubmed-id":16162970,"citation":"Brandon EF, Meijerman I, Klijn JS, den Arend D, Sparidans RW, Lazaro LL, Beijnen JH, Schellens JH: In-vitro cytotoxicity of ET-743 (Trabectedin, Yondelis), a marine anti-cancer drug, in the Hep G2 cell line: influence of cytochrome P450 and phase II inhibition, and cytochrome P450 induction. Anticancer Drugs. 2005 Oct;16(9):935-43.","parent_key":"BE0002638"} {"ref-id":"A184118","pubmed-id":30676743,"citation":"Sevrioukova I: Interaction of Human Drug-Metabolizing CYP3A4 with Small Inhibitory Molecules. Biochemistry. 2019 Feb 19;58(7):930-939. doi: 10.1021/acs.biochem.8b01221. Epub 2019 Jan 24.","parent_key":"BE0002638"} {"ref-id":"A37356","pubmed-id":10611146,"citation":"Harvey JL, Paine AJ, Maurel P, Wright MC: Effect of the adrenal 11-beta-hydroxylase inhibitor metyrapone on human hepatic cytochrome P-450 expression: induction of cytochrome P-450 3A4. Drug Metab Dispos. 2000 Jan;28(1):96-101.","parent_key":"BE0002638"} {"ref-id":"A16549","pubmed-id":11869873,"citation":"Johansson MK, Sanderson JT, Lund BO: Effects of 3-MeSO2-DDE and some CYP inhibitors on glucocorticoid steroidogenesis in the H295R human adrenocortical carcinoma cell line. Toxicol In Vitro. 2002 Apr;16(2):113-21.","parent_key":"BE0000731"} {"ref-id":"A37862","pubmed-id":7663533,"citation":"Denner K, Vogel R, Schmalix W, Doehmer J, Bernhardt R: Cloning and stable expression of the human mitochondrial cytochrome P45011B1 cDNA in V79 Chinese hamster cells and their application for testing of potential inhibitors. Pharmacogenetics. 1995 Apr;5(2):89-96.","parent_key":"BE0000731"} {"ref-id":"A38970","pubmed-id":23400924,"citation":"Heit C, Dong H, Chen Y, Thompson DC, Deitrich RA, Vasiliou VK: The role of CYP2E1 in alcohol metabolism and sensitivity in the central nervous system. Subcell Biochem. 2013;67:235-47. doi: 10.1007/978-94-007-5881-0_8.","parent_key":"BE0003533"} {"ref-id":"A38971","pubmed-id":7931342,"citation":"Montoliu C, Valles S, Renau-Piqueras J, Guerri C: Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem. 1994 Nov;63(5):1855-62.","parent_key":"BE0003533"} {"ref-id":"A1599","pubmed-id":19566113,"citation":"Padhi D, Harris R: Clinical pharmacokinetic and pharmacodynamic profile of cinacalcet hydrochloride. Clin Pharmacokinet. 2009;48(5):303-11. doi: 10.2165/00003088-200948050-00002.","parent_key":"BE0002638"} {"ref-id":"A1600","pubmed-id":16368445,"citation":"Dong BJ: Cinacalcet: An oral calcimimetic agent for the management of hyperparathyroidism. Clin Ther. 2005 Nov;27(11):1725-51.","parent_key":"BE0002638"} {"ref-id":"A1599","pubmed-id":19566113,"citation":"Padhi D, Harris R: Clinical pharmacokinetic and pharmacodynamic profile of cinacalcet hydrochloride. Clin Pharmacokinet. 2009;48(5):303-11. doi: 10.2165/00003088-200948050-00002.","parent_key":"BE0002363"} {"ref-id":"A1600","pubmed-id":16368445,"citation":"Dong BJ: Cinacalcet: An oral calcimimetic agent for the management of hyperparathyroidism. Clin Ther. 2005 Nov;27(11):1725-51.","parent_key":"BE0002363"} {"ref-id":"A1599","pubmed-id":19566113,"citation":"Padhi D, Harris R: Clinical pharmacokinetic and pharmacodynamic profile of cinacalcet hydrochloride. Clin Pharmacokinet. 2009;48(5):303-11. doi: 10.2165/00003088-200948050-00002.","parent_key":"BE0002433"} {"ref-id":"A1600","pubmed-id":16368445,"citation":"Dong BJ: Cinacalcet: An oral calcimimetic agent for the management of hyperparathyroidism. Clin Ther. 2005 Nov;27(11):1725-51.","parent_key":"BE0002433"} {"ref-id":"A38937","pubmed-id":16200170,"citation":"Poon G: Cinacalcet hydrochloride (Sensipar). Proc (Bayl Univ Med Cent). 2005 Apr;18(2):181-4.","parent_key":"BE0002433"} {"ref-id":"A35891","pubmed-id":15304077,"citation":"Ahmad N, Mukhtar H: Cytochrome p450: a target for drug development for skin diseases. J Invest Dermatol. 2004 Sep;123(3):417-25. doi: 10.1111/j.0022-202X.2004.23307.x.","parent_key":"BE0002638"} {"ref-id":"A21676","pubmed-id":16882163,"citation":"Smith G, Ibbotson SH, Comrie MM, Dawe RS, Bryden A, Ferguson J, Wolf CR: Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br J Dermatol. 2006 Aug;155(2):275-81.","parent_key":"BE0002362"} {"ref-id":"A14934","pubmed-id":7628308,"citation":"Cribb AE, Spielberg SP, Griffin GP: N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes. Drug Metab Dispos. 1995 Mar;23(3):406-14.","parent_key":"BE0002793"} {"ref-id":"A39489","pubmed-id":22106207,"citation":"Kagaya H, Miura M, Niioka T, Saito M, Numakura K, Habuchi T, Satoh S: Influence of NAT2 polymorphisms on sulfamethoxazole pharmacokinetics in renal transplant recipients. Antimicrob Agents Chemother. 2012 Feb;56(2):825-9. doi: 10.1128/AAC.05037-11. Epub 2011 Nov 21.","parent_key":"BE0002793"} {"ref-id":"A38751","pubmed-id":9602961,"citation":"Lehmann DF, Newman N, Morse PD: The effect of cimetidine on the formation of sulfamethoxazole hydroxylamine in patients with human immunodeficiency virus. J Clin Pharmacol. 1998 May;38(5):463-6.","parent_key":"BE0002638"} {"ref-id":"A183698","pubmed-id":11600390,"citation":"Ribera E, Pou L, Fernandez-Sola A, Campos F, Lopez RM, Ocana I, Ruiz I, Pahissa A: Rifampin reduces concentrations of trimethoprim and sulfamethoxazole in serum in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001 Nov;45(11):3238-41. doi: 10.1128/AAC.45.11.3238-3241.2001.","parent_key":"BE0002638"} {"ref-id":"A15007","pubmed-id":12920163,"citation":"Kim KA, Park JY: Inhibitory effect of glyburide on human cytochrome p450 isoforms in human liver microsomes. Drug Metab Dispos. 2003 Sep;31(9):1090-2.","parent_key":"BE0002638"} {"ref-id":"A39411","pubmed-id":16198656,"citation":"Yin OQ, Tomlinson B, Chow MS: CYP2C9, but not CYP2C19, polymorphisms affect the pharmacokinetics and pharmacodynamics of glyburide in Chinese subjects. Clin Pharmacol Ther. 2005 Oct;78(4):370-7. doi: 10.1016/j.clpt.2005.06.006.","parent_key":"BE0002793"} {"ref-id":"A39412","pubmed-id":20437462,"citation":"Zhou L, Naraharisetti SB, Liu L, Wang H, Lin YS, Isoherranen N, Unadkat JD, Hebert MF, Mao Q: Contributions of human cytochrome P450 enzymes to glyburide metabolism. Biopharm Drug Dispos. 2010 May;31(4):228-42. doi: 10.1002/bdd.706.","parent_key":"BE0002793"} {"ref-id":"A15007","pubmed-id":12920163,"citation":"Kim KA, Park JY: Inhibitory effect of glyburide on human cytochrome p450 isoforms in human liver microsomes. Drug Metab Dispos. 2003 Sep;31(9):1090-2.","parent_key":"BE0002793"} {"ref-id":"A183560","pubmed-id":25450675,"citation":"Shuster DL, Risler LJ, Prasad B, Calamia JC, Voellinger JL, Kelly EJ, Unadkat JD, Hebert MF, Shen DD, Thummel KE, Mao Q: Identification of CYP3A7 for glyburide metabolism in human fetal livers. Biochem Pharmacol. 2014 Dec 15;92(4):690-700. doi: 10.1016/j.bcp.2014.09.025. Epub 2014 Oct 22.","parent_key":"BE0003612"} {"ref-id":"A183560","pubmed-id":25450675,"citation":"Shuster DL, Risler LJ, Prasad B, Calamia JC, Voellinger JL, Kelly EJ, Unadkat JD, Hebert MF, Shen DD, Thummel KE, Mao Q: Identification of CYP3A7 for glyburide metabolism in human fetal livers. Biochem Pharmacol. 2014 Dec 15;92(4):690-700. doi: 10.1016/j.bcp.2014.09.025. Epub 2014 Oct 22.","parent_key":"BE0002362"} {"ref-id":"A14935","pubmed-id":9396389,"citation":"Clement B, Demesmaeker M: Microsomal catalyzed N-hydroxylation of guanfacine and reduction of N-hydroxyguanfacine. Arch Pharm (Weinheim). 1997 Oct;330(9-10):303-6.","parent_key":"BE0002638"} {"ref-id":"A14936","pubmed-id":6751332,"citation":"Guillouzo A, Le Bigot JF, Guguen-Guillouzo C, Kiechel JR: Presence of phase I and phase II drug metabolizing enzymes in cultured human foetal hepatocytes. Biochem Pharmacol. 1982 Jul 15;31(14):2427-30.","parent_key":"BE0002638"} {"ref-id":"A14935","pubmed-id":9396389,"citation":"Clement B, Demesmaeker M: Microsomal catalyzed N-hydroxylation of guanfacine and reduction of N-hydroxyguanfacine. Arch Pharm (Weinheim). 1997 Oct;330(9-10):303-6.","parent_key":"BE0003536"} {"ref-id":"A14936","pubmed-id":6751332,"citation":"Guillouzo A, Le Bigot JF, Guguen-Guillouzo C, Kiechel JR: Presence of phase I and phase II drug metabolizing enzymes in cultured human foetal hepatocytes. Biochem Pharmacol. 1982 Jul 15;31(14):2427-30.","parent_key":"BE0003536"} {"ref-id":"A190732","pubmed-id":25446162,"citation":"Munzel T, Steven S, Daiber A: Organic nitrates: update on mechanisms underlying vasodilation, tolerance and endothelial dysfunction. Vascul Pharmacol. 2014 Dec;63(3):105-13. doi: 10.1016/j.vph.2014.09.002. Epub 2014 Oct 14.","parent_key":"BE0002204"} {"ref-id":"A183773","pubmed-id":9153299,"citation":"Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA, Brown MB, Guo W, Watkins PB: Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest. 1997 May 15;99(10):2545-53. doi: 10.1172/JCI119439.","parent_key":"BE0002638"} {"ref-id":"A33193","pubmed-id":10640508,"citation":"Ma B, Prueksaritanont T, Lin JH: Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.","parent_key":"BE0002793"} {"ref-id":"A33193","pubmed-id":10640508,"citation":"Ma B, Prueksaritanont T, Lin JH: Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.","parent_key":"BE0002363"} {"ref-id":"A184475","pubmed-id":25028073,"citation":"Snyder BD, Rowland A, Polasek TM, Miners JO, Doogue MP: Evaluation of felodipine as a potential perpetrator of pharmacokinetic drug-drug interactions. Eur J Clin Pharmacol. 2014 Sep;70(9):1115-22. doi: 10.1007/s00228-014-1716-8. Epub 2014 Jul 17.","parent_key":"BE0002363"} {"ref-id":"A14937","pubmed-id":21123165,"citation":"Dostalek M, Court MH, Hazarika S, Akhlaghi F: Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite. Drug Metab Dispos. 2011 Mar;39(3):448-55. doi: 10.1124/dmd.110.036608. Epub 2010 Dec 1.","parent_key":"BE0003538"} {"ref-id":"A14937","pubmed-id":21123165,"citation":"Dostalek M, Court MH, Hazarika S, Akhlaghi F: Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite. Drug Metab Dispos. 2011 Mar;39(3):448-55. doi: 10.1124/dmd.110.036608. Epub 2010 Dec 1.","parent_key":"BE0003679"} {"ref-id":"A14938","pubmed-id":18445370,"citation":"Elsherbiny ME, El-Kadi AO, Brocks DR: The metabolism of amiodarone by various CYP isoenzymes of human and rat, and the inhibitory influence of ketoconazole. J Pharm Pharm Sci. 2008;11(1):147-59.","parent_key":"BE0002638"} {"ref-id":"A38779","pubmed-id":23723360,"citation":"Shirasaka Y, Chang SY, Grubb MF, Peng CC, Thummel KE, Isoherranen N, Rodrigues AD: Effect of CYP3A5 expression on the inhibition of CYP3A-catalyzed drug metabolism: impact on modeling CYP3A-mediated drug-drug interactions. Drug Metab Dispos. 2013 Aug;41(8):1566-74. doi: 10.1124/dmd.112.049940. Epub 2013 May 30.","parent_key":"BE0002362"} {"ref-id":"A37852","pubmed-id":15618748,"citation":"Emoto C, Murase S, Sawada Y, Jones BC, Iwasaki K: In vitro inhibitory effect of 1-aminobenzotriazole on drug oxidations catalyzed by human cytochrome P450 enzymes: a comparison with SKF-525A and ketoconazole. Drug Metab Pharmacokinet. 2003;18(5):287-95.","parent_key":"BE0003536"} {"ref-id":"A37773","pubmed-id":14709627,"citation":"Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JC, Patten CJ, Dehal SS, Crespi CL: Highly selective inhibition of human CYP3Aa in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab Dispos. 2004 Jan;32(1):105-12. doi: 10.1124/dmd.32.1.105.","parent_key":"BE0003543"} {"ref-id":"A15160","pubmed-id":10821163,"citation":"Sai Y, Dai R, Yang TJ, Krausz KW, Gonzalez FJ, Gelboin HV, Shou M: Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica. 2000 Apr;30(4):327-43.","parent_key":"BE0003543"} {"ref-id":"A23095","pubmed-id":17283379,"citation":"Korashy HM, Shayeganpour A, Brocks DR, El-Kadi AO: Induction of cytochrome P450 1A1 by ketoconazole and itraconazole but not fluconazole in murine and human hepatoma cell lines. Toxicol Sci. 2007 May;97(1):32-43. Epub 2007 Feb 5.","parent_key":"BE0003543"} {"ref-id":"A37773","pubmed-id":14709627,"citation":"Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JC, Patten CJ, Dehal SS, Crespi CL: Highly selective inhibition of human CYP3Aa in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab Dispos. 2004 Jan;32(1):105-12. doi: 10.1124/dmd.32.1.105.","parent_key":"BE0001111"} {"ref-id":"A37773","pubmed-id":14709627,"citation":"Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JC, Patten CJ, Dehal SS, Crespi CL: Highly selective inhibition of human CYP3Aa in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab Dispos. 2004 Jan;32(1):105-12. doi: 10.1124/dmd.32.1.105.","parent_key":"BE0003549"} {"ref-id":"A37773","pubmed-id":14709627,"citation":"Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JC, Patten CJ, Dehal SS, Crespi CL: Highly selective inhibition of human CYP3Aa in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab Dispos. 2004 Jan;32(1):105-12. doi: 10.1124/dmd.32.1.105.","parent_key":"BE0002887"} {"ref-id":"A37824","pubmed-id":15373932,"citation":"Park JY, Kim KA, Shin JG, Lee KY: Effect of ketoconazole on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol. 2004 Oct;58(4):397-402. doi: 10.1111/j.1365-2125.2004.02161.x.","parent_key":"BE0002887"} {"ref-id":"A37824","pubmed-id":15373932,"citation":"Park JY, Kim KA, Shin JG, Lee KY: Effect of ketoconazole on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol. 2004 Oct;58(4):397-402. doi: 10.1111/j.1365-2125.2004.02161.x.","parent_key":"BE0002793"} {"ref-id":"A37773","pubmed-id":14709627,"citation":"Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JC, Patten CJ, Dehal SS, Crespi CL: Highly selective inhibition of human CYP3Aa in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab Dispos. 2004 Jan;32(1):105-12. doi: 10.1124/dmd.32.1.105.","parent_key":"BE0002793"} {"ref-id":"A33205","pubmed-id":9764927,"citation":"McKillop D, Wild MJ, Butters CJ, Simcock C: Effects of propofol on human hepatic microsomal cytochrome P450 activities. Xenobiotica. 1998 Sep;28(9):845-53. doi: 10.1080/004982598239092 .","parent_key":"BE0002793"} {"ref-id":"A17830","pubmed-id":11854151,"citation":"Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM: Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002 Mar;30(3):314-8.","parent_key":"BE0002793"} {"ref-id":"A37852","pubmed-id":15618748,"citation":"Emoto C, Murase S, Sawada Y, Jones BC, Iwasaki K: In vitro inhibitory effect of 1-aminobenzotriazole on drug oxidations catalyzed by human cytochrome P450 enzymes: a comparison with SKF-525A and ketoconazole. Drug Metab Pharmacokinet. 2003;18(5):287-95.","parent_key":"BE0002363"} {"ref-id":"A33363","pubmed-id":16166450,"citation":"Yong WP, Ramirez J, Innocenti F, Ratain MJ: Effects of ketoconazole on glucuronidation by UDP-glucuronosyltransferase enzymes. Clin Cancer Res. 2005 Sep 15;11(18):6699-704. doi: 10.1158/1078-0432.CCR-05-0703.","parent_key":"BE0003679"} {"ref-id":"A37773","pubmed-id":14709627,"citation":"Stresser DM, Broudy MI, Ho T, Cargill CE, Blanchard AP, Sharma R, Dandeneau AA, Goodwin JJ, Turner SD, Erve JC, Patten CJ, Dehal SS, Crespi CL: Highly selective inhibition of human CYP3Aa in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab Dispos. 2004 Jan;32(1):105-12. doi: 10.1124/dmd.32.1.105.","parent_key":"BE0004727"} {"ref-id":"A37860","pubmed-id":16997912,"citation":"Wang MZ, Saulter JY, Usuki E, Cheung YL, Hall M, Bridges AS, Loewen G, Parkinson OT, Stephens CE, Allen JL, Zeldin DC, Boykin DW, Tidwell RR, Parkinson A, Paine MF, Hall JE: CYP4F enzymes are the major enzymes in human liver microsomes that catalyze the O-demethylation of the antiparasitic prodrug DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime]. Drug Metab Dispos. 2006 Dec;34(12):1985-94. doi: 10.1124/dmd.106.010587. Epub 2006 Sep 22.","parent_key":"BE0004727"} {"ref-id":"A185150","pubmed-id":10209369,"citation":"Chang GW, Kam PC: The physiological and pharmacological roles of cytochrome P450 isoenzymes. Anaesthesia. 1999 Jan;54(1):42-50. doi: 10.1046/j.1365-2044.1999.00602.x.","parent_key":"BE0003533"} {"ref-id":"A39015","pubmed-id":8214760,"citation":"Kharasch ED, Thummel KE: Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993 Oct;79(4):795-807.","parent_key":"BE0002433"} {"ref-id":"A35846","pubmed-id":23824607,"citation":"Liu J, Flockhart PJ, Lu D, Lv W, Lu WJ, Han X, Cushman M, Flockhart DA: Inhibition of cytochrome p450 enzymes by the e- and z-isomers of norendoxifen. Drug Metab Dispos. 2013 Sep;41(9):1715-20. doi: 10.1124/dmd.113.052506. Epub 2013 Jul 3.","parent_key":"BE0003336"} {"ref-id":"A182726","pubmed-id":7879937,"citation":"Kharasch ED, Hankins DC, Thummel KE: Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995 Mar;82(3):689-99. doi: 10.1097/00000542-199503000-00011.","parent_key":"BE0003336"} {"ref-id":"A39015","pubmed-id":8214760,"citation":"Kharasch ED, Thummel KE: Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993 Oct;79(4):795-807.","parent_key":"BE0002793"} {"ref-id":"A39015","pubmed-id":8214760,"citation":"Kharasch ED, Thummel KE: Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993 Oct;79(4):795-807.","parent_key":"BE0002363"} {"ref-id":"A182726","pubmed-id":7879937,"citation":"Kharasch ED, Hankins DC, Thummel KE: Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995 Mar;82(3):689-99. doi: 10.1097/00000542-199503000-00011.","parent_key":"BE0002638"} {"ref-id":"A39398","pubmed-id":21949635,"citation":"Forni V, Wuerzner G, Pruijm M, Burnier M: Long-term use and tolerability of irbesartan for control of hypertension. Integr Blood Press Control. 2011;4:17-26. doi: 10.2147/IBPC.S12211. Epub 2011 Apr 18.","parent_key":"BE0002793"} {"ref-id":"A38745","pubmed-id":10877007,"citation":"Taavitsainen P, Kiukaanniemi K, Pelkonen O: In vitro inhibition screening of human hepatic P450 enzymes by five angiotensin-II receptor antagonists. Eur J Clin Pharmacol. 2000 May;56(2):135-40.","parent_key":"BE0002638"} {"ref-id":"A184529","pubmed-id":11523726,"citation":"Marino MR, Vachharajani NN: Drug interactions with irbesartan. Clin Pharmacokinet. 2001;40(8):605-14. doi: 10.2165/00003088-200140080-00004.","parent_key":"BE0002638"} {"ref-id":"A38725","pubmed-id":16595064,"citation":"Dubey S, Hutson P, Alberti D, Arzoomanian R, Binger K, Volkman J, Feierabend C, Wilding G, Schiller JH: Phase I study of docetaxel and topotecan in patients with advanced malignancies. J Oncol Pharm Pract. 2005 Dec;11(4):131-8. doi: 10.1191/1078155205jp161oa.","parent_key":"BE0002638"} {"ref-id":"A18025","pubmed-id":15915352,"citation":"Kim KA, Oh SO, Park PW, Park JY: Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol. 2005 Jun;61(4):275-80. Epub 2005 May 25.","parent_key":"BE0002887"} {"ref-id":"A18025","pubmed-id":15915352,"citation":"Kim KA, Oh SO, Park PW, Park JY: Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol. 2005 Jun;61(4):275-80. Epub 2005 May 25.","parent_key":"BE0002638"} {"ref-id":"A34458","pubmed-id":25407255,"citation":"Devineni D, Vaccaro N, Murphy J, Curtin C, Mamidi RN, Weiner S, Wang SS, Ariyawansa J, Stieltjes H, Wajs E, Di Prospero NA, Rothenberg P: Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Int J Clin Pharmacol Ther. 2015 Feb;53(2):115-28. doi: 10.5414/CP202158.","parent_key":"BE0002793"} {"ref-id":"A14939","pubmed-id":10634131,"citation":"Lessard E, Hamelin BA, Labbe L, O'Hara G, Belanger PM, Turgeon J: Involvement of CYP2D6 activity in the N-oxidation of procainamide in man. Pharmacogenetics. 1999 Dec;9(6):683-96.","parent_key":"BE0002363"} {"ref-id":"A15701","pubmed-id":9531513,"citation":"Postlind H, DanielsonA, Lindgren A, Andersson SH: Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos. 1998 Apr;26(4):289-93.","parent_key":"BE0002638"} {"ref-id":"A183776","pubmed-id":9630826,"citation":"Brynne N, Dalen P, Alvan G, Bertilsson L, Gabrielsson J: Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamic of tolterodine. Clin Pharmacol Ther. 1998 May;63(5):529-39. doi: 10.1016/S0009-9236(98)90104-7.","parent_key":"BE0002363"} {"ref-id":"A183779","pubmed-id":20530222,"citation":"Oishi M, Chiba K, Malhotra B, Suwa T: Effect of the CYP2D6*10 genotype on tolterodine pharmacokinetics. Drug Metab Dispos. 2010 Sep;38(9):1456-63. doi: 10.1124/dmd.110.033407. Epub 2010 Jun 7.","parent_key":"BE0002363"} {"ref-id":"A15701","pubmed-id":9531513,"citation":"Postlind H, DanielsonA, Lindgren A, Andersson SH: Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos. 1998 Apr;26(4):289-93.","parent_key":"BE0002793"} {"ref-id":"A15701","pubmed-id":9531513,"citation":"Postlind H, DanielsonA, Lindgren A, Andersson SH: Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos. 1998 Apr;26(4):289-93.","parent_key":"BE0003536"} {"ref-id":"A1629","pubmed-id":18311418,"citation":"Culpepper L, Kovalick LJ: A review of the literature on the selegiline transdermal system: an effective and well-tolerated monoamine oxidase inhibitor for the treatment of depression. Prim Care Companion J Clin Psychiatry. 2008;10(1):25-30.","parent_key":"BE0003549"} {"ref-id":"A1630","pubmed-id":19300583,"citation":"Lee KC, Chen JJ: Transdermal selegiline for the treatment of major depressive disorder. Neuropsychiatr Dis Treat. 2007;3(5):527-37.","parent_key":"BE0003549"} {"ref-id":"A15136","pubmed-id":17495414,"citation":"Benetton SA, Fang C, Yang YO, Alok R, Year M, Lin CC, Yeh LT: P450 phenotyping of the metabolism of selegiline to desmethylselegiline and methamphetamine. Drug Metab Pharmacokinet. 2007 Apr;22(2):78-87.","parent_key":"BE0003549"} {"ref-id":"A36299","pubmed-id":25656918,"citation":"Nirogi R, Palacharla RC, Mohammed AR, Manoharan A, Ponnamaneni RK, Bhyrapuneni G: Evaluation of metabolism dependent inhibition of CYP2B6 mediated bupropion hydroxylation in human liver microsomes by monoamine oxidase inhibitors and prediction of potential as perpetrators of drug interaction. Chem Biol Interact. 2015 Mar 25;230:9-20. doi: 10.1016/j.cbi.2015.01.028. Epub 2015 Feb 3.","parent_key":"BE0003549"} {"ref-id":"A36300","pubmed-id":22936314,"citation":"Sridar C, Kenaan C, Hollenberg PF: Inhibition of bupropion metabolism by selegiline: mechanism-based inactivation of human CYP2B6 and characterization of glutathione and peptide adducts. Drug Metab Dispos. 2012 Dec;40(12):2256-66. doi: 10.1124/dmd.112.046979. Epub 2012 Aug 30.","parent_key":"BE0003549"} {"ref-id":"A15136","pubmed-id":17495414,"citation":"Benetton SA, Fang C, Yang YO, Alok R, Year M, Lin CC, Yeh LT: P450 phenotyping of the metabolism of selegiline to desmethylselegiline and methamphetamine. Drug Metab Pharmacokinet. 2007 Apr;22(2):78-87.","parent_key":"BE0002638"} {"ref-id":"A1630","pubmed-id":19300583,"citation":"Lee KC, Chen JJ: Transdermal selegiline for the treatment of major depressive disorder. Neuropsychiatr Dis Treat. 2007;3(5):527-37.","parent_key":"BE0003336"} {"ref-id":"A15136","pubmed-id":17495414,"citation":"Benetton SA, Fang C, Yang YO, Alok R, Year M, Lin CC, Yeh LT: P450 phenotyping of the metabolism of selegiline to desmethylselegiline and methamphetamine. Drug Metab Pharmacokinet. 2007 Apr;22(2):78-87.","parent_key":"BE0003336"} {"ref-id":"A39335","pubmed-id":29194389,"citation":"Tanner JA, Tyndale RF: Variation in CYP2A6 Activity and Personalized Medicine. J Pers Med. 2017 Dec 1;7(4). pii: jpm7040018. doi: 10.3390/jpm7040018.","parent_key":"BE0003336"} {"ref-id":"A39022","pubmed-id":10862503,"citation":"Taavitsainen P, Anttila M, Nyman L, Karnani H, Salonen JS, Pelkonen O: Selegiline metabolism and cytochrome P450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol. 2000 May;86(5):215-21.","parent_key":"BE0002433"} {"ref-id":"A39023","pubmed-id":12920164,"citation":"Salonen JS, Nyman L, Boobis AR, Edwards RJ, Watts P, Lake BG, Price RJ, Renwick AB, Gomez-Lechon MJ, Castell JV, Ingelman-Sundberg M, Hidestrand M, Guillouzo A, Corcos L, Goldfarb PS, Lewis DF, Taavitsainen P, Pelkonen O: Comparative studies on the cytochrome p450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metab Dispos. 2003 Sep;31(9):1093-102. doi: 10.1124/dmd.31.9.1093.","parent_key":"BE0002433"} {"ref-id":"A39023","pubmed-id":12920164,"citation":"Salonen JS, Nyman L, Boobis AR, Edwards RJ, Watts P, Lake BG, Price RJ, Renwick AB, Gomez-Lechon MJ, Castell JV, Ingelman-Sundberg M, Hidestrand M, Guillouzo A, Corcos L, Goldfarb PS, Lewis DF, Taavitsainen P, Pelkonen O: Comparative studies on the cytochrome p450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metab Dispos. 2003 Sep;31(9):1093-102. doi: 10.1124/dmd.31.9.1093.","parent_key":"BE0003536"} {"ref-id":"A182657","pubmed-id":11602525,"citation":"Hidestrand M, Oscarson M, Salonen JS, Nyman L, Pelkonen O, Turpeinen M, Ingelman-Sundberg M: CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson's disease, as revealed from experiments with recombinant enzymes. Drug Metab Dispos. 2001 Nov;29(11):1480-4.","parent_key":"BE0003536"} {"ref-id":"A39023","pubmed-id":12920164,"citation":"Salonen JS, Nyman L, Boobis AR, Edwards RJ, Watts P, Lake BG, Price RJ, Renwick AB, Gomez-Lechon MJ, Castell JV, Ingelman-Sundberg M, Hidestrand M, Guillouzo A, Corcos L, Goldfarb PS, Lewis DF, Taavitsainen P, Pelkonen O: Comparative studies on the cytochrome p450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metab Dispos. 2003 Sep;31(9):1093-102. doi: 10.1124/dmd.31.9.1093.","parent_key":"BE0002887"} {"ref-id":"A182660","pubmed-id":16447756,"citation":"Nomoto M, Nakatsuka A, Nagai M, Yabe H, Moritoyo T, Moritoyo H, Nisikawa N: [Inter- and intraindividual pharmacokinetic variations in the treatment of Parkinson's disease]. Rinsho Shinkeigaku. 2005 Nov;45(11):895-8.","parent_key":"BE0002363"} {"ref-id":"A34242","pubmed-id":15304429,"citation":"Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE: Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8. doi: 10.1124/dmd.104.000794. Epub 2004 Aug 10.","parent_key":"BE0003538"} {"ref-id":"A184160","pubmed-id":27720395,"citation":"Gong Y, Shao Z, Fu Z, Edin ML, Sun Y, Liegl RG, Wang Z, Liu CH, Burnim SB, Meng SS, Lih FB, SanGiovanni JP, Zeldin DC, Hellstrom A, Smith LEH: Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis. EBioMedicine. 2016 Nov;13:201-211. doi: 10.1016/j.ebiom.2016.09.025. Epub 2016 Sep 30.","parent_key":"BE0002887"} {"ref-id":"A39443","pubmed-id":27026863,"citation":"Prasad GS, Srisailam K, Sashidhar RB: Metabolic inhibition of meloxicam by specific CYP2C9 inhibitors in Cunninghamella blakesleeana NCIM 687: in silico and in vitro studies. Springerplus. 2016 Feb 24;5:166. doi: 10.1186/s40064-016-1794-4. eCollection 2016.","parent_key":"BE0002793"} {"ref-id":"A36413","pubmed-id":12549950,"citation":"Kim KY, Mancano MA: Fenofibrate potentiates warfarin effects. Ann Pharmacother. 2003 Feb;37(2):212-5. doi: 10.1177/106002800303700210.","parent_key":"BE0002793"} {"ref-id":"A39444","pubmed-id":14682608,"citation":"Fujino H, Yamada I, Shimada S, Hirano M, Tsunenari Y, Kojima J: Interaction between fibrates and statins--metabolic interactions with gemfibrozil. Drug Metabol Drug Interact. 2003;19(3):161-76.","parent_key":"BE0002793"} {"ref-id":"A38696","pubmed-id":18948377,"citation":"Okada Y, Murayama N, Yanagida C, Shimizu M, Guengerich FP, Yamazaki H: Drug interactions of thalidomide with midazolam and cyclosporine A: heterotropic cooperativity of human cytochrome P450 3A5. Drug Metab Dispos. 2009 Jan;37(1):18-23. doi: 10.1124/dmd.108.024679. Epub 2008 Oct 23.","parent_key":"BE0003536"} {"ref-id":"A38697","pubmed-id":12060642,"citation":"Ando Y, Fuse E, Figg WD: Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res. 2002 Jun;8(6):1964-73.","parent_key":"BE0003536"} {"ref-id":"A183944","pubmed-id":21638302,"citation":"Li Y, Jiang Z, Xiao Y, Li L, Gao Y: Metabolism of thalidomide by human liver microsome cytochrome CYP2C19 is required for its antimyeloma and antiangiogenic activities in vitro. Hematol Oncol. 2012 Mar;30(1):13-21. doi: 10.1002/hon.992. Epub 2011 Jun 3.","parent_key":"BE0003536"} {"ref-id":"A183947","pubmed-id":12642692,"citation":"Ando Y, Price DK, Dahut WL, Cox MC, Reed E, Figg WD: Pharmacogenetic associations of CYP2C19 genotype with in vivo metabolisms and pharmacological effects of thalidomide. Cancer Biol Ther. 2002 Nov-Dec;1(6):669-73. doi: 10.4161/cbt.318.","parent_key":"BE0003536"} {"ref-id":"A415","pubmed-id":19515014,"citation":"Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1.","parent_key":"BE0003533"} {"ref-id":"A38697","pubmed-id":12060642,"citation":"Ando Y, Fuse E, Figg WD: Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res. 2002 Jun;8(6):1964-73.","parent_key":"BE0002793"} {"ref-id":"A38774","pubmed-id":15378224,"citation":"Micuda S, Mundlova L, Anzenbacherova E, Anzenbacher P, Chladek J, Fuksa L, Martinkova J: Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004 Oct;60(8):583-9. doi: 10.1007/s00228-004-0825-1. Epub 2004 Sep 16.","parent_key":"BE0003549"} {"ref-id":"A177145","pubmed-id":17325652,"citation":"Korhonen LE, Turpeinen M, Rahnasto M, Wittekindt C, Poso A, Pelkonen O, Raunio H, Juvonen RO: New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. Br J Pharmacol. 2007 Apr;150(7):932-42. doi: 10.1038/sj.bjp.0707173. Epub 2007 Feb 26.","parent_key":"BE0003549"} {"ref-id":"A38774","pubmed-id":15378224,"citation":"Micuda S, Mundlova L, Anzenbacherova E, Anzenbacher P, Chladek J, Fuksa L, Martinkova J: Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004 Oct;60(8):583-9. doi: 10.1007/s00228-004-0825-1. Epub 2004 Sep 16.","parent_key":"BE0003336"} {"ref-id":"A38774","pubmed-id":15378224,"citation":"Micuda S, Mundlova L, Anzenbacherova E, Anzenbacher P, Chladek J, Fuksa L, Martinkova J: Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004 Oct;60(8):583-9. doi: 10.1007/s00228-004-0825-1. Epub 2004 Sep 16.","parent_key":"BE0003536"} {"ref-id":"A14940","pubmed-id":17639026,"citation":"Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16.","parent_key":"BE0002793"} {"ref-id":"A36135","pubmed-id":19843061,"citation":"Nassr N, Huennemeyer A, Herzog R, von Richter O, Hermann R, Koch M, Duffy K, Zech K, Lahu G: Effects of rifampicin on the pharmacokinetics of roflumilast and roflumilast N-oxide in healthy subjects. Br J Clin Pharmacol. 2009 Oct;68(4):580-7. doi: 10.1111/j.1365-2125.2009.03478.x.","parent_key":"BE0002433"} {"ref-id":"A183572","pubmed-id":16758262,"citation":"Backman JT, Granfors MT, Neuvonen PJ: Rifampicin is only a weak inducer of CYP1A2-mediated presystemic and systemic metabolism: studies with tizanidine and caffeine. Eur J Clin Pharmacol. 2006 Jun;62(6):451-61. doi: 10.1007/s00228-006-0127-x. Epub 2006 Apr 27.","parent_key":"BE0002433"} {"ref-id":"A14940","pubmed-id":17639026,"citation":"Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16.","parent_key":"BE0002887"} {"ref-id":"A14984","pubmed-id":12642468,"citation":"Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A: Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos. 2003 Apr;31(4):421-31.","parent_key":"BE0002887"} {"ref-id":"A33265","pubmed-id":15676042,"citation":"Glaeser H, Drescher S, Eichelbaum M, Fromm MF: Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes. Br J Clin Pharmacol. 2005 Feb;59(2):199-206. doi: 10.1111/j.1365-2125.2004.02265.x.","parent_key":"BE0002887"} {"ref-id":"A33266","pubmed-id":11181490,"citation":"Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, Daujat M, Waechter F, Fabre JM, Carrere N, Maurel P: Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos. 2001 Mar;29(3):242-51.","parent_key":"BE0002887"} {"ref-id":"A33268","pubmed-id":11714868,"citation":"Rae JM, Johnson MD, Lippman ME, Flockhart DA: Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther. 2001 Dec;299(3):849-57.","parent_key":"BE0002887"} {"ref-id":"A33269","pubmed-id":12130704,"citation":"Raucy JL, Mueller L, Duan K, Allen SW, Strom S, Lasker JM: Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J Pharmacol Exp Ther. 2002 Aug;302(2):475-82. doi: 10.1124/jpet.102.033837.","parent_key":"BE0002887"} {"ref-id":"A33270","pubmed-id":9402947,"citation":"Li AP, Reith MK, Rasmussen A, Gorski JC, Hall SD, Xu L, Kaminski DL, Cheng LK: Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine and rifabutin. Chem Biol Interact. 1997 Nov 6;107(1-2):17-30.","parent_key":"BE0002887"} {"ref-id":"A14940","pubmed-id":17639026,"citation":"Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16.","parent_key":"BE0002638"} {"ref-id":"A26650","pubmed-id":12584154,"citation":"Edwards RJ, Price RJ, Watts PS, Renwick AB, Tredger JM, Boobis AR, Lake BG: Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos. 2003 Mar;31(3):282-8.","parent_key":"BE0002638"} {"ref-id":"A33271","pubmed-id":25535219,"citation":"Svensson EM, Murray S, Karlsson MO, Dooley KE: Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother. 2015 Apr;70(4):1106-14. doi: 10.1093/jac/dku504. Epub 2014 Dec 21.","parent_key":"BE0002638"} {"ref-id":"A14940","pubmed-id":17639026,"citation":"Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD: Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007 Oct;35(10):1853-9. Epub 2007 Jul 16.","parent_key":"BE0003549"} {"ref-id":"A183551","pubmed-id":16815319,"citation":"Loboz KK, Gross AS, Williams KM, Liauw WS, Day RO, Blievernicht JK, Zanger UM, McLachlan AJ: Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther. 2006 Jul;80(1):75-84. doi: 10.1016/j.clpt.2006.03.010.","parent_key":"BE0003549"} {"ref-id":"A26650","pubmed-id":12584154,"citation":"Edwards RJ, Price RJ, Watts PS, Renwick AB, Tredger JM, Boobis AR, Lake BG: Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos. 2003 Mar;31(3):282-8.","parent_key":"BE0003536"} {"ref-id":"A35995","pubmed-id":28408803,"citation":"Park GJ, Bae SH, Park WS, Han S, Park MH, Shin SH, Shin YG, Yim DS: Drug-drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer. Drug Des Devel Ther. 2017 Mar 30;11:1043-1053. doi: 10.2147/DDDT.S131797. eCollection 2017.","parent_key":"BE0003536"} {"ref-id":"A38493","pubmed-id":12426514,"citation":"Ridtitid W, Wongnawa M, Mahatthanatrakul W, Punyo J, Sunbhanich M: Rifampin markedly decreases plasma concentrations of praziquantel in healthy volunteers. Clin Pharmacol Ther. 2002 Nov;72(5):505-13. doi: 10.1067/mcp.2002.129319.","parent_key":"BE0003536"} {"ref-id":"A26650","pubmed-id":12584154,"citation":"Edwards RJ, Price RJ, Watts PS, Renwick AB, Tredger JM, Boobis AR, Lake BG: Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos. 2003 Mar;31(3):282-8.","parent_key":"BE0003336"} {"ref-id":"A38996","pubmed-id":8786635,"citation":"Huang R, Okuno H, Takasu M, Shiozaki Y, Inoue K: Protective effect of rifampicin against acute liver injury induced by carbon tetrachloride in mice. Jpn J Pharmacol. 1995 Dec;69(4):325-34.","parent_key":"BE0003533"} {"ref-id":"A102133","pubmed-id":11266076,"citation":"Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, Deglmann CJ, Burk O, Buntefuss D, Escher S, Bishop C, Koebe HG, Brinkmann U, Klenk HP, Kleine K, Meyer UA, Wojnowski L: Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics. 2001 Mar;11(2):111-21.","parent_key":"BE0003550"} {"ref-id":"A40144","pubmed-id":14709631,"citation":"Soars MG, Petullo DM, Eckstein JA, Kasper SC, Wrighton SA: An assessment of udp-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos. 2004 Jan;32(1):140-8. doi: 10.1124/dmd.32.1.140.","parent_key":"BE0003538"} {"ref-id":"A36008","pubmed-id":23061428,"citation":"Kasichayanula S, Liu X, Griffen SC, Lacreta FP, Boulton DW: Effects of rifampin and mefenamic acid on the pharmacokinetics and pharmacodynamics of dapagliflozin. Diabetes Obes Metab. 2013 Mar;15(3):280-3. doi: 10.1111/dom.12024. Epub 2012 Nov 19.","parent_key":"BE0003538"} {"ref-id":"A182480","pubmed-id":15252010,"citation":"Burk O, Koch I, Raucy J, Hustert E, Eichelbaum M, Brockmoller J, Zanger UM, Wojnowski L: The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem. 2004 Sep 10;279(37):38379-85. doi: 10.1074/jbc.M404949200. Epub 2004 Jul 12.","parent_key":"BE0002362"} {"ref-id":"A14942","pubmed-id":10383540,"citation":"Carlile DJ, Hakooz N, Bayliss MK, Houston JB: Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans. Br J Clin Pharmacol. 1999 Jun;47(6):625-35.","parent_key":"BE0002793"} {"ref-id":"A6199","pubmed-id":23536207,"citation":"Yu L, Shi D, Ma L, Zhou Q, Zeng S: Influence of CYP2C8 polymorphisms on the hydroxylation metabolism of paclitaxel, repaglinide and ibuprofen enantiomers in vitro. Biopharm Drug Dispos. 2013 Jul;34(5):278-87. doi: 10.1002/bdd.1842. Epub 2013 Jun 3.","parent_key":"BE0002887"} {"ref-id":"A184352","pubmed-id":18787056,"citation":"Chang SY, Li W, Traeger SC, Wang B, Cui D, Zhang H, Wen B, Rodrigues AD: Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro. Drug Metab Dispos. 2008 Dec;36(12):2513-22. doi: 10.1124/dmd.108.022970. Epub 2008 Sep 11.","parent_key":"BE0002887"} {"ref-id":"A184355","pubmed-id":9296349,"citation":"Hamman MA, Thompson GA, Hall SD: Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol. 1997 Jul 1;54(1):33-41. doi: 10.1016/s0006-2952(97)00143-3.","parent_key":"BE0002887"} {"ref-id":"A39190","pubmed-id":19949916,"citation":"Rainsford KD: Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology. 2009 Dec;17(6):275-342. doi: 10.1007/s10787-009-0016-x. Epub 2009 Nov 21.","parent_key":"BE0003536"} {"ref-id":"A184517","pubmed-id":25502615,"citation":"Mazaleuskaya LL, Theken KN, Gong L, Thorn CF, FitzGerald GA, Altman RB, Klein TE: PharmGKB summary: ibuprofen pathways. Pharmacogenet Genomics. 2015 Feb;25(2):96-106. doi: 10.1097/FPC.0000000000000113.","parent_key":"BE0003536"} {"ref-id":"A39190","pubmed-id":19949916,"citation":"Rainsford KD: Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology. 2009 Dec;17(6):275-342. doi: 10.1007/s10787-009-0016-x. Epub 2009 Nov 21.","parent_key":"BE0009569"} {"ref-id":"A184517","pubmed-id":25502615,"citation":"Mazaleuskaya LL, Theken KN, Gong L, Thorn CF, FitzGerald GA, Altman RB, Klein TE: PharmGKB summary: ibuprofen pathways. Pharmacogenet Genomics. 2015 Feb;25(2):96-106. doi: 10.1097/FPC.0000000000000113.","parent_key":"BE0002638"} {"ref-id":"A40180","pubmed-id":8485025,"citation":"Loi CM, Wei X, Parker BM, Korrapati MR, Vestal RE: The effect of tocainide on theophylline metabolism. Br J Clin Pharmacol. 1993 Apr;35(4):437-40.","parent_key":"BE0002433"} {"ref-id":"A38453","pubmed-id":17357589,"citation":"Godawska-Matysik A, Kiec-Kononowicz K: Biotransformation of praziquantel by human cytochrome p450 3A4 (CYP 3A4). Acta Pol Pharm. 2006 Sep-Oct;63(5):381-5.","parent_key":"BE0002638"} {"ref-id":"A38493","pubmed-id":12426514,"citation":"Ridtitid W, Wongnawa M, Mahatthanatrakul W, Punyo J, Sunbhanich M: Rifampin markedly decreases plasma concentrations of praziquantel in healthy volunteers. Clin Pharmacol Ther. 2002 Nov;72(5):505-13. doi: 10.1067/mcp.2002.129319.","parent_key":"BE0002638"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0002433"} {"ref-id":"A16885","pubmed-id":12920490,"citation":"Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003 Sep;59(5-6):429-42. Epub 2003 Aug 12.","parent_key":"BE0003536"} {"ref-id":"A38493","pubmed-id":12426514,"citation":"Ridtitid W, Wongnawa M, Mahatthanatrakul W, Punyo J, Sunbhanich M: Rifampin markedly decreases plasma concentrations of praziquantel in healthy volunteers. Clin Pharmacol Ther. 2002 Nov;72(5):505-13. doi: 10.1067/mcp.2002.129319.","parent_key":"BE0003550"} {"ref-id":"A38493","pubmed-id":12426514,"citation":"Ridtitid W, Wongnawa M, Mahatthanatrakul W, Punyo J, Sunbhanich M: Rifampin markedly decreases plasma concentrations of praziquantel in healthy volunteers. Clin Pharmacol Ther. 2002 Nov;72(5):505-13. doi: 10.1067/mcp.2002.129319.","parent_key":"BE0002362"} {"ref-id":"A38493","pubmed-id":12426514,"citation":"Ridtitid W, Wongnawa M, Mahatthanatrakul W, Punyo J, Sunbhanich M: Rifampin markedly decreases plasma concentrations of praziquantel in healthy volunteers. Clin Pharmacol Ther. 2002 Nov;72(5):505-13. doi: 10.1067/mcp.2002.129319.","parent_key":"BE0003612"} {"ref-id":"A36611","pubmed-id":8894516,"citation":"McLellan RA, Drobitch RK, Monshouwer M, Renton KW: Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human. Drug Metab Dispos. 1996 Oct;24(10):1134-8.","parent_key":"BE0003543"} {"ref-id":"A190636","pubmed-id":26763401,"citation":"Niwa T, Morimoto M, Hirai T, Hata T, Hayashi M, Imagawa Y: Effect of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activities of human hepatic cytochromes P450. J Toxicol Sci. 2016 Feb;41(1):143-6. doi: 10.2131/jts.41.143.","parent_key":"BE0002887"} {"ref-id":"A14943","pubmed-id":9825837,"citation":"Yaich M, Popon M, Medard Y, Aigrain EJ: In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-deethyloxybutynin in humans. Pharmacogenetics. 1998 Oct;8(5):449-51.","parent_key":"BE0002638"} {"ref-id":"A38703","pubmed-id":9584328,"citation":"Lukkari E, Taavitsainen P, Juhakoski A, Pelkonen O: Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol. 1998 Apr;82(4):161-6. doi: 10.1111/j.1600-0773.1998.tb01418.x.","parent_key":"BE0002638"} {"ref-id":"A183782","pubmed-id":20428289,"citation":"Kennelly MJ: A comparative review of oxybutynin chloride formulations: pharmacokinetics and therapeutic efficacy in overactive bladder. Rev Urol. 2010 Winter;12(1):12-9.","parent_key":"BE0002638"} {"ref-id":"A183785","pubmed-id":18360578,"citation":"McCrery RJ, Appell RA: Oxybutynin: an overview of the available formulations. Ther Clin Risk Manag. 2006 Mar;2(1):19-24.","parent_key":"BE0002638"} {"ref-id":"A38703","pubmed-id":9584328,"citation":"Lukkari E, Taavitsainen P, Juhakoski A, Pelkonen O: Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol. 1998 Apr;82(4):161-6. doi: 10.1111/j.1600-0773.1998.tb01418.x.","parent_key":"BE0002363"} {"ref-id":"A38703","pubmed-id":9584328,"citation":"Lukkari E, Taavitsainen P, Juhakoski A, Pelkonen O: Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol. 1998 Apr;82(4):161-6. doi: 10.1111/j.1600-0773.1998.tb01418.x.","parent_key":"BE0002362"} {"ref-id":"A184820","pubmed-id":17178634,"citation":"Mizushima H, Takanaka K, Abe K, Fukazawa I, Ishizuka H: Stereoselective pharmacokinetics of oxybutynin and N-desethyloxybutynin in vitro and in vivo. Xenobiotica. 2007 Jan;37(1):59-73. doi: 10.1080/00498250600976088.","parent_key":"BE0002362"} {"ref-id":"A15283","pubmed-id":19919601,"citation":"Chang TK, Chen J, Yang G, Yeung EY: Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res. 2010 Jan;48(1):55-64. doi: 10.1111/j.1600-079X.2009.00724.x. Epub 2009 Nov 16.","parent_key":"BE0003543"} {"ref-id":"A15284","pubmed-id":15616152,"citation":"Ma X, Idle JR, Krausz KW, Gonzalez FJ: Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005 Apr;33(4):489-94. Epub 2004 Dec 22.","parent_key":"BE0003543"} {"ref-id":"A15283","pubmed-id":19919601,"citation":"Chang TK, Chen J, Yang G, Yeung EY: Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res. 2010 Jan;48(1):55-64. doi: 10.1111/j.1600-079X.2009.00724.x. Epub 2009 Nov 16.","parent_key":"BE0002433"} {"ref-id":"A15284","pubmed-id":15616152,"citation":"Ma X, Idle JR, Krausz KW, Gonzalez FJ: Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005 Apr;33(4):489-94. Epub 2004 Dec 22.","parent_key":"BE0002433"} {"ref-id":"A15285","pubmed-id":15626586,"citation":"Turpeinen M, Uusitalo J, Jalonen J, Pelkonen O: Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. Eur J Pharm Sci. 2005 Jan;24(1):123-32.","parent_key":"BE0002433"} {"ref-id":"A38975","pubmed-id":11270913,"citation":"Hartter S, Wang X, Weigmann H, Friedberg T, Arand M, Oesch F, Hiemke C: Differential effects of fluvoxamine and other antidepressants on the biotransformation of melatonin. J Clin Psychopharmacol. 2001 Apr;21(2):167-74.","parent_key":"BE0002433"} {"ref-id":"A15283","pubmed-id":19919601,"citation":"Chang TK, Chen J, Yang G, Yeung EY: Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res. 2010 Jan;48(1):55-64. doi: 10.1111/j.1600-079X.2009.00724.x. Epub 2009 Nov 16.","parent_key":"BE0001111"} {"ref-id":"A15284","pubmed-id":15616152,"citation":"Ma X, Idle JR, Krausz KW, Gonzalez FJ: Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005 Apr;33(4):489-94. Epub 2004 Dec 22.","parent_key":"BE0001111"} {"ref-id":"A184151","pubmed-id":29453779,"citation":"Yu Z, Tian X, Peng Y, Sun Z, Wang C, Tang N, Li B, Jian Y, Wang W, Huo X, Ma X: Mitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin-induced apoptosis in neural cancer cells. J Pineal Res. 2018 Aug;65(1):e12478. doi: 10.1111/jpi.12478. Epub 2018 Mar 25.","parent_key":"BE0001111"} {"ref-id":"A15286","pubmed-id":17003850,"citation":"Huuhka K, Riutta A, Haataja R, Ylitalo P, Leinonen E: The effect of CYP2C19 substrate on the metabolism of melatonin in the elderly: A randomized, double-blind, placebo-controlled study. Methods Find Exp Clin Pharmacol. 2006 Sep;28(7):447-50.","parent_key":"BE0003536"} {"ref-id":"A184145","pubmed-id":11317475,"citation":"Facciola G, Hidestrand M, von Bahr C, Tybring G: Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur J Clin Pharmacol. 2001 Mar;56(12):881-8. doi: 10.1007/s002280000245.","parent_key":"BE0003536"} {"ref-id":"A183788","pubmed-id":8946477,"citation":"Nakamura K, Yokoi T, Inoue K, Shimada N, Ohashi N, Kume T, Kamataki T: CYP2D6 is the principal cytochrome P450 responsible for metabolism of the histamine H1 antagonist promethazine in human liver microsomes. Pharmacogenetics. 1996 Oct;6(5):449-57.","parent_key":"BE0002363"} {"ref-id":"A39458","pubmed-id":11936702,"citation":"He N, Zhang WQ, Shockley D, Edeki T: Inhibitory effects of H1-antihistamines on CYP2D6- and CYP2C9-mediated drug metabolic reactions in human liver microsomes. Eur J Clin Pharmacol. 2002 Feb;57(12):847-51.","parent_key":"BE0002793"} {"ref-id":"A1690","pubmed-id":9454781,"citation":"Nakamura K, Yokoi T, Kodama T, Inoue K, Nagashima K, Shimada N, Shimizu T, Kamataki T: Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes. J Pharmacol Exp Ther. 1998 Feb;284(2):437-42.","parent_key":"BE0002363"} {"ref-id":"A1690","pubmed-id":9454781,"citation":"Nakamura K, Yokoi T, Kodama T, Inoue K, Nagashima K, Shimada N, Shimizu T, Kamataki T: Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes. J Pharmacol Exp Ther. 1998 Feb;284(2):437-42.","parent_key":"BE0002638"} {"ref-id":"A1695","pubmed-id":16176117,"citation":"Le Tiec C, Barrail A, Goujard C, Taburet AM: Clinical pharmacokinetics and summary of efficacy and tolerability of atazanavir. Clin Pharmacokinet. 2005;44(10):1035-50.","parent_key":"BE0002638"} {"ref-id":"A1697","pubmed-id":15585441,"citation":"Busti AJ, Hall RG, Margolis DM: Atazanavir for the treatment of human immunodeficiency virus infection. Pharmacotherapy. 2004 Dec;24(12):1732-47.","parent_key":"BE0002638"} {"ref-id":"A1697","pubmed-id":15585441,"citation":"Busti AJ, Hall RG, Margolis DM: Atazanavir for the treatment of human immunodeficiency virus infection. Pharmacotherapy. 2004 Dec;24(12):1732-47.","parent_key":"BE0002793"} {"ref-id":"A37925","pubmed-id":17050648,"citation":"Davies BJ, Coller JK, Somogyi AA, Milne RW, Sallustio BC: CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes. Drug Metab Dispos. 2007 Jan;35(1):128-38. doi: 10.1124/dmd.106.012252. Epub 2006 Oct 18.","parent_key":"BE0002363"} {"ref-id":"A37926","pubmed-id":15025744,"citation":"Davies BJ, Coller JK, James HM, Gillis D, Somogyi AA, Horowitz JD, Morris RG, Sallustio BC: Clinical inhibition of CYP2D6-catalysed metabolism by the antianginal agent perhexiline. Br J Clin Pharmacol. 2004 Apr;57(4):456-63. doi: 10.1046/j.1365-2125.2003.02033.x.","parent_key":"BE0002363"} {"ref-id":"A37925","pubmed-id":17050648,"citation":"Davies BJ, Coller JK, Somogyi AA, Milne RW, Sallustio BC: CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes. Drug Metab Dispos. 2007 Jan;35(1):128-38. doi: 10.1124/dmd.106.012252. Epub 2006 Oct 18.","parent_key":"BE0003549"} {"ref-id":"A37925","pubmed-id":17050648,"citation":"Davies BJ, Coller JK, Somogyi AA, Milne RW, Sallustio BC: CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes. Drug Metab Dispos. 2007 Jan;35(1):128-38. doi: 10.1124/dmd.106.012252. Epub 2006 Oct 18.","parent_key":"BE0002638"} {"ref-id":"A174574","pubmed-id":17020955,"citation":"Akutsu T, Kobayashi K, Sakurada K, Ikegaya H, Furihata T, Chiba K: Identification of human cytochrome p450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos. 2007 Jan;35(1):72-8. doi: 10.1124/dmd.106.012088. Epub 2006 Oct 4.","parent_key":"BE0002363"} {"ref-id":"A181286","pubmed-id":11270914,"citation":"Lessard E, Yessine MA, Hamelin BA, Gauvin C, Labbe L, O'Hara G, LeBlanc J, Turgeon J: Diphenhydramine alters the disposition of venlafaxine through inhibition of CYP2D6 activity in humans. J Clin Psychopharmacol. 2001 Apr;21(2):175-84.","parent_key":"BE0002363"} {"ref-id":"A14945","pubmed-id":11038166,"citation":"Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U: Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos. 2000 Nov;28(11):1369-78.","parent_key":"BE0002638"} {"ref-id":"A14945","pubmed-id":11038166,"citation":"Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U: Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos. 2000 Nov;28(11):1369-78.","parent_key":"BE0002362"} {"ref-id":"A14945","pubmed-id":11038166,"citation":"Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U: Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos. 2000 Nov;28(11):1369-78.","parent_key":"BE0002887"} {"ref-id":"A14737","pubmed-id":11523064,"citation":"Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64.","parent_key":"BE0003536"} {"ref-id":"A18011","pubmed-id":23580084,"citation":"Stormo C, Bogsrud MP, Hermann M, Asberg A, Piehler AP, Retterstol K, Kringen MK: UGT1A1*28 is associated with decreased systemic exposure of atorvastatin lactone. Mol Diagn Ther. 2013 Aug;17(4):233-7. doi: 10.1007/s40291-013-0031-x.","parent_key":"BE0003677"} {"ref-id":"A19474","pubmed-id":14531725,"citation":"Lennernas H: Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42(13):1141-60.","parent_key":"BE0003677"} {"ref-id":"A39118","pubmed-id":11549104,"citation":"Zhou H, Khalilieh S, Svendsen K, Pommier F, Osborne S, Appel-Dingemanse S, Lasseter K, McLeod JF: Tegaserod coadministration does not alter the pharmacokinetics of theophylline in healthy subjects. J Clin Pharmacol. 2001 Sep;41(9):987-93.","parent_key":"BE0002433"} {"ref-id":"A38972","pubmed-id":11560869,"citation":"Vickers AE, Zollinger M, Dannecker R, Tynes R, Heitz F, Fischer V: In vitro metabolism of tegaserod in human liver and intestine: assessment of drug interactions. Drug Metab Dispos. 2001 Oct;29(10):1269-76.","parent_key":"BE0002433"} {"ref-id":"A38972","pubmed-id":11560869,"citation":"Vickers AE, Zollinger M, Dannecker R, Tynes R, Heitz F, Fischer V: In vitro metabolism of tegaserod in human liver and intestine: assessment of drug interactions. Drug Metab Dispos. 2001 Oct;29(10):1269-76.","parent_key":"BE0002887"} {"ref-id":"A38972","pubmed-id":11560869,"citation":"Vickers AE, Zollinger M, Dannecker R, Tynes R, Heitz F, Fischer V: In vitro metabolism of tegaserod in human liver and intestine: assessment of drug interactions. Drug Metab Dispos. 2001 Oct;29(10):1269-76.","parent_key":"BE0002363"} {"ref-id":"A38972","pubmed-id":11560869,"citation":"Vickers AE, Zollinger M, Dannecker R, Tynes R, Heitz F, Fischer V: In vitro metabolism of tegaserod in human liver and intestine: assessment of drug interactions. Drug Metab Dispos. 2001 Oct;29(10):1269-76.","parent_key":"BE0003533"} {"ref-id":"A17767","pubmed-id":20599501,"citation":"Novotna A, Doricakova A, Vrzal R, Maurel P, Pavek P, Dvorak Z: Investigation of Orlistat effects on PXR activation and CYP3A4 expression in primary human hepatocytes and human intestinal LS174T cells. Eur J Pharm Sci. 2010 Oct 9;41(2):276-80. doi: 10.1016/j.ejps.2010.06.019. Epub 2010 Jul 3.","parent_key":"BE0002638"} {"ref-id":"A38570","pubmed-id":7773543,"citation":"Kimonen T, Juvonen RO, Alhava E, Pasanen M: The inhibition of CYP enzymes in mouse and human liver by pilocarpine. Br J Pharmacol. 1995 Feb;114(4):832-6.","parent_key":"BE0003336"} {"ref-id":"A184022","pubmed-id":22051186,"citation":"DeVore NM, Meneely KM, Bart AG, Stephens ES, Battaile KP, Scott EE: Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine. FEBS J. 2012 May;279(9):1621-31. doi: 10.1111/j.1742-4658.2011.08412.x. Epub 2011 Nov 25.","parent_key":"BE0003336"} {"ref-id":"A184025","pubmed-id":21418183,"citation":"Ueng YF, Chen CC, Chung YT, Liu TY, Chang YP, Lo WS, Murayama N, Yamazaki H, Soucek P, Chau GY, Chi CW, Chen RM, Li DT: Mechanism-based inhibition of cytochrome P450 (CYP)2A6 by chalepensin in recombinant systems, in human liver microsomes and in mice in vivo. Br J Pharmacol. 2011 Jul;163(6):1250-62. doi: 10.1111/j.1476-5381.2011.01341.x.","parent_key":"BE0003336"} {"ref-id":"A38570","pubmed-id":7773543,"citation":"Kimonen T, Juvonen RO, Alhava E, Pasanen M: The inhibition of CYP enzymes in mouse and human liver by pilocarpine. Br J Pharmacol. 1995 Feb;114(4):832-6.","parent_key":"BE0002638"} {"ref-id":"A184409","pubmed-id":17178767,"citation":"Endo T, Ban M, Hirata K, Yamamoto A, Hara Y, Momose Y: Involvement of CYP2A6 in the formation of a novel metabolite, 3-hydroxypilocarpine, from pilocarpine in human liver microsomes. Drug Metab Dispos. 2007 Mar;35(3):476-83. doi: 10.1124/dmd.106.013425. Epub 2006 Dec 18.","parent_key":"BE0002638"} {"ref-id":"A184652","pubmed-id":30103751,"citation":"Avula B, Tekwani BL, Chaurasiya ND, Fasinu P, Dhammika Nanayakkara NP, Bhandara Herath HMT, Wang YH, Bae JY, Khan SI, Elsohly MA, McChesney JD, Zimmerman PA, Khan IA, Walker LA: Metabolism of primaquine in normal human volunteers: investigation of phase I and phase II metabolites from plasma and urine using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Malar J. 2018 Aug 13;17(1):294. doi: 10.1186/s12936-018-2433-z.","parent_key":"BE0002638"} {"ref-id":"A184655","pubmed-id":19616568,"citation":"Ganesan S, Tekwani BL, Sahu R, Tripathi LM, Walker LA: Cytochrome P(450)-dependent toxic effects of primaquine on human erythrocytes. Toxicol Appl Pharmacol. 2009 Nov 15;241(1):14-22. doi: 10.1016/j.taap.2009.07.012. Epub 2009 Jul 17.","parent_key":"BE0002638"} {"ref-id":"A39078","pubmed-id":10930040,"citation":"Shoda T, Mitsumori K, Onodera H, Toyoda K, Uneyama C, Takada K, Hirose M: Liver tumor-promoting effect of beta-naphthoflavone, a strong CYP 1A1/2 inducer, and the relationship between CYP 1A1/2 induction and Cx32 decrease in its hepatocarcinogenesis in the rat. Toxicol Pathol. 2000 Jul-Aug;28(4):540-7. doi: 10.1177/019262330002800406.","parent_key":"BE0002433"} {"ref-id":"A39271","pubmed-id":7621845,"citation":"Masimirembwa CM, Hasler JA, Johansson I: Inhibitory effects of antiparasitic drugs on cytochrome P450 2D6. Eur J Clin Pharmacol. 1995;48(1):35-8.","parent_key":"BE0002363"} {"ref-id":"A184310","pubmed-id":11259546,"citation":"Werlinder V, Backlund M, Zhukov A, Ingelman-Sundberg M: Transcriptional and post-translational regulation of CYP1A1 by primaquine. J Pharmacol Exp Ther. 2001 Apr;297(1):206-14.","parent_key":"BE0003543"} {"ref-id":"A38769","pubmed-id":11159803,"citation":"Easterbrook J, Lu C, Sakai Y, Li AP: Effects of organic solvents on the activities of cytochrome P450 isoforms, UDP-dependent glucuronyl transferase, and phenol sulfotransferase in human hepatocytes. Drug Metab Dispos. 2001 Feb;29(2):141-4.","parent_key":"BE0003536"} {"ref-id":"A37586","pubmed-id":9929510,"citation":"Busby WF Jr, Ackermann JM, Crespi CL: Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos. 1999 Feb;27(2):246-9.","parent_key":"BE0002363"} {"ref-id":"A14946","pubmed-id":11955666,"citation":"Breinholt VM, Offord EA, Brouwer C, Nielsen SE, Brosen K, Friedberg T: In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food Chem Toxicol. 2002 May;40(5):609-16.","parent_key":"BE0002433"} {"ref-id":"A38021","pubmed-id":8937853,"citation":"Kocarek TA, Reddy AB: Regulation of cytochrome P450 expression by inhibitors of hydroxymethylglutaryl-coenzyme A reductase in primary cultured rat hepatocytes and in rat liver. Drug Metab Dispos. 1996 Nov;24(11):1197-204.","parent_key":"BE0003543"} {"ref-id":"A14947","pubmed-id":10064574,"citation":"Fischer V, Johanson L, Heitz F, Tullman R, Graham E, Baldeck JP, Robinson WT: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos. 1999 Mar;27(3):410-6.","parent_key":"BE0003543"} {"ref-id":"A14947","pubmed-id":10064574,"citation":"Fischer V, Johanson L, Heitz F, Tullman R, Graham E, Baldeck JP, Robinson WT: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos. 1999 Mar;27(3):410-6.","parent_key":"BE0002638"} {"ref-id":"A1770","pubmed-id":19663817,"citation":"Toda T, Eliasson E, Ask B, Inotsume N, Rane A: Roles of different CYP enzymes in the formation of specific fluvastatin metabolites by human liver microsomes. Basic Clin Pharmacol Toxicol. 2009 Nov;105(5):327-32. doi: 10.1111/j.1742-7843.2009.00453.x. Epub 2009 Aug 6.","parent_key":"BE0002638"} {"ref-id":"A14948","pubmed-id":11368292,"citation":"Scripture CD, Pieper JA: Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet. 2001;40(4):263-81.","parent_key":"BE0002638"} {"ref-id":"A184142","pubmed-id":23776402,"citation":"Lee CK, Choi JS, Bang JS: Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin. Korean J Physiol Pharmacol. 2013 Jun;17(3):245-51. doi: 10.4196/kjpp.2013.17.3.245. Epub 2013 Jun 11.","parent_key":"BE0002638"} {"ref-id":"A18056","pubmed-id":15284534,"citation":"Kivisto KT, Niemi M, Schaeffeler E, Pitkala K, Tilvis R, Fromm MF, Schwab M, Eichelbaum M, Strandberg T: Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics. 2004 Aug;14(8):523-5.","parent_key":"BE0002362"} {"ref-id":"A14947","pubmed-id":10064574,"citation":"Fischer V, Johanson L, Heitz F, Tullman R, Graham E, Baldeck JP, Robinson WT: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos. 1999 Mar;27(3):410-6.","parent_key":"BE0002887"} {"ref-id":"A1770","pubmed-id":19663817,"citation":"Toda T, Eliasson E, Ask B, Inotsume N, Rane A: Roles of different CYP enzymes in the formation of specific fluvastatin metabolites by human liver microsomes. Basic Clin Pharmacol Toxicol. 2009 Nov;105(5):327-32. doi: 10.1111/j.1742-7843.2009.00453.x. Epub 2009 Aug 6.","parent_key":"BE0002887"} {"ref-id":"A14948","pubmed-id":11368292,"citation":"Scripture CD, Pieper JA: Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet. 2001;40(4):263-81.","parent_key":"BE0002887"} {"ref-id":"A14947","pubmed-id":10064574,"citation":"Fischer V, Johanson L, Heitz F, Tullman R, Graham E, Baldeck JP, Robinson WT: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos. 1999 Mar;27(3):410-6.","parent_key":"BE0002793"} {"ref-id":"A1770","pubmed-id":19663817,"citation":"Toda T, Eliasson E, Ask B, Inotsume N, Rane A: Roles of different CYP enzymes in the formation of specific fluvastatin metabolites by human liver microsomes. Basic Clin Pharmacol Toxicol. 2009 Nov;105(5):327-32. doi: 10.1111/j.1742-7843.2009.00453.x. Epub 2009 Aug 6.","parent_key":"BE0002793"} {"ref-id":"A14948","pubmed-id":11368292,"citation":"Scripture CD, Pieper JA: Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet. 2001;40(4):263-81.","parent_key":"BE0002793"} {"ref-id":"A39346","pubmed-id":10197301,"citation":"Meadowcroft AM, Williamson KM, Patterson JH, Hinderliter AL, Pieper JA: The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers. J Clin Pharmacol. 1999 Apr;39(4):418-24.","parent_key":"BE0002793"} {"ref-id":"A39347","pubmed-id":22594566,"citation":"Wu JC, Nafziger AN, Bertino JS Jr, Ma JD: Limitations of S-warfarin truncated area under the concentration-time curve to predict cytochrome P450 2c9 activity. Drug Metab Lett. 2012 Jun 1;6(2):94-101.","parent_key":"BE0002793"} {"ref-id":"A14948","pubmed-id":11368292,"citation":"Scripture CD, Pieper JA: Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet. 2001;40(4):263-81.","parent_key":"BE0002363"} {"ref-id":"A15674","pubmed-id":14971821,"citation":"Sevilla-Mantilla C, Ortega L, Agundez JA, Fernandez-Gutierrez B, Ladero JM, Diaz-Rubio M: Leflunomide-induced acute hepatitis. Dig Liver Dis. 2004 Jan;36(1):82-4.","parent_key":"BE0002793"} {"ref-id":"A36850","pubmed-id":12074690,"citation":"Rozman B: Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet. 2002;41(6):421-30. doi: 10.2165/00003088-200241060-00003.","parent_key":"BE0002793"} {"ref-id":"A37835","pubmed-id":16388406,"citation":"Sakaeda T, Fujino H, Komoto C, Kakumoto M, Jin JS, Iwaki K, Nishiguchi K, Nakamura T, Okamura N, Okumura K: Effects of acid and lactone forms of eight HMG-CoA reductase inhibitors on CYP-mediated metabolism and MDR1-mediated transport. Pharm Res. 2006 Mar;23(3):506-12. doi: 10.1007/s11095-005-9371-5. Epub 2006 Jan 1.","parent_key":"BE0002793"} {"ref-id":"A34483","pubmed-id":12451430,"citation":"Cooper KJ, Martin PD, Dane AL, Warwick MJ, Schneck DW, Cantarini MV: The effect of fluconazole on the pharmacokinetics of rosuvastatin. Eur J Clin Pharmacol. 2002 Nov;58(8):527-31. doi: 10.1007/s00228-002-0508-8. Epub 2002 Oct 3.","parent_key":"BE0002793"} {"ref-id":"A34325","pubmed-id":9580580,"citation":"Desta Z, Kerbusch T, Soukhova N, Richard E, Ko JW, Flockhart DA: Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther. 1998 May;285(2):428-37.","parent_key":"BE0002638"} {"ref-id":"A178867","pubmed-id":28615787,"citation":"Naguy A: Pimozide: An Old Wine in a New Bottle! Indian J Psychol Med. 2017 May-Jun;39(3):382-383. doi: 10.4103/IJPSYM.IJPSYM_400_16.","parent_key":"BE0002638"} {"ref-id":"A34325","pubmed-id":9580580,"citation":"Desta Z, Kerbusch T, Soukhova N, Richard E, Ko JW, Flockhart DA: Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther. 1998 May;285(2):428-37.","parent_key":"BE0002433"} {"ref-id":"A34325","pubmed-id":9580580,"citation":"Desta Z, Kerbusch T, Soukhova N, Richard E, Ko JW, Flockhart DA: Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther. 1998 May;285(2):428-37.","parent_key":"BE0002363"} {"ref-id":"A33216","pubmed-id":16014372,"citation":"Janney LM, Waterbury NV: Capecitabine-warfarin interaction. Ann Pharmacother. 2005 Sep;39(9):1546-51. doi: 10.1345/aph.1G153. Epub 2005 Jul 12.","parent_key":"BE0002793"} {"ref-id":"A201863","pubmed-id":22702493,"citation":"Seredina TA, Goreva OB, Talaban VO, Grishanova AY, Lyakhovich VV: Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients. BMC Med Genet. 2012 Jun 15;13:45. doi: 10.1186/1471-2350-13-45.","parent_key":"BE0002793"} {"ref-id":"A38520","pubmed-id":16581945,"citation":"Huang Y, Okochi H, May BC, Legname G, Prusiner SB, Benet LZ, Guglielmo BJ, Lin ET: Quinacrine is mainly metabolized to mono-desethyl quinacrine by CYP3A4/5 and its brain accumulation is limited by P-glycoprotein. Drug Metab Dispos. 2006 Jul;34(7):1136-44. doi: 10.1124/dmd.105.008664. Epub 2006 Mar 31.","parent_key":"BE0002638"} {"ref-id":"A38520","pubmed-id":16581945,"citation":"Huang Y, Okochi H, May BC, Legname G, Prusiner SB, Benet LZ, Guglielmo BJ, Lin ET: Quinacrine is mainly metabolized to mono-desethyl quinacrine by CYP3A4/5 and its brain accumulation is limited by P-glycoprotein. Drug Metab Dispos. 2006 Jul;34(7):1136-44. doi: 10.1124/dmd.105.008664. Epub 2006 Mar 31.","parent_key":"BE0002362"} {"ref-id":"A14957","pubmed-id":12143142,"citation":"Rojdmark S, von Bahr C: [Metabolic interaction between psychopharmaceuticals. Probable cause of exacerbation of hypothyroidism according to a case report]. Lakartidningen. 2002 Jun 20;99(25):2854-6.","parent_key":"BE0002638"} {"ref-id":"A14956","pubmed-id":15547048,"citation":"Obach RS, Cox LM, Tremaine LM: Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005 Feb;33(2):262-70. Epub 2004 Nov 16.","parent_key":"BE0002638"} {"ref-id":"A14957","pubmed-id":12143142,"citation":"Rojdmark S, von Bahr C: [Metabolic interaction between psychopharmaceuticals. Probable cause of exacerbation of hypothyroidism according to a case report]. Lakartidningen. 2002 Jun 20;99(25):2854-6.","parent_key":"BE0002363"} {"ref-id":"A14956","pubmed-id":15547048,"citation":"Obach RS, Cox LM, Tremaine LM: Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005 Feb;33(2):262-70. Epub 2004 Nov 16.","parent_key":"BE0002363"} {"ref-id":"A14722","pubmed-id":16910628,"citation":"Micallef J, Fakra E, Blin O: [Use of antidepressant drugs in schizophrenic patients with depression]. Encephale. 2006 Mar-Apr;32(2 Pt 1):263-9.","parent_key":"BE0003536"} {"ref-id":"A14957","pubmed-id":12143142,"citation":"Rojdmark S, von Bahr C: [Metabolic interaction between psychopharmaceuticals. Probable cause of exacerbation of hypothyroidism according to a case report]. Lakartidningen. 2002 Jun 20;99(25):2854-6.","parent_key":"BE0003536"} {"ref-id":"A14956","pubmed-id":15547048,"citation":"Obach RS, Cox LM, Tremaine LM: Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005 Feb;33(2):262-70. Epub 2004 Nov 16.","parent_key":"BE0003536"} {"ref-id":"A38588","pubmed-id":8861776,"citation":"Catterson ML, Preskorn SH: Pharmacokinetics of selective serotonin reuptake inhibitors: clinical relevance. Pharmacol Toxicol. 1996 Apr;78(4):203-8.","parent_key":"BE0003536"} {"ref-id":"A183791","pubmed-id":26830411,"citation":"Yuce-Artun N, Baskak B, Ozel-Kizil ET, Ozdemir H, Uckun Z, Devrimci-Ozguven H, Suzen HS: Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients. Int J Clin Pharm. 2016 Apr;38(2):388-94. doi: 10.1007/s11096-016-0259-8. Epub 2016 Jan 30.","parent_key":"BE0003536"} {"ref-id":"A14956","pubmed-id":15547048,"citation":"Obach RS, Cox LM, Tremaine LM: Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005 Feb;33(2):262-70. Epub 2004 Nov 16.","parent_key":"BE0002793"} {"ref-id":"A39490","pubmed-id":9068933,"citation":"Tremaine LM, Wilner KD, Preskorn SH: A study of the potential effect of sertraline on the pharmacokinetics and protein binding of tolbutamide. Clin Pharmacokinet. 1997;32 Suppl 1:31-6.","parent_key":"BE0002793"} {"ref-id":"A39491","pubmed-id":9068934,"citation":"Apseloff G, Wilner KD, Gerber N, Tremaine LM: Effect of sertraline on protein binding of warfarin. Clin Pharmacokinet. 1997;32 Suppl 1:37-42.","parent_key":"BE0002793"} {"ref-id":"A14956","pubmed-id":15547048,"citation":"Obach RS, Cox LM, Tremaine LM: Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005 Feb;33(2):262-70. Epub 2004 Nov 16.","parent_key":"BE0003549"} {"ref-id":"A183791","pubmed-id":26830411,"citation":"Yuce-Artun N, Baskak B, Ozel-Kizil ET, Ozdemir H, Uckun Z, Devrimci-Ozguven H, Suzen HS: Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients. Int J Clin Pharm. 2016 Apr;38(2):388-94. doi: 10.1007/s11096-016-0259-8. Epub 2016 Jan 30.","parent_key":"BE0003549"} {"ref-id":"A183794","pubmed-id":21928040,"citation":"Molnari JC, Hassan HE, Myers AL: Effects of sertraline on the pharmacokinetics of bupropion and its major metabolite, hydroxybupropion, in mice. Eur J Drug Metab Pharmacokinet. 2012 Mar;37(1):57-63. doi: 10.1007/s13318-011-0065-6. Epub 2011 Sep 17.","parent_key":"BE0003549"} {"ref-id":"A1848","pubmed-id":18671470,"citation":"Sharma B, Henderson DC: Sibutramine: current status as an anti-obesity drug and its future perspectives. Expert Opin Pharmacother. 2008 Aug;9(12):2161-73. doi: 10.1517/14656566.9.12.2161 .","parent_key":"BE0002638"} {"ref-id":"A185096","pubmed-id":10492502,"citation":"Luque CA, Rey JA: Sibutramine: a serotonin-norepinephrine reuptake-inhibitor for the treatment of obesity. Ann Pharmacother. 1999 Sep;33(9):968-78. doi: 10.1345/aph.18319.","parent_key":"BE0002638"} {"ref-id":"A6330","pubmed-id":18991633,"citation":"Igaz P, Tombol Z, Szabo PM, Liko I, Racz K: Steroid biosynthesis inhibitors in the therapy of hypercortisolism: theory and practice. Curr Med Chem. 2008;15(26):2734-47.","parent_key":"BE0002638"} {"ref-id":"A35889","pubmed-id":25535576,"citation":"Comte-Perret S, Zanchi A, Gomez F: Long-term low-dose ketoconazole treatment in bilateral macronodular adrenal hyperplasia. Endocrinol Diabetes Metab Case Rep. 2014;2014:140083. doi: 10.1530/EDM-14-0083. Epub 2014 Dec 1.","parent_key":"BE0002638"} {"ref-id":"A38551","pubmed-id":25429674,"citation":"Niwa T, Imagawa Y, Yamazaki H: Drug interactions between nine antifungal agents and drugs metabolized by human cytochromes P450. Curr Drug Metab. 2014;15(7):651-79.","parent_key":"BE0002793"} {"ref-id":"A33239","pubmed-id":15135088,"citation":"Monostory K, Hazai E, Vereczkey L: Inhibition of cytochrome P450 enzymes participating in p-nitrophenol hydroxylation by drugs known as CYP2E1 inhibitors. Chem Biol Interact. 2004 Apr 15;147(3):331-40. doi: 10.1016/j.cbi.2004.03.003.","parent_key":"BE0002793"} {"ref-id":"A33239","pubmed-id":15135088,"citation":"Monostory K, Hazai E, Vereczkey L: Inhibition of cytochrome P450 enzymes participating in p-nitrophenol hydroxylation by drugs known as CYP2E1 inhibitors. Chem Biol Interact. 2004 Apr 15;147(3):331-40. doi: 10.1016/j.cbi.2004.03.003.","parent_key":"BE0003536"} {"ref-id":"A33190","pubmed-id":10709776,"citation":"Venkatakrishnan K, von Moltke LL, Greenblatt DJ: Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet. 2000 Feb;38(2):111-80. doi: 10.2165/00003088-200038020-00002.","parent_key":"BE0003336"} {"ref-id":"A37858","pubmed-id":16141569,"citation":"Niwa T, Inoue-Yamamoto S, Shiraga T, Takagi A: Effect of antifungal drugs on cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 activities in human liver microsomes. Biol Pharm Bull. 2005 Sep;28(9):1813-6.","parent_key":"BE0003533"} {"ref-id":"A38551","pubmed-id":25429674,"citation":"Niwa T, Imagawa Y, Yamazaki H: Drug interactions between nine antifungal agents and drugs metabolized by human cytochromes P450. Curr Drug Metab. 2014;15(7):651-79.","parent_key":"BE0002638"} {"ref-id":"A17830","pubmed-id":11854151,"citation":"Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM: Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002 Mar;30(3):314-8.","parent_key":"BE0003549"} {"ref-id":"A37858","pubmed-id":16141569,"citation":"Niwa T, Inoue-Yamamoto S, Shiraga T, Takagi A: Effect of antifungal drugs on cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 activities in human liver microsomes. Biol Pharm Bull. 2005 Sep;28(9):1813-6.","parent_key":"BE0002363"} {"ref-id":"A214517","pubmed-id":28057172,"citation":"Niwa T, Imagawa Y: Substrate Specificity of Human Cytochrome P450 (CYP) 2C Subfamily and Effect of Azole Antifungal Agents on CYP2C8. J Pharm Pharm Sci. 2016 Oct - Dec;19(4):423-429. doi: 10.18433/J31S53.","parent_key":"BE0002887"} {"ref-id":"A6342","pubmed-id":7648771,"citation":"Yasuda SU, Wellstein A, Likhari P, Barbey JT, Woosley RL: Chlorpheniramine plasma concentration and histamine H1-receptor occupancy. Clin Pharmacol Ther. 1995 Aug;58(2):210-20.","parent_key":"BE0002363"} {"ref-id":"A18854","pubmed-id":11994058,"citation":"Yasuda SU, Zannikos P, Young AE, Fried KM, Wainer IW, Woosley RL: The roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. Br J Clin Pharmacol. 2002 May;53(5):519-25.","parent_key":"BE0002363"} {"ref-id":"A14958","pubmed-id":15634941,"citation":"Lee SJ, Bell DA, Coulter SJ, Ghanayem B, Goldstein JA: Recombinant CYP3A4*17 is defective in metabolizing the hypertensive drug nifedipine, and the CYP3A4*17 allele may occur on the same chromosome as CYP3A5*3, representing a new putative defective CYP3A haplotype. J Pharmacol Exp Ther. 2005 Apr;313(1):302-9. Epub 2005 Jan 5.","parent_key":"BE0002638"} {"ref-id":"A184691","pubmed-id":26516577,"citation":"Ramachandran SD, Vivares A, Klieber S, Hewitt NJ, Muenst B, Heinz S, Walles H, Braspenning J: Applicability of second-generation upcyte(R) human hepatocytes for use in CYP inhibition and induction studies. Pharmacol Res Perspect. 2015 Oct;3(5):e00161. doi: 10.1002/prp2.161. Epub 2015 Aug 10.","parent_key":"BE0002638"} {"ref-id":"A15150","pubmed-id":12814972,"citation":"Patki KC, Von Moltke LL, Greenblatt DJ: In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003 Jul;31(7):938-44.","parent_key":"BE0002638"} {"ref-id":"A14786","pubmed-id":10805063,"citation":"Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T: Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 Feb-Mar;55(11-12):843-52.","parent_key":"BE0002433"} {"ref-id":"A184691","pubmed-id":26516577,"citation":"Ramachandran SD, Vivares A, Klieber S, Hewitt NJ, Muenst B, Heinz S, Walles H, Braspenning J: Applicability of second-generation upcyte(R) human hepatocytes for use in CYP inhibition and induction studies. Pharmacol Res Perspect. 2015 Oct;3(5):e00161. doi: 10.1002/prp2.161. Epub 2015 Aug 10.","parent_key":"BE0003549"} {"ref-id":"A33192","pubmed-id":11560876,"citation":"Drocourt L, Pascussi JM, Assenat E, Fabre JM, Maurel P, Vilarem MJ: Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab Dispos. 2001 Oct;29(10):1325-31.","parent_key":"BE0002793"} {"ref-id":"A39456","pubmed-id":11956677,"citation":"Miller JL, Trepanier LA: Inhibition by atovaquone of CYP2C9-mediated sulphamethoxazole hydroxylamine formation. Eur J Clin Pharmacol. 2002 Apr;58(1):69-72. doi: 10.1007/s00228-002-0424-y. Epub 2002 Mar 7.","parent_key":"BE0002793"} {"ref-id":"A14959","pubmed-id":11038157,"citation":"Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T: A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos. 2000 Nov;28(11):1303-10.","parent_key":"BE0002638"} {"ref-id":"A33181","pubmed-id":10718780,"citation":"Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000 Mar;49(3):244-53. doi: 10.1046/j.1365-2125.2000.00134.x.","parent_key":"BE0002638"} {"ref-id":"A14959","pubmed-id":11038157,"citation":"Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T: A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos. 2000 Nov;28(11):1303-10.","parent_key":"BE0002887"} {"ref-id":"A33201","pubmed-id":12688833,"citation":"Yamreudeewong W, DeBisschop M, Martin LG, Lower DL: Potentially significant drug interactions of class III antiarrhythmic drugs. Drug Saf. 2003;26(6):421-38. doi: 10.2165/00002018-200326060-00004.","parent_key":"BE0002363"} {"ref-id":"A33181","pubmed-id":10718780,"citation":"Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000 Mar;49(3):244-53. doi: 10.1046/j.1365-2125.2000.00134.x.","parent_key":"BE0002363"} {"ref-id":"A181373","pubmed-id":17220566,"citation":"Fukumoto K, Kobayashi T, Tachibana K, Kato R, Tanaka K, Komamura K, Kamakura S, Kitakaze M, Ueno K: Effect of amiodarone on the serum concentration/dose ratio of metoprolol in patients with cardiac arrhythmia. Drug Metab Pharmacokinet. 2006 Dec;21(6):501-5.","parent_key":"BE0002363"} {"ref-id":"A181376","pubmed-id":7897605,"citation":"Jaruratanasirikul S, Hortiwakul R: The inhibitory effect of amiodarone and desethylamiodarone on dextromethorphan O-demethylation in human and rat liver microsomes. J Pharm Pharmacol. 1994 Nov;46(11):933-5. doi: 10.1111/j.2042-7158.1994.tb05721.x.","parent_key":"BE0002363"} {"ref-id":"A33201","pubmed-id":12688833,"citation":"Yamreudeewong W, DeBisschop M, Martin LG, Lower DL: Potentially significant drug interactions of class III antiarrhythmic drugs. Drug Saf. 2003;26(6):421-38. doi: 10.2165/00002018-200326060-00004.","parent_key":"BE0002793"} {"ref-id":"A33202","pubmed-id":11907638,"citation":"Naganuma M, Shiga T, Nishikata K, Tsuchiya T, Kasanuki H, Fujii E: Role of desethylamiodarone in the anticoagulant effect of concurrent amiodarone and warfarin therapy. J Cardiovasc Pharmacol Ther. 2001 Oct;6(4):363-7. doi: 10.1177/107424840100600405.","parent_key":"BE0002793"} {"ref-id":"A33203","pubmed-id":1563209,"citation":"Heimark LD, Wienkers L, Kunze K, Gibaldi M, Eddy AC, Trager WF, O'Reilly RA, Goulart DA: The mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther. 1992 Apr;51(4):398-407.","parent_key":"BE0002793"} {"ref-id":"A33202","pubmed-id":11907638,"citation":"Naganuma M, Shiga T, Nishikata K, Tsuchiya T, Kasanuki H, Fujii E: Role of desethylamiodarone in the anticoagulant effect of concurrent amiodarone and warfarin therapy. J Cardiovasc Pharmacol Ther. 2001 Oct;6(4):363-7. doi: 10.1177/107424840100600405.","parent_key":"BE0002433"} {"ref-id":"A184205","pubmed-id":26296708,"citation":"McDonald MG, Au NT, Rettie AE: P450-Based Drug-Drug Interactions of Amiodarone and its Metabolites: Diversity of Inhibitory Mechanisms. Drug Metab Dispos. 2015 Nov;43(11):1661-9. doi: 10.1124/dmd.115.065623. Epub 2015 Aug 21.","parent_key":"BE0002433"} {"ref-id":"A14959","pubmed-id":11038157,"citation":"Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T: A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos. 2000 Nov;28(11):1303-10.","parent_key":"BE0003536"} {"ref-id":"A33181","pubmed-id":10718780,"citation":"Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000 Mar;49(3):244-53. doi: 10.1046/j.1365-2125.2000.00134.x.","parent_key":"BE0003536"} {"ref-id":"A14938","pubmed-id":18445370,"citation":"Elsherbiny ME, El-Kadi AO, Brocks DR: The metabolism of amiodarone by various CYP isoenzymes of human and rat, and the inhibitory influence of ketoconazole. J Pharm Pharm Sci. 2008;11(1):147-59.","parent_key":"BE0003543"} {"ref-id":"A35833","pubmed-id":27113703,"citation":"Wu Q, Ning B, Xuan J, Ren Z, Guo L, Bryant MS: The role of CYP 3A4 and 1A1 in amiodarone-induced hepatocellular toxicity. Toxicol Lett. 2016 Jun 24;253:55-62. doi: 10.1016/j.toxlet.2016.04.016. Epub 2016 Apr 22.","parent_key":"BE0003543"} {"ref-id":"A33181","pubmed-id":10718780,"citation":"Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T: Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000 Mar;49(3):244-53. doi: 10.1046/j.1365-2125.2000.00134.x.","parent_key":"BE0003336"} {"ref-id":"A184364","pubmed-id":18541345,"citation":"Yao Y, Han WW, Zhou YH, Li ZS, Li Q, Chen XY, Zhong DF: The metabolism of CYP2C9 and CYP2C19 for gliclazide by homology modeling and docking study. Eur J Med Chem. 2009 Feb;44(2):854-61. doi: 10.1016/j.ejmech.2008.04.015. Epub 2008 May 2.","parent_key":"BE0002793"} {"ref-id":"A19463","pubmed-id":17517049,"citation":"Elliot DJ, Suharjono, Lewis BC, Gillam EM, Birkett DJ, Gross AS, Miners JO: Identification of the human cytochromes P450 catalysing the rate-limiting pathways of gliclazide elimination. Br J Clin Pharmacol. 2007 Oct;64(4):450-7. Epub 2007 May 22.","parent_key":"BE0002793"} {"ref-id":"A20312","pubmed-id":17298483,"citation":"Zhang Y, Si D, Chen X, Lin N, Guo Y, Zhou H, Zhong D: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br J Clin Pharmacol. 2007 Jul;64(1):67-74. Epub 2007 Feb 12.","parent_key":"BE0003536"} {"ref-id":"A184364","pubmed-id":18541345,"citation":"Yao Y, Han WW, Zhou YH, Li ZS, Li Q, Chen XY, Zhong DF: The metabolism of CYP2C9 and CYP2C19 for gliclazide by homology modeling and docking study. Eur J Med Chem. 2009 Feb;44(2):854-61. doi: 10.1016/j.ejmech.2008.04.015. Epub 2008 May 2.","parent_key":"BE0003536"} {"ref-id":"A19463","pubmed-id":17517049,"citation":"Elliot DJ, Suharjono, Lewis BC, Gillam EM, Birkett DJ, Gross AS, Miners JO: Identification of the human cytochromes P450 catalysing the rate-limiting pathways of gliclazide elimination. Br J Clin Pharmacol. 2007 Oct;64(4):450-7. Epub 2007 May 22.","parent_key":"BE0003536"} {"ref-id":"A33206","pubmed-id":9152599,"citation":"Grimm SW, Dyroff MC: Inhibition of human drug metabolizing cytochromes P450 by anastrozole, a potent and selective inhibitor of aromatase. Drug Metab Dispos. 1997 May;25(5):598-602.","parent_key":"BE0002793"} {"ref-id":"A33207","pubmed-id":8822040,"citation":"Horsmans Y, Kanyinda JM, Desager JP: Relationship between mephenytoin, phenytoin and tolbutamide hydroxylations in healthy African subjects. Pharmacol Toxicol. 1996 Feb;78(2):86-8.","parent_key":"BE0002793"} {"ref-id":"A33213","pubmed-id":10725317,"citation":"Komatsu K, Ito K, Nakajima Y, Kanamitsu Si, Imaoka S, Funae Y, Green CE, Tyson CA, Shimada N, Sugiyama Y: Prediction of in vivo drug-drug interactions between tolbutamide and various sulfonamides in humans based on in vitro experiments. Drug Metab Dispos. 2000 Apr;28(4):475-81.","parent_key":"BE0002887"} {"ref-id":"A183986","pubmed-id":7923194,"citation":"Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW: Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 1994 Nov 1;54(21):5543-6.","parent_key":"BE0002887"} {"ref-id":"A183989","pubmed-id":10215754,"citation":"Prueksaritanont T, Ma B, Tang C, Meng Y, Assang C, Lu P, Reider PJ, Lin JH, Baillie TA: Metabolic interactions between mibefradil and HMG-CoA reductase inhibitors: an in vitro investigation with human liver preparations. Br J Clin Pharmacol. 1999 Mar;47(3):291-8. doi: 10.1046/j.1365-2125.1999.00903.x.","parent_key":"BE0002887"} {"ref-id":"A14960","pubmed-id":9578596,"citation":"Lasker JM, Wester MR, Aramsombatdee E, Raucy JL: Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys. 1998 May 1;353(1):16-28.","parent_key":"BE0003536"} {"ref-id":"A33204","pubmed-id":10681382,"citation":"Wester MR, Lasker JM, Johnson EF, Raucy JL: CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes. Drug Metab Dispos. 2000 Mar;28(3):354-9.","parent_key":"BE0003536"} {"ref-id":"A184745","pubmed-id":29991575,"citation":"Godamudunage MP, Grech AM, Scott EE: Comparison of Antifungal Azole Interactions with Adult Cytochrome P450 3A4 versus Neonatal Cytochrome P450 3A7. Drug Metab Dispos. 2018 Sep;46(9):1329-1337. doi: 10.1124/dmd.118.082032. Epub 2018 Jul 10.","parent_key":"BE0002638"} {"ref-id":"A15712","pubmed-id":15509184,"citation":"Cockshott ID: Bicalutamide: clinical pharmacokinetics and metabolism. Clin Pharmacokinet. 2004;43(13):855-78.","parent_key":"BE0002638"} {"ref-id":"A15712","pubmed-id":15509184,"citation":"Cockshott ID: Bicalutamide: clinical pharmacokinetics and metabolism. Clin Pharmacokinet. 2004;43(13):855-78.","parent_key":"BE0003536"} {"ref-id":"A15712","pubmed-id":15509184,"citation":"Cockshott ID: Bicalutamide: clinical pharmacokinetics and metabolism. Clin Pharmacokinet. 2004;43(13):855-78.","parent_key":"BE0002793"} {"ref-id":"A15712","pubmed-id":15509184,"citation":"Cockshott ID: Bicalutamide: clinical pharmacokinetics and metabolism. Clin Pharmacokinet. 2004;43(13):855-78.","parent_key":"BE0002363"} {"ref-id":"A14961","pubmed-id":16783561,"citation":"Shimizu M, Uno T, Yasui-Furukori N, Sugawara K, Tateishi T: Effects of clarithromycin and verapamil on rabeprazole pharmacokinetics between CYP2C19 genotypes. Eur J Clin Pharmacol. 2006 Aug;62(8):597-603. Epub 2006 Jun 17.","parent_key":"BE0002638"} {"ref-id":"A14770","pubmed-id":15258107,"citation":"Li XQ, Andersson TB, Ahlstrom M, Weidolf L: Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004 Aug;32(8):821-7.","parent_key":"BE0002638"} {"ref-id":"A14961","pubmed-id":16783561,"citation":"Shimizu M, Uno T, Yasui-Furukori N, Sugawara K, Tateishi T: Effects of clarithromycin and verapamil on rabeprazole pharmacokinetics between CYP2C19 genotypes. Eur J Clin Pharmacol. 2006 Aug;62(8):597-603. Epub 2006 Jun 17.","parent_key":"BE0003536"} {"ref-id":"A14962","pubmed-id":11501186,"citation":"Lu AH, Shu Y, Huang SL, Wang W, Ou-Yang DS, Zhou HH: In vitro proguanil activation to cycloguanil is mediated by CYP2C19 and CYP3A4 in adult Chinese liver microsomes. Acta Pharmacol Sin. 2000 Aug;21(8):747-52.","parent_key":"BE0003536"} {"ref-id":"A183800","pubmed-id":9833604,"citation":"Hoskins JM, Shenfield GM, Gross AS: Relationship between proguanil metabolic ratio and CYP2C19 genotype in a Caucasian population. Br J Clin Pharmacol. 1998 Nov;46(5):499-504. doi: 10.1046/j.1365-2125.1998.00807.x.","parent_key":"BE0003536"} {"ref-id":"A14963","pubmed-id":19614891,"citation":"Muschler E, Lal J, Jetter A, Rattay A, Zanger U, Zadoyan G, Fuhr U, Kirchheiner J: The role of human CYP2C8 and CYP2C9 variants in pioglitazone metabolism in vitro. Basic Clin Pharmacol Toxicol. 2009 Dec;105(6):374-9. doi: 10.1111/j.1742-7843.2009.00457.x. Epub 2009 Jul 15.","parent_key":"BE0002887"} {"ref-id":"A14964","pubmed-id":16867170,"citation":"Jaakkola T, Laitila J, Neuvonen PJ, Backman JT: Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol. 2006 Jul;99(1):44-51. doi: 10.1111/j.1742-7843.2006.pto_437.x.","parent_key":"BE0002638"} {"ref-id":"A14965","pubmed-id":12642470,"citation":"Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46.","parent_key":"BE0002638"} {"ref-id":"A14966","pubmed-id":12463723,"citation":"Nowak SN, Edwards DJ, Clarke A, Anderson GD, Jaber LA: Pioglitazone: effect on CYP3A4 activity. J Clin Pharmacol. 2002 Dec;42(12):1299-302.","parent_key":"BE0002638"} {"ref-id":"A15042","pubmed-id":7909721,"citation":"Yue TL, McKenna PJ, Gu JL, Cheng HY, Ruffolo RE Jr, Feuerstein GZ: Carvedilol, a new vasodilating beta adrenoceptor blocker antihypertensive drug, protects endothelial cells from damage initiated by xanthine-xanthine oxidase and neutrophils. Cardiovasc Res. 1994 Mar;28(3):400-6.","parent_key":"BE0002204"} {"ref-id":"A39492","pubmed-id":25476996,"citation":"Pan PP, Weng QH, Zhou CJ, Wei YL, Wang L, Dai DP, Cai JP, Hu GX: The role of CYP2C9 genetic polymorphism in carvedilol O-desmethylation in vitro. Eur J Drug Metab Pharmacokinet. 2016 Feb;41(1):79-86. doi: 10.1007/s13318-014-0245-2. Epub 2014 Dec 5.","parent_key":"BE0002793"} {"ref-id":"A39000","pubmed-id":9280405,"citation":"Oldham HG, Clarke SE: In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab Dispos. 1997 Aug;25(8):970-7.","parent_key":"BE0002433"} {"ref-id":"A184637","pubmed-id":30086658,"citation":"Parker BM, Rogers SL, Lymperopoulos A: Clinical pharmacogenomics of carvedilol: the stereo-selective metabolism angle. Pharmacogenomics. 2018 Sep 1;19(14):1089-1093. doi: 10.2217/pgs-2018-0115. Epub 2018 Aug 8.","parent_key":"BE0002433"} {"ref-id":"A184640","pubmed-id":31086844,"citation":"Abrudan MB, Popa DS, Muntean DM, Gheldiu AM, Vlase L: Pharmacokinetic interactions study between carvedilol and some antidepressants in rat liver microsomes - a comparative study. Med Pharm Rep. 2019 Apr;92(2):158-164. doi: 10.15386/mpr-1225. Epub 2019 Apr 25.","parent_key":"BE0002433"} {"ref-id":"A184649","pubmed-id":27354764,"citation":"Wang Z, Wang L, Xu RA, Zhan YY, Huang CK, Dai DP, Cai JP, Hu GX: Role of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro. Drug Des Devel Ther. 2016 Jun 8;10:1909-16. doi: 10.2147/DDDT.S106175. eCollection 2016.","parent_key":"BE0002638"} {"ref-id":"A39000","pubmed-id":9280405,"citation":"Oldham HG, Clarke SE: In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab Dispos. 1997 Aug;25(8):970-7.","parent_key":"BE0002638"} {"ref-id":"A39000","pubmed-id":9280405,"citation":"Oldham HG, Clarke SE: In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab Dispos. 1997 Aug;25(8):970-7.","parent_key":"BE0003533"} {"ref-id":"A34242","pubmed-id":15304429,"citation":"Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE: Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8. doi: 10.1124/dmd.104.000794. Epub 2004 Aug 10.","parent_key":"BE0003681"} {"ref-id":"A34242","pubmed-id":15304429,"citation":"Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE: Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8. doi: 10.1124/dmd.104.000794. Epub 2004 Aug 10.","parent_key":"BE0003679"} {"ref-id":"A14967","pubmed-id":19707748,"citation":"Bellon A, Perez-Garcia G, Coverdale JH, Chacko RC: Seizures associated with levofloxacin: case presentation and literature review. Eur J Clin Pharmacol. 2009 Oct;65(10):959-62. doi: 10.1007/s00228-009-0717-5. Epub 2009 Aug 26.","parent_key":"BE0002433"} {"ref-id":"A39085","pubmed-id":19026171,"citation":"Zhang L, Wei MJ, Zhao CY, Qi HM: Determination of the inhibitory potential of 6 fluoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacol Sin. 2008 Dec;29(12):1507-14. doi: 10.1111/j.1745-7254.2008.00908.x.","parent_key":"BE0002793"} {"ref-id":"A36735","pubmed-id":12065438,"citation":"Luo G, Cunningham M, Kim S, Burn T, Lin J, Sinz M, Hamilton G, Rizzo C, Jolley S, Gilbert D, Downey A, Mudra D, Graham R, Carroll K, Xie J, Madan A, Parkinson A, Christ D, Selling B, LeCluyse E, Gan LS: CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002 Jul;30(7):795-804.","parent_key":"BE0002638"} {"ref-id":"A184379","pubmed-id":11302937,"citation":"He M, Rettie AE, Neal J, Trager WF: Metabolism of sulfinpyrazone sulfide and sulfinpyrazone by human liver microsomes and cDNA-expressed cytochrome P450s. Drug Metab Dispos. 2001 May;29(5):701-11.","parent_key":"BE0002638"} {"ref-id":"A14968","pubmed-id":15520506,"citation":"Szewczuk-Boguslawska M, Kiejna A, Beszlej JA, Orzechowska-Juzwenko K, Milejski P: Doxepin inhibits CYP2D6 activity in vivo. Pol J Pharmacol. 2004 Jul-Aug;56(4):491-4.","parent_key":"BE0002363"} {"ref-id":"A14969","pubmed-id":15168101,"citation":"Grasmader K, Verwohlt PL, Rietschel M, Dragicevic A, Muller M, Hiemke C, Freymann N, Zobel A, Maier W, Rao ML: Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol. 2004 Jul;60(5):329-36. Epub 2004 May 28.","parent_key":"BE0002363"} {"ref-id":"A1950","pubmed-id":12360109,"citation":"Kirchheiner J, Meineke I, Muller G, Roots I, Brockmoller J: Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics. 2002 Oct;12(7):571-80.","parent_key":"BE0002363"} {"ref-id":"A14970","pubmed-id":11037801,"citation":"Haritos VS, Ghabrial H, Ahokas JT, Ching MS: Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. Pharmacogenetics. 2000 Oct;10(7):591-603.","parent_key":"BE0002363"} {"ref-id":"A1950","pubmed-id":12360109,"citation":"Kirchheiner J, Meineke I, Muller G, Roots I, Brockmoller J: Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics. 2002 Oct;12(7):571-80.","parent_key":"BE0003536"} {"ref-id":"A15569","pubmed-id":12180536,"citation":"Hartter S, Tybring G, Friedberg T, Weigmann H, Hiemke C: The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res. 2002 Jul;19(7):1034-7.","parent_key":"BE0003536"} {"ref-id":"A1950","pubmed-id":12360109,"citation":"Kirchheiner J, Meineke I, Muller G, Roots I, Brockmoller J: Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics. 2002 Oct;12(7):571-80.","parent_key":"BE0002793"} {"ref-id":"A15569","pubmed-id":12180536,"citation":"Hartter S, Tybring G, Friedberg T, Weigmann H, Hiemke C: The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res. 2002 Jul;19(7):1034-7.","parent_key":"BE0002793"} {"ref-id":"A15569","pubmed-id":12180536,"citation":"Hartter S, Tybring G, Friedberg T, Weigmann H, Hiemke C: The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res. 2002 Jul;19(7):1034-7.","parent_key":"BE0002433"} {"ref-id":"A15569","pubmed-id":12180536,"citation":"Hartter S, Tybring G, Friedberg T, Weigmann H, Hiemke C: The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res. 2002 Jul;19(7):1034-7.","parent_key":"BE0002638"} {"ref-id":"A1964","pubmed-id":9098663,"citation":"Davis R, Whittington R, Bryson HM: Nefazodone. A review of its pharmacology and clinical efficacy in the management of major depression. Drugs. 1997 Apr;53(4):608-36.","parent_key":"BE0002638"} {"ref-id":"A14973","pubmed-id":10445380,"citation":"von Moltke LL, Greenblatt DJ, Granda BW, Grassi JM, Schmider J, Harmatz JS, Shader RI: Nefazodone, meta-chlorophenylpiperazine, and their metabolites in vitro: cytochromes mediating transformation, and P450-3A4 inhibitory actions. Psychopharmacology (Berl). 1999 Jul;145(1):113-22.","parent_key":"BE0002638"} {"ref-id":"A14973","pubmed-id":10445380,"citation":"von Moltke LL, Greenblatt DJ, Granda BW, Grassi JM, Schmider J, Harmatz JS, Shader RI: Nefazodone, meta-chlorophenylpiperazine, and their metabolites in vitro: cytochromes mediating transformation, and P450-3A4 inhibitory actions. Psychopharmacology (Berl). 1999 Jul;145(1):113-22.","parent_key":"BE0002363"} {"ref-id":"A34213","pubmed-id":9342502,"citation":"Greene DS, Barbhaiya RH: Clinical pharmacokinetics of nefazodone. Clin Pharmacokinet. 1997 Oct;33(4):260-75. doi: 10.2165/00003088-199733040-00002.","parent_key":"BE0002363"} {"ref-id":"A39218","pubmed-id":15802801,"citation":"Isobe T, Hichiya H, Hanioka N, Yamamoto S, Shinoda S, Funae Y, Satoh T, Yamano S, Narimatsu S: Different effects of desipramine on bufuralol 1''-hydroxylation by rat and human CYP2D enzymes. Biol Pharm Bull. 2005 Apr;28(4):634-40.","parent_key":"BE0002363"} {"ref-id":"A39219","pubmed-id":9884317,"citation":"Yang TJ, Krausz KW, Sai Y, Gonzalez FJ, Gelboin HV: Eight inhibitory monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism. Drug Metab Dispos. 1999 Jan;27(1):102-9.","parent_key":"BE0002363"} {"ref-id":"A38891","pubmed-id":24782142,"citation":"Ramey K, Ma JD, Best BM, Atayee RS, Morello CM: Variability in metabolism of imipramine and desipramine using urinary excretion data. J Anal Toxicol. 2014 Jul-Aug;38(6):368-74. doi: 10.1093/jat/bku034. Epub 2014 Apr 29.","parent_key":"BE0002433"} {"ref-id":"A39219","pubmed-id":9884317,"citation":"Yang TJ, Krausz KW, Sai Y, Gonzalez FJ, Gelboin HV: Eight inhibitory monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism. Drug Metab Dispos. 1999 Jan;27(1):102-9.","parent_key":"BE0002433"} {"ref-id":"A38740","pubmed-id":17662092,"citation":"Polasek TM, Miners JO: Time-dependent inhibition of human drug metabolizing cytochromes P450 by tricyclic antidepressants. Br J Clin Pharmacol. 2008 Jan;65(1):87-97. doi: 10.1111/j.1365-2125.2007.02964.x. Epub 2007 Jul 27.","parent_key":"BE0002638"} {"ref-id":"A17847","pubmed-id":10960410,"citation":"Sueyasu M, Fujito K, Shuto H, Mizokoshi T, Kataoka Y, Oishi R: Protein binding and the metabolism of thiamylal enantiomers in vitro. Anesth Analg. 2000 Sep;91(3):736-40.","parent_key":"BE0002793"} {"ref-id":"A17847","pubmed-id":10960410,"citation":"Sueyasu M, Fujito K, Shuto H, Mizokoshi T, Kataoka Y, Oishi R: Protein binding and the metabolism of thiamylal enantiomers in vitro. Anesth Analg. 2000 Sep;91(3):736-40.","parent_key":"BE0002638"} {"ref-id":"A36266","pubmed-id":16445592,"citation":"Tanaka E, Nakamura T, Inomata S, Honda K: Effects of premedication medicines on the formation of the CYP3A4-dependent metabolite of ropivacaine, 2', 6'-Pipecoloxylidide, on human liver microsomes in vitro. Basic Clin Pharmacol Toxicol. 2006 Feb;98(2):181-3. doi: 10.1111/j.1742-7843.2006.pto_265.x.","parent_key":"BE0003533"} {"ref-id":"A39114","pubmed-id":8429824,"citation":"Fuhr U, Strobl G, Manaut F, Anders EM, Sorgel F, Lopez-de-Brinas E, Chu DT, Pernet AG, Mahr G, Sanz F, et al.: Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol. 1993 Feb;43(2):191-9.","parent_key":"BE0002433"} {"ref-id":"A14975","pubmed-id":16368442,"citation":"Jefferson JW, Pradko JF, Muir KT: Bupropion for major depressive disorder: Pharmacokinetic and formulation considerations. Clin Ther. 2005 Nov;27(11):1685-95.","parent_key":"BE0003549"} {"ref-id":"A14976","pubmed-id":17009913,"citation":"Foley KF, DeSanty KP, Kast RE: Bupropion: pharmacology and therapeutic applications. Expert Rev Neurother. 2006 Sep;6(9):1249-65.","parent_key":"BE0003549"} {"ref-id":"A14976","pubmed-id":17009913,"citation":"Foley KF, DeSanty KP, Kast RE: Bupropion: pharmacology and therapeutic applications. Expert Rev Neurother. 2006 Sep;6(9):1249-65.","parent_key":"BE0002363"} {"ref-id":"A184106","pubmed-id":15876900,"citation":"Kotlyar M, Brauer LH, Tracy TS, Hatsukami DK, Harris J, Bronars CA, Adson DE: Inhibition of CYP2D6 activity by bupropion. J Clin Psychopharmacol. 2005 Jun;25(3):226-9.","parent_key":"BE0002363"} {"ref-id":"A184109","pubmed-id":27836670,"citation":"Sager JE, Tripathy S, Price LS, Nath A, Chang J, Stephenson-Famy A, Isoherranen N: In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6; simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol. 2017 Jan 1;123:85-96. doi: 10.1016/j.bcp.2016.11.007. Epub 2016 Nov 9.","parent_key":"BE0002363"} {"ref-id":"A182849","pubmed-id":10997944,"citation":"Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM, Lindley CM: Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos. 2000 Oct;28(10):1222-30.","parent_key":"BE0003533"} {"ref-id":"A14977","pubmed-id":19442086,"citation":"Restrepo JG, Garcia-Martin E, Martinez C, Agundez JA: Polymorphic drug metabolism in anaesthesia. Curr Drug Metab. 2009 Mar;10(3):236-46.","parent_key":"BE0003533"} {"ref-id":"A14978","pubmed-id":9103523,"citation":"Spracklin DK, Hankins DC, Fisher JM, Thummel KE, Kharasch ED: Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. J Pharmacol Exp Ther. 1997 Apr;281(1):400-11.","parent_key":"BE0003533"} {"ref-id":"A14977","pubmed-id":19442086,"citation":"Restrepo JG, Garcia-Martin E, Martinez C, Agundez JA: Polymorphic drug metabolism in anaesthesia. Curr Drug Metab. 2009 Mar;10(3):236-46.","parent_key":"BE0002638"} {"ref-id":"A37823","pubmed-id":8886607,"citation":"Spracklin DK, Thummel KE, Kharasch ED: Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Drug Metab Dispos. 1996 Sep;24(9):976-83.","parent_key":"BE0002638"} {"ref-id":"A14977","pubmed-id":19442086,"citation":"Restrepo JG, Garcia-Martin E, Martinez C, Agundez JA: Polymorphic drug metabolism in anaesthesia. Curr Drug Metab. 2009 Mar;10(3):236-46.","parent_key":"BE0003336"} {"ref-id":"A14979","pubmed-id":10702888,"citation":"Suri A, Forbes WP, Bramer SL: Effects of CYP3A inhibition on the metabolism of cilostazol. Clin Pharmacokinet. 1999;37 Suppl 2:61-8.","parent_key":"BE0002362"} {"ref-id":"A14979","pubmed-id":10702888,"citation":"Suri A, Forbes WP, Bramer SL: Effects of CYP3A inhibition on the metabolism of cilostazol. Clin Pharmacokinet. 1999;37 Suppl 2:61-8.","parent_key":"BE0003612"} {"ref-id":"A14979","pubmed-id":10702888,"citation":"Suri A, Forbes WP, Bramer SL: Effects of CYP3A inhibition on the metabolism of cilostazol. Clin Pharmacokinet. 1999;37 Suppl 2:61-8.","parent_key":"BE0003536"} {"ref-id":"A14979","pubmed-id":10702888,"citation":"Suri A, Forbes WP, Bramer SL: Effects of CYP3A inhibition on the metabolism of cilostazol. Clin Pharmacokinet. 1999;37 Suppl 2:61-8.","parent_key":"BE0002638"} {"ref-id":"A14979","pubmed-id":10702888,"citation":"Suri A, Forbes WP, Bramer SL: Effects of CYP3A inhibition on the metabolism of cilostazol. Clin Pharmacokinet. 1999;37 Suppl 2:61-8.","parent_key":"BE0002433"} {"ref-id":"A14979","pubmed-id":10702888,"citation":"Suri A, Forbes WP, Bramer SL: Effects of CYP3A inhibition on the metabolism of cilostazol. Clin Pharmacokinet. 1999;37 Suppl 2:61-8.","parent_key":"BE0002363"} {"ref-id":"A185252","pubmed-id":1680657,"citation":"Tweedie DJ, Fernandez D, Spearman ME, Feldhoff RC, Prough RA: Metabolism of azoxy derivatives of procarbazine by aldehyde dehydrogenase and xanthine oxidase. Drug Metab Dispos. 1991 Jul-Aug;19(4):793-803.","parent_key":"BE0002204"} {"ref-id":"A23629","pubmed-id":15833926,"citation":"Noreault TL, Kostrubsky VE, Wood SG, Nichols RC, Strom SC, Trask HW, Wrighton SA, Evans RM, Jacobs JM, Sinclair PR, Sinclair JF: Arsenite decreases CYP3A4 and RXRalpha in primary human hepatocytes. Drug Metab Dispos. 2005 Jul;33(7):993-1003. Epub 2005 Apr 15.","parent_key":"BE0002638"} {"ref-id":"A24501","pubmed-id":16184197,"citation":"Mann KK, Padovani AM, Guo Q, Colosimo AL, Lee HY, Kurie JM, Miller WH Jr: Arsenic trioxide inhibits nuclear receptor function via SEK1/JNK-mediated RXRalpha phosphorylation. J Clin Invest. 2005 Oct;115(10):2924-33. Epub 2005 Sep 22.","parent_key":"BE0002638"} {"ref-id":"A31902","pubmed-id":7781267,"citation":"Gram LF, Guentert TW, Grange S, Vistisen K, Brosen K: Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther. 1995 Jun;57(6):670-7. doi: 10.1016/0009-9236(95)90230-9.","parent_key":"BE0003536"} {"ref-id":"A38589","pubmed-id":11309556,"citation":"Yu KS, Yim DS, Cho JY, Park SS, Park JY, Lee KH, Jang IJ, Yi SY, Bae KS, Shin SG: Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001 Apr;69(4):266-73. doi: 10.1067/mcp.2001.114231.","parent_key":"BE0003536"} {"ref-id":"A39211","pubmed-id":8880082,"citation":"Hartter S, Dingemanse J, Baier D, Ziegler G, Hiemke C: The role of cytochrome P450 2D6 in the metabolism of moclobemide. Eur Neuropsychopharmacol. 1996 Aug;6(3):225-30.","parent_key":"BE0002363"} {"ref-id":"A39212","pubmed-id":9489930,"citation":"Hartter S, Dingemanse J, Baier D, Ziegler G, Hiemke C: Inhibition of dextromethorphan metabolism by moclobemide. Psychopharmacology (Berl). 1998 Jan;135(1):22-6.","parent_key":"BE0002363"} {"ref-id":"A15137","pubmed-id":12515593,"citation":"Peng FC, Lin Wu SW: Metabolism of territrem a in liver microsomes from male wistar rats: 3. Cytochrome p-450 isoforms catalyzing tra metabolism. J Toxicol Environ Health A. 2002 Dec 27;65(24):2163-75.","parent_key":"BE0003549"} {"ref-id":"A15138","pubmed-id":12712632,"citation":"Lin Wu SW, Jean WC, Peng FC, Edwards RJ: Cytochrome P-4503A1 catalyzes the formation of MA1 from territrem a in liver microsomes of 7-week-old female Wistar rats. J Toxicol Environ Health A. 2003 Mar 14;66(5):453-67.","parent_key":"BE0003549"} {"ref-id":"A15139","pubmed-id":8242617,"citation":"Chang TK, Weber GF, Crespi CL, Waxman DJ: Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 1993 Dec 1;53(23):5629-37.","parent_key":"BE0003549"} {"ref-id":"A15140","pubmed-id":8789153,"citation":"Stresser DM, Dehal SS, Kupfer D: Ring hydroxylation of [o-3H]methoxychlor as a probe for liver microsomal CYP2B activity: potential for in vivo CYP2B assay. Anal Biochem. 1996 Jan 1;233(1):100-7.","parent_key":"BE0003549"} {"ref-id":"A15141","pubmed-id":12813002,"citation":"Murray M, Fiala-Beer E, Sutton D: Upregulation of cytochromes P450 2B in rat liver by orphenadrine. Br J Pharmacol. 2003 Jun;139(4):787-96.","parent_key":"BE0003549"} {"ref-id":"A16609","pubmed-id":8678911,"citation":"Roos PH, Mahnke A: Metabolite complex formation of orphenadrine with cytochrome P450. Involvement of CYP2C11 and CYP3A isozymes. Biochem Pharmacol. 1996 Jul 12;52(1):73-84.","parent_key":"BE0002638"} {"ref-id":"A15160","pubmed-id":10821163,"citation":"Sai Y, Dai R, Yang TJ, Krausz KW, Gonzalez FJ, Gelboin HV, Shou M: Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica. 2000 Apr;30(4):327-43.","parent_key":"BE0003533"} {"ref-id":"A185801","pubmed-id":9241656,"citation":"Ekins S, VandenBranden M, Ring BJ, Wrighton SA: Examination of purported probes of human CYP2B6. Pharmacogenetics. 1997 Jun;7(3):165-79.","parent_key":"BE0003533"} {"ref-id":"A15141","pubmed-id":12813002,"citation":"Murray M, Fiala-Beer E, Sutton D: Upregulation of cytochromes P450 2B in rat liver by orphenadrine. Br J Pharmacol. 2003 Jun;139(4):787-96.","parent_key":"BE0002363"} {"ref-id":"A181325","pubmed-id":10583023,"citation":"Svensson US, Ashton M: Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol. 1999 Oct;48(4):528-35. doi: 10.1046/j.1365-2125.1999.00044.x.","parent_key":"BE0002363"} {"ref-id":"A14984","pubmed-id":12642468,"citation":"Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A: Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos. 2003 Apr;31(4):421-31.","parent_key":"BE0003536"} {"ref-id":"A36768","pubmed-id":16789993,"citation":"Yukawa E, Mamiya K: Effect of CYP2C19 genetic polymorphism on pharmacokinetics of phenytoin and phenobarbital in Japanese epileptic patients using Non-linear Mixed Effects Model approach. J Clin Pharm Ther. 2006 Jun;31(3):275-82. doi: 10.1111/j.1365-2710.2006.00712.x.","parent_key":"BE0003536"} {"ref-id":"A15578","pubmed-id":13677397,"citation":"Kawalek JC, Howard KD, Farrell DE, Derr J, Cope CV, Jackson JD, Myers MJ: Effect of oral administration of low doses of pentobarbital on the induction of cytochrome P450 isoforms and cytochrome P450-mediated reactions in immature Beagles. Am J Vet Res. 2003 Sep;64(9):1167-75.","parent_key":"BE0002793"} {"ref-id":"A33291","pubmed-id":22122233,"citation":"Zhou D, Sunzel M, Ribadeneira MD, Smith MA, Desai D, Lin J, Grimm SW: A clinical study to assess CYP1A2 and CYP3A4 induction by AZD7325, a selective GABA(A) receptor modulator - an in vitro and in vivo comparison. Br J Clin Pharmacol. 2012 Jul;74(1):98-108. doi: 10.1111/j.1365-2125.2011.04155.x.","parent_key":"BE0002793"} {"ref-id":"A35557","pubmed-id":26496779,"citation":"Pacifici GM: Clinical Pharmacology of Phenobarbital in Neonates: Effects, Metabolism and Pharmacokinetics. Curr Pediatr Rev. 2016;12(1):48-54. doi: 10.2174/1573397111666151026223914.","parent_key":"BE0002793"} {"ref-id":"A183548","pubmed-id":10471061,"citation":"Gervot L, Rochat B, Gautier JC, Bohnenstengel F, Kroemer H, de Berardinis V, Martin H, Beaune P, de Waziers I: Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics. 1999 Jun;9(3):295-306.","parent_key":"BE0003549"} {"ref-id":"A22138","pubmed-id":12695351,"citation":"Wang H, Faucette SR, Gilbert D, Jolley SL, Sueyoshi T, Negishi M, LeCluyse EL: Glucocorticoid receptor enhancement of pregnane X receptor-mediated CYP2B6 regulation in primary human hepatocytes. Drug Metab Dispos. 2003 May;31(5):620-30.","parent_key":"BE0003549"} {"ref-id":"A14984","pubmed-id":12642468,"citation":"Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A: Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos. 2003 Apr;31(4):421-31.","parent_key":"BE0003549"} {"ref-id":"A15578","pubmed-id":13677397,"citation":"Kawalek JC, Howard KD, Farrell DE, Derr J, Cope CV, Jackson JD, Myers MJ: Effect of oral administration of low doses of pentobarbital on the induction of cytochrome P450 isoforms and cytochrome P450-mediated reactions in immature Beagles. Am J Vet Res. 2003 Sep;64(9):1167-75.","parent_key":"BE0002887"} {"ref-id":"A33280","pubmed-id":12815172,"citation":"Dvorak Z, Modriansky M, Pichard-Garcia L, Balaguer P, Vilarem MJ, Ulrichova J, Maurel P, Pascussi JM: Colchicine down-regulates cytochrome P450 2B6, 2C8, 2C9, and 3A4 in human hepatocytes by affecting their glucocorticoid receptor-mediated regulation. Mol Pharmacol. 2003 Jul;64(1):160-9. doi: 10.1124/mol.64.1.160.","parent_key":"BE0002887"} {"ref-id":"A15706","pubmed-id":9695715,"citation":"von Bahr C, Steiner E, Koike Y, Gabrielsson J: Time course of enzyme induction in humans: effect of pentobarbital on nortriptyline metabolism. Clin Pharmacol Ther. 1998 Jul;64(1):18-26.","parent_key":"BE0002638"} {"ref-id":"A15578","pubmed-id":13677397,"citation":"Kawalek JC, Howard KD, Farrell DE, Derr J, Cope CV, Jackson JD, Myers MJ: Effect of oral administration of low doses of pentobarbital on the induction of cytochrome P450 isoforms and cytochrome P450-mediated reactions in immature Beagles. Am J Vet Res. 2003 Sep;64(9):1167-75.","parent_key":"BE0003336"} {"ref-id":"A14984","pubmed-id":12642468,"citation":"Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A: Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos. 2003 Apr;31(4):421-31.","parent_key":"BE0003336"} {"ref-id":"A184850","pubmed-id":20012030,"citation":"Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF: Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010 Mar;66(3):239-51. doi: 10.1007/s00228-009-0762-0. Epub 2009 Dec 9.","parent_key":"BE0003336"} {"ref-id":"A23617","pubmed-id":11038160,"citation":"Donato MT, Viitala P, Rodriguez-Antona C, Lindfors A, Castell JV, Raunio H, Gomez-Lechon MJ, Pelkonen O: CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. Drug Metab Dispos. 2000 Nov;28(11):1321-6.","parent_key":"BE0003336"} {"ref-id":"A31240","pubmed-id":17049344,"citation":"Lee AM, Joshi M, Yue J, Tyndale RF: Phenobarbital induces monkey brain CYP2E1 protein but not hepatic CYP2E1, in vitro or in vivo chlorzoxazone metabolism. Eur J Pharmacol. 2006 Dec 15;552(1-3):151-8. Epub 2006 Sep 16.","parent_key":"BE0003533"} {"ref-id":"A22142","pubmed-id":10696073,"citation":"Hukkanen J, Lassila A, Paivarinta K, Valanne S, Sarpo S, Hakkola J, Pelkonen O, Raunio H: Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 2000 Mar;22(3):360-6.","parent_key":"BE0002362"} {"ref-id":"A182867","pubmed-id":19682433,"citation":"Yoshinari K, Yoda N, Toriyabe T, Yamazoe Y: Constitutive androstane receptor transcriptionally activates human CYP1A1 and CYP1A2 genes through a common regulatory element in the 5'-flanking region. Biochem Pharmacol. 2010 Jan 15;79(2):261-9. doi: 10.1016/j.bcp.2009.08.008. Epub 2009 Aug 12.","parent_key":"BE0003543"} {"ref-id":"A182873","pubmed-id":8663422,"citation":"Sadar MD, Ash R, Sundqvist J, Olsson PE, Andersson TB: Phenobarbital induction of CYP1A1 gene expression in a primary culture of rainbow trout hepatocytes. J Biol Chem. 1996 Jul 26;271(30):17635-43. doi: 10.1074/jbc.271.30.17635.","parent_key":"BE0003543"} {"ref-id":"A38897","pubmed-id":8225233,"citation":"Schuetz EG, Schuetz JD, Strom SC, Thompson MT, Fisher RA, Molowa DT, Li D, Guzelian PS: Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology. 1993 Nov;18(5):1254-62.","parent_key":"BE0003612"} {"ref-id":"A36236","pubmed-id":26684499,"citation":"Sakakibara Y, Katoh M, Kondo Y, Nadai M: Effects of Phenobarbital on Expression of UDP-Glucuronosyltransferase 1a6 and 1a7 in Rat Brain. Drug Metab Dispos. 2016 Mar;44(3):370-7. doi: 10.1124/dmd.115.067439. Epub 2015 Dec 18.","parent_key":"BE0003679"} {"ref-id":"A39738","pubmed-id":17375980,"citation":"Rao N: The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet. 2007;46(4):281-90. doi: 10.2165/00003088-200746040-00002.","parent_key":"BE0002638"} {"ref-id":"A181304","pubmed-id":24302953,"citation":"Han KM, Chang HS, Choi IK, Ham BJ, Lee MS: CYP2D6 P34S Polymorphism and Outcomes of Escitalopram Treatment in Koreans with Major Depression. Psychiatry Investig. 2013 Sep;10(3):286-93. doi: 10.4306/pi.2013.10.3.286. Epub 2013 Sep 16.","parent_key":"BE0002363"} {"ref-id":"A181310","pubmed-id":19710642,"citation":"Noehr-Jensen L, Zwisler ST, Larsen F, Sindrup SH, Damkier P, Brosen K: Escitalopram is a weak inhibitor of the CYP2D6-catalyzed O-demethylation of (+)-tramadol but does not reduce the hypoalgesic effect in experimental pain. Clin Pharmacol Ther. 2009 Dec;86(6):626-33. doi: 10.1038/clpt.2009.154. Epub 2009 Aug 26.","parent_key":"BE0002363"} {"ref-id":"A39738","pubmed-id":17375980,"citation":"Rao N: The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet. 2007;46(4):281-90. doi: 10.2165/00003088-200746040-00002.","parent_key":"BE0002363"} {"ref-id":"A38624","pubmed-id":26313485,"citation":"Bishop JR, Najjar F, Rubin LH, Guter SJ, Owley T, Mosconi MW, Jacob S, Cook EH: Escitalopram pharmacogenetics: CYP2C19 relationships with dosing and clinical outcomes in autism spectrum disorder. Pharmacogenet Genomics. 2015 Nov;25(11):548-54. doi: 10.1097/FPC.0000000000000173.","parent_key":"BE0003536"} {"ref-id":"A38370","pubmed-id":15204103,"citation":"Colburn DE, Giles FJ, Oladovich D, Smith JA: In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin. Hematology. 2004 Jun;9(3):217-21. doi: 10.1080/10245330410001701585.","parent_key":"BE0002793"} {"ref-id":"A184523","pubmed-id":24492490,"citation":"Cizkova K, Konieczna A, Erdosova B, Ehrmann J: Time-dependent expression of cytochrome p450 epoxygenases during human prenatal development. Organogenesis. 2014 Jan 1;10(1):53-61. doi: 10.4161/org.27911. Epub 2014 Feb 3.","parent_key":"BE0002793"} {"ref-id":"A38370","pubmed-id":15204103,"citation":"Colburn DE, Giles FJ, Oladovich D, Smith JA: In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin. Hematology. 2004 Jun;9(3):217-21. doi: 10.1080/10245330410001701585.","parent_key":"BE0002363"} {"ref-id":"A2024","pubmed-id":16702183,"citation":"Lokiec F: Ifosfamide: pharmacokinetic properties for central nervous system metastasis prevention. Ann Oncol. 2006 May;17 Suppl 4:iv33-6.","parent_key":"BE0003549"} {"ref-id":"A14985","pubmed-id":15919850,"citation":"Chen CS, Jounaidi Y, Waxman DJ: Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab Dispos. 2005 Sep;33(9):1261-7. Epub 2005 May 26.","parent_key":"BE0003549"} {"ref-id":"A14986","pubmed-id":10348794,"citation":"Roy P, Yu LJ, Crespi CL, Waxman DJ: Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos. 1999 Jun;27(6):655-66.","parent_key":"BE0003549"} {"ref-id":"A2024","pubmed-id":16702183,"citation":"Lokiec F: Ifosfamide: pharmacokinetic properties for central nervous system metastasis prevention. Ann Oncol. 2006 May;17 Suppl 4:iv33-6.","parent_key":"BE0002638"} {"ref-id":"A14985","pubmed-id":15919850,"citation":"Chen CS, Jounaidi Y, Waxman DJ: Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab Dispos. 2005 Sep;33(9):1261-7. Epub 2005 May 26.","parent_key":"BE0002638"} {"ref-id":"A14986","pubmed-id":10348794,"citation":"Roy P, Yu LJ, Crespi CL, Waxman DJ: Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos. 1999 Jun;27(6):655-66.","parent_key":"BE0002638"} {"ref-id":"A2024","pubmed-id":16702183,"citation":"Lokiec F: Ifosfamide: pharmacokinetic properties for central nervous system metastasis prevention. Ann Oncol. 2006 May;17 Suppl 4:iv33-6.","parent_key":"BE0002362"} {"ref-id":"A14986","pubmed-id":10348794,"citation":"Roy P, Yu LJ, Crespi CL, Waxman DJ: Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos. 1999 Jun;27(6):655-66.","parent_key":"BE0002362"} {"ref-id":"A14986","pubmed-id":10348794,"citation":"Roy P, Yu LJ, Crespi CL, Waxman DJ: Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos. 1999 Jun;27(6):655-66.","parent_key":"BE0003536"} {"ref-id":"A2024","pubmed-id":16702183,"citation":"Lokiec F: Ifosfamide: pharmacokinetic properties for central nervous system metastasis prevention. Ann Oncol. 2006 May;17 Suppl 4:iv33-6.","parent_key":"BE0003536"} {"ref-id":"A2024","pubmed-id":16702183,"citation":"Lokiec F: Ifosfamide: pharmacokinetic properties for central nervous system metastasis prevention. Ann Oncol. 2006 May;17 Suppl 4:iv33-6.","parent_key":"BE0002793"} {"ref-id":"A38490","pubmed-id":14970873,"citation":"Schmidt R, Baumann F, Knupfer H, Brauckhoff M, Horn LC, Schonfelder M, Kohler U, Preiss R: CYP3A4, CYP2C9 and CYP2B6 expression and ifosfamide turnover in breast cancer tissue microsomes. Br J Cancer. 2004 Feb 23;90(4):911-6. doi: 10.1038/sj.bjc.6601492.","parent_key":"BE0002793"} {"ref-id":"A2024","pubmed-id":16702183,"citation":"Lokiec F: Ifosfamide: pharmacokinetic properties for central nervous system metastasis prevention. Ann Oncol. 2006 May;17 Suppl 4:iv33-6.","parent_key":"BE0002887"} {"ref-id":"A2024","pubmed-id":16702183,"citation":"Lokiec F: Ifosfamide: pharmacokinetic properties for central nervous system metastasis prevention. Ann Oncol. 2006 May;17 Suppl 4:iv33-6.","parent_key":"BE0003336"} {"ref-id":"A14987","pubmed-id":8423765,"citation":"Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer HK: Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol. 1993 Jan;43(1):120-6.","parent_key":"BE0002363"} {"ref-id":"A34330","pubmed-id":10917404,"citation":"Hemeryck A, De Vriendt C, Belpaire FM: Effect of selective serotonin reuptake inhibitors on the oxidative metabolism of propafenone: in vitro studies using human liver microsomes. J Clin Psychopharmacol. 2000 Aug;20(4):428-34.","parent_key":"BE0002363"} {"ref-id":"A34330","pubmed-id":10917404,"citation":"Hemeryck A, De Vriendt C, Belpaire FM: Effect of selective serotonin reuptake inhibitors on the oxidative metabolism of propafenone: in vitro studies using human liver microsomes. J Clin Psychopharmacol. 2000 Aug;20(4):428-34.","parent_key":"BE0002638"} {"ref-id":"A14987","pubmed-id":8423765,"citation":"Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer HK: Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol. 1993 Jan;43(1):120-6.","parent_key":"BE0002433"} {"ref-id":"A38938","pubmed-id":9578183,"citation":"Kobayashi K, Nakajima M, Chiba K, Yamamoto T, Tani M, Ishizaki T, Kuroiwa Y: Inhibitory effects of antiarrhythmic drugs on phenacetin O-deethylation catalysed by human CYP1A2. Br J Clin Pharmacol. 1998 Apr;45(4):361-8.","parent_key":"BE0002433"} {"ref-id":"A38939","pubmed-id":17164694,"citation":"Michaud V, Mouksassi MS, Labbe L, Belanger PM, Ferron LA, Gilbert M, Grech-Belanger O, Turgeon J: Inhibitory effects of propafenone on the pharmacokinetics of caffeine in humans. Ther Drug Monit. 2006 Dec;28(6):779-83. doi: 10.1097/01.ftd.0000249945.64978.33.","parent_key":"BE0002433"} {"ref-id":"A39089","pubmed-id":10945315,"citation":"Labbe L, O'Hara G, Lefebvre M, Lessard E, Gilbert M, Adedoyin A, Champagne J, Hamelin B, Turgeon J: Pharmacokinetic and pharmacodynamic interaction between mexiletine and propafenone in human beings. Clin Pharmacol Ther. 2000 Jul;68(1):44-57. doi: 10.1067/mcp.2000.108023.","parent_key":"BE0002433"} {"ref-id":"A182831","pubmed-id":19874646,"citation":"Fang WB, Chang Y, McCance-Katz EF, Moody DE: Determination of naloxone and nornaloxone (noroxymorphone) by high-performance liquid chromatography-electrospray ionization- tandem mass spectrometry. J Anal Toxicol. 2009 Oct;33(8):409-17. doi: 10.1093/jat/33.8.409.","parent_key":"BE0002638"} {"ref-id":"A14988","pubmed-id":20082577,"citation":"Chang SY, Fancher RM, Zhang H, Gan J: Mechanism-based inhibition of human cytochrome P4503A4 by domperidone. Xenobiotica. 2010 Feb;40(2):138-45. doi: 10.3109/00498250903406762.","parent_key":"BE0002638"} {"ref-id":"A14989","pubmed-id":15801545,"citation":"Simard C, Michaud V, Gibbs B, Masse R, Lessard E, Turgeon J: Identification of the cytochrome P450 enzymes involved in the metabolism of domperidone. Xenobiotica. 2004 Nov-Dec;34(11-12):1013-23.","parent_key":"BE0002638"} {"ref-id":"A183809","pubmed-id":21281268,"citation":"Michaud V, Simard C, Turgeon J: Characterization of CYP3A isozymes involved in the metabolism of domperidone: role of cytochrome b5 and inhibition by ketoconazole. Drug Metab Lett. 2010 Apr;4(2):95-103.","parent_key":"BE0002638"} {"ref-id":"A39010","pubmed-id":15327587,"citation":"Ward BA, Morocho A, Kandil A, Galinsky RE, Flockhart DA, Desta Z: Characterization of human cytochrome P450 enzymes catalyzing domperidone N-dealkylation and hydroxylation in vitro. Br J Clin Pharmacol. 2004 Sep;58(3):277-87. doi: 10.1111/j.1365-2125.2004.02156.x.","parent_key":"BE0002433"} {"ref-id":"A39010","pubmed-id":15327587,"citation":"Ward BA, Morocho A, Kandil A, Galinsky RE, Flockhart DA, Desta Z: Characterization of human cytochrome P450 enzymes catalyzing domperidone N-dealkylation and hydroxylation in vitro. Br J Clin Pharmacol. 2004 Sep;58(3):277-87. doi: 10.1111/j.1365-2125.2004.02156.x.","parent_key":"BE0003549"} {"ref-id":"A184727","pubmed-id":19094160,"citation":"Braun M, Cawello W, Boekens H, Horstmann R: Influence of domperidone on pharmacokinetics, safety and tolerability of the dopamine agonist rotigotine. Br J Clin Pharmacol. 2009 Feb;67(2):209-15. doi: 10.1111/j.1365-2125.2008.03334.x. Epub 2008 Dec 16.","parent_key":"BE0003549"} {"ref-id":"A39010","pubmed-id":15327587,"citation":"Ward BA, Morocho A, Kandil A, Galinsky RE, Flockhart DA, Desta Z: Characterization of human cytochrome P450 enzymes catalyzing domperidone N-dealkylation and hydroxylation in vitro. Br J Clin Pharmacol. 2004 Sep;58(3):277-87. doi: 10.1111/j.1365-2125.2004.02156.x.","parent_key":"BE0002887"} {"ref-id":"A39010","pubmed-id":15327587,"citation":"Ward BA, Morocho A, Kandil A, Galinsky RE, Flockhart DA, Desta Z: Characterization of human cytochrome P450 enzymes catalyzing domperidone N-dealkylation and hydroxylation in vitro. Br J Clin Pharmacol. 2004 Sep;58(3):277-87. doi: 10.1111/j.1365-2125.2004.02156.x.","parent_key":"BE0002363"} {"ref-id":"A184727","pubmed-id":19094160,"citation":"Braun M, Cawello W, Boekens H, Horstmann R: Influence of domperidone on pharmacokinetics, safety and tolerability of the dopamine agonist rotigotine. Br J Clin Pharmacol. 2009 Feb;67(2):209-15. doi: 10.1111/j.1365-2125.2008.03334.x. Epub 2008 Dec 16.","parent_key":"BE0002363"} {"ref-id":"A38726","pubmed-id":9321526,"citation":"Wynalda MA, Wienkers LC: Assessment of potential interactions between dopamine receptor agonists and various human cytochrome P450 enzymes using a simple in vitro inhibition screen. Drug Metab Dispos. 1997 Oct;25(10):1211-4.","parent_key":"BE0002638"} {"ref-id":"A38704","pubmed-id":12814964,"citation":"Wynalda MA, Hutzler JM, Koets MD, Podoll T, Wienkers LC: In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metab Dispos. 2003 Jul;31(7):878-87. doi: 10.1124/dmd.31.7.878.","parent_key":"BE0002638"} {"ref-id":"A38704","pubmed-id":12814964,"citation":"Wynalda MA, Hutzler JM, Koets MD, Podoll T, Wienkers LC: In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metab Dispos. 2003 Jul;31(7):878-87. doi: 10.1124/dmd.31.7.878.","parent_key":"BE0002362"} {"ref-id":"A39254","pubmed-id":8730977,"citation":"Gross AS, Phillips AC, Rieutord A, Shenfield GM: The influence of the sparteine/debrisoquine genetic polymorphism on the disposition of dexfenfluramine. Br J Clin Pharmacol. 1996 Apr;41(4):311-7.","parent_key":"BE0002363"} {"ref-id":"A14843","pubmed-id":9825834,"citation":"Haritos VS, Ching MS, Ghabrial H, Gross AS, Taavitsainen P, Pelkonen O, Battaglia SE, Smallwood RA, Ahokas JT: Metabolism of dexfenfluramine in human liver microsomes and by recombinant enzymes: role of CYP2D6 and 1A2. Pharmacogenetics. 1998 Oct;8(5):423-32.","parent_key":"BE0002433"} {"ref-id":"A38943","pubmed-id":9690701,"citation":"von Moltke LL, Greenblatt DJ, Ciraulo DA, Grassi JM, Granda BW, Duan SX, Harmatz JS, Shader RI: Appetite suppressant drugs as inhibitors of human cytochromes P450: in vitro inhibition of P450-2D6 by D- and L-fenfluramine, but not phentermine. J Clin Psychopharmacol. 1998 Aug;18(4):338-41.","parent_key":"BE0003533"} {"ref-id":"A15187","pubmed-id":20642550,"citation":"Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K: Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol. 2010 Jul;70(1):78-87. doi: 10.1111/j.1365-2125.2010.03653.x.","parent_key":"BE0002638"} {"ref-id":"A15188","pubmed-id":20590587,"citation":"Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA: The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 2010 Jun;160(4):907-18. doi: 10.1111/j.1476-5381.2010.00673.x.","parent_key":"BE0002638"} {"ref-id":"A15189","pubmed-id":16678548,"citation":"Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD: Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther. 2006 May;79(5):461-79.","parent_key":"BE0002638"} {"ref-id":"A16600","pubmed-id":15703368,"citation":"Adams M, Pieniaszek HJ Jr, Gammaitoni AR, Ahdieh H: Oxymorphone extended release does not affect CYP2C9 or CYP3A4 metabolic pathways. J Clin Pharmacol. 2005 Mar;45(3):337-45.","parent_key":"BE0002638"} {"ref-id":"A15187","pubmed-id":20642550,"citation":"Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K: Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol. 2010 Jul;70(1):78-87. doi: 10.1111/j.1365-2125.2010.03653.x.","parent_key":"BE0002363"} {"ref-id":"A15188","pubmed-id":20590587,"citation":"Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA: The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 2010 Jun;160(4):907-18. doi: 10.1111/j.1476-5381.2010.00673.x.","parent_key":"BE0002363"} {"ref-id":"A15189","pubmed-id":16678548,"citation":"Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD: Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther. 2006 May;79(5):461-79.","parent_key":"BE0002363"} {"ref-id":"A38112","pubmed-id":26721703,"citation":"Backman JT, Filppula AM, Niemi M, Neuvonen PJ: Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev. 2016 Jan;68(1):168-241. doi: 10.1124/pr.115.011411.","parent_key":"BE0002638"} {"ref-id":"A36509","pubmed-id":19660006,"citation":"Doki K, Homma M, Kuga K, Aonuma K, Kohda Y: Effects of CYP2D6 genotypes on age-related change of flecainide metabolism: involvement of CYP1A2-mediated metabolism. Br J Clin Pharmacol. 2009 Jul;68(1):89-96. doi: 10.1111/j.1365-2125.2009.03435.x.","parent_key":"BE0002363"} {"ref-id":"A183824","pubmed-id":20435235,"citation":"Lim KS, Jang IJ, Kim BH, Kim J, Jeon JY, Tae YM, Yi S, Eum S, Cho JY, Shin SG, Yu KS: Changes in the QTc interval after administration of flecainide acetate, with and without coadministered paroxetine, in relation to cytochrome P450 2D6 genotype: data from an open-label, two-period, single-sequence crossover study in healthy Korean male subjects. Clin Ther. 2010 Apr;32(4):659-66. doi: 10.1016/j.clinthera.2010.04.002.","parent_key":"BE0002363"} {"ref-id":"A39465","pubmed-id":8801060,"citation":"Walker DK, Alabaster CT, Congrave GS, Hargreaves MB, Hyland R, Jones BC, Reed LJ, Smith DA: Significance of metabolism in the disposition and action of the antidysrhythmic drug, dofetilide. In vitro studies and correlation with in vivo data. Drug Metab Dispos. 1996 Apr;24(4):447-55.","parent_key":"BE0002363"} {"ref-id":"A186931","pubmed-id":25717355,"citation":"Andrikopoulos GK, Pastromas S, Tzeis S: Flecainide: Current status and perspectives in arrhythmia management. World J Cardiol. 2015 Feb 26;7(2):76-85. doi: 10.4330/wjc.v7.i2.76.","parent_key":"BE0002363"} {"ref-id":"A186931","pubmed-id":25717355,"citation":"Andrikopoulos GK, Pastromas S, Tzeis S: Flecainide: Current status and perspectives in arrhythmia management. World J Cardiol. 2015 Feb 26;7(2):76-85. doi: 10.4330/wjc.v7.i2.76.","parent_key":"BE0002433"} {"ref-id":"A39465","pubmed-id":8801060,"citation":"Walker DK, Alabaster CT, Congrave GS, Hargreaves MB, Hyland R, Jones BC, Reed LJ, Smith DA: Significance of metabolism in the disposition and action of the antidysrhythmic drug, dofetilide. In vitro studies and correlation with in vivo data. Drug Metab Dispos. 1996 Apr;24(4):447-55.","parent_key":"BE0002793"} {"ref-id":"A182828","pubmed-id":12796374,"citation":"Kelly WK, Zhu AX, Scher H, Curley T, Fallon M, Slovin S, Schwartz L, Larson S, Tong W, Hartley-Asp B, Pellizzoni C, Rocchetti M: Dose escalation study of intravenous estramustine phosphate in combination with Paclitaxel and Carboplatin in patients with advanced prostate cancer. Clin Cancer Res. 2003 Jun;9(6):2098-107.","parent_key":"BE0002638"} {"ref-id":"A182807","pubmed-id":16750462,"citation":"Najib J: Eszopiclone, a nonbenzodiazepine sedative-hypnotic agent for the treatment of transient and chronic insomnia. Clin Ther. 2006 Apr;28(4):491-516. doi: 10.1016/j.clinthera.2006.04.014.","parent_key":"BE0003533"} {"ref-id":"A14990","pubmed-id":16566594,"citation":"Fernando H, Halpert JR, Davydov DR: Resolution of multiple substrate binding sites in cytochrome P450 3A4: the stoichiometry of the enzyme-substrate complexes probed by FRET and Job's titration. Biochemistry. 2006 Apr 4;45(13):4199-209.","parent_key":"BE0002638"} {"ref-id":"A14991","pubmed-id":17573349,"citation":"Nath A, Grinkova YV, Sligar SG, Atkins WM: Ligand binding to cytochrome P450 3A4 in phospholipid bilayer nanodiscs: the effect of model membranes. J Biol Chem. 2007 Sep 28;282(39):28309-20. Epub 2007 Jun 15.","parent_key":"BE0002638"} {"ref-id":"A183827","pubmed-id":21437075,"citation":"Via MA, Chandra H, Araki T, Potenza MV, Skamagas M: Bromocriptine approved as the first medication to target dopamine activity to improve glycemic control in patients with type 2 diabetes. Diabetes Metab Syndr Obes. 2010 Mar 26;3:43-8.","parent_key":"BE0002638"} {"ref-id":"A39319","pubmed-id":29066867,"citation":"Zheng C, Hu X, Zhao L, Hu M, Gao F: Clinical and pharmacological hallmarks of rifapentine's use in diabetes patients with active and latent tuberculosis: do we know enough? Drug Des Devel Ther. 2017 Oct 11;11:2957-2968. doi: 10.2147/DDDT.S146506. eCollection 2017.","parent_key":"BE0002793"} {"ref-id":"A39323","pubmed-id":29368402,"citation":"Asaumi R, Toshimoto K, Tobe Y, Hashizume K, Nunoya KI, Imawaka H, Lee W, Sugiyama Y: Comprehensive PBPK Model of Rifampicin for Quantitative Prediction of Complex Drug-Drug Interactions: CYP3A/2C9 Induction and OATP Inhibition Effects. CPT Pharmacometrics Syst Pharmacol. 2018 Mar;7(3):186-196. doi: 10.1002/psp4.12275. Epub 2018 Feb 5.","parent_key":"BE0002793"} {"ref-id":"A37810","pubmed-id":24086247,"citation":"Yamashita F, Sasa Y, Yoshida S, Hisaka A, Asai Y, Kitano H, Hashida M, Suzuki H: Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS One. 2013 Sep 24;8(9):e70330. doi: 10.1371/journal.pone.0070330. eCollection 2013.","parent_key":"BE0002793"} {"ref-id":"A33270","pubmed-id":9402947,"citation":"Li AP, Reith MK, Rasmussen A, Gorski JC, Hall SD, Xu L, Kaminski DL, Cheng LK: Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine and rifabutin. Chem Biol Interact. 1997 Nov 6;107(1-2):17-30.","parent_key":"BE0002638"} {"ref-id":"A33273","pubmed-id":26094899,"citation":"Shimokawa Y, Yoda N, Kondo S, Yamamura Y, Takiguchi Y, Umehara K: Inhibitory Potential of Twenty Five Anti-tuberculosis Drugs on CYP Activities in Human Liver Microsomes. Biol Pharm Bull. 2015;38(9):1425-9. doi: 10.1248/bpb.b15-00313. Epub 2015 Jun 20.","parent_key":"BE0002638"} {"ref-id":"A33275","pubmed-id":24060875,"citation":"Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A: Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013 Dec;57(12):6366-9. doi: 10.1128/AAC.01124-13. Epub 2013 Sep 23.","parent_key":"BE0002638"} {"ref-id":"A33276","pubmed-id":22472995,"citation":"Dooley KE, Bliven-Sizemore EE, Weiner M, Lu Y, Nuermberger EL, Hubbard WC, Fuchs EJ, Melia MT, Burman WJ, Dorman SE: Safety and pharmacokinetics of escalating daily doses of the antituberculosis drug rifapentine in healthy volunteers. Clin Pharmacol Ther. 2012 May;91(5):881-8. doi: 10.1038/clpt.2011.323.","parent_key":"BE0002638"} {"ref-id":"A33277","pubmed-id":11432536,"citation":"Burman WJ, Gallicano K, Peloquin C: Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327-41. doi: 10.2165/00003088-200140050-00002.","parent_key":"BE0002638"} {"ref-id":"A33279","pubmed-id":20236863,"citation":"Aristoff PA, Garcia GA, Kirchhoff PD, Showalter HD: Rifamycins--obstacles and opportunities. Tuberculosis (Edinb). 2010 Mar;90(2):94-118. doi: 10.1016/j.tube.2010.02.001. Epub 2010 Mar 16.","parent_key":"BE0002638"} {"ref-id":"A33273","pubmed-id":26094899,"citation":"Shimokawa Y, Yoda N, Kondo S, Yamamura Y, Takiguchi Y, Umehara K: Inhibitory Potential of Twenty Five Anti-tuberculosis Drugs on CYP Activities in Human Liver Microsomes. Biol Pharm Bull. 2015;38(9):1425-9. doi: 10.1248/bpb.b15-00313. Epub 2015 Jun 20.","parent_key":"BE0002887"} {"ref-id":"A38830","pubmed-id":25512422,"citation":"Winter H, Egizi E, Murray S, Erondu N, Ginsberg A, Rouse DJ, Severynse-Stevens D, Pauli E: Evaluation of the pharmacokinetic interaction between repeated doses of rifapentine or rifampin and a single dose of bedaquiline in healthy adult subjects. Antimicrob Agents Chemother. 2015 Feb;59(2):1219-24. doi: 10.1128/AAC.04171-14. Epub 2014 Dec 15.","parent_key":"BE0002887"} {"ref-id":"A38583","pubmed-id":20086032,"citation":"Rana R, Chen Y, Ferguson SS, Kissling GE, Surapureddi S, Goldstein JA: Hepatocyte nuclear factor 4{alpha} regulates rifampicin-mediated induction of CYP2C genes in primary cultures of human hepatocytes. Drug Metab Dispos. 2010 Apr;38(4):591-9. doi: 10.1124/dmd.109.030387. Epub 2010 Jan 19.","parent_key":"BE0003536"} {"ref-id":"A33277","pubmed-id":11432536,"citation":"Burman WJ, Gallicano K, Peloquin C: Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327-41. doi: 10.2165/00003088-200140050-00002.","parent_key":"BE0004866"} {"ref-id":"A34548","pubmed-id":8221648,"citation":"Zhou-Pan XR, Seree E, Zhou XJ, Placidi M, Maurel P, Barra Y, Rahmani R: Involvement of human liver cytochrome P450 3A in vinblastine metabolism: drug interactions. Cancer Res. 1993 Nov 1;53(21):5121-6.","parent_key":"BE0002638"} {"ref-id":"A2118","pubmed-id":19909895,"citation":"Zuckerman JM, Qamar F, Bono BR: Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am. 2009 Dec;23(4):997-1026, ix-x. doi: 10.1016/j.idc.2009.06.013.","parent_key":"BE0002638"} {"ref-id":"A34938","pubmed-id":11452245,"citation":"Niemi M, Neuvonen PJ, Kivisto KT: The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther. 2001 Jul;70(1):58-65. doi: 10.1067/mcp.2001.116511.","parent_key":"BE0002638"} {"ref-id":"A183845","pubmed-id":24035278,"citation":"Dalboge CS, Nielsen XC, Dalhoff K, Alffenaar JW, Duno M, Buchard A, Uges DR, Jensen AG, Jurgens G, Pressler T, Johansen HK, Hoiby N: Pharmacokinetic variability of clarithromycin and differences in CYP3A4 activity in patients with cystic fibrosis. J Cyst Fibros. 2014 Mar;13(2):179-85. doi: 10.1016/j.jcf.2013.08.008. Epub 2013 Sep 10.","parent_key":"BE0002638"} {"ref-id":"A37130","pubmed-id":23514827,"citation":"Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H: Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet. 2013;28(5):411-5. Epub 2013 Mar 19.","parent_key":"BE0002638"} {"ref-id":"A182792","pubmed-id":27147840,"citation":"Megarbane B: Treatment of patients with ethylene glycol or methanol poisoning: focus on fomepizole. Open Access Emerg Med. 2010 Aug 24;2:67-75. doi: 10.2147/OAEM.S5346. eCollection 2010.","parent_key":"BE0003533"} {"ref-id":"A31203","pubmed-id":16012077,"citation":"Miura M, Otani K, Ohkubo T: Identification of human cytochrome P450 enzymes involved in the formation of 4-hydroxyestazolam from estazolam. Xenobiotica. 2005 May;35(5):455-65.","parent_key":"BE0002638"} {"ref-id":"A14992","pubmed-id":8654202,"citation":"Huskey SW, Dean DC, Miller RR, Rasmusson GH, Chiu SH: Identification of human cytochrome P450 isozymes responsible for the in vitro oxidative metabolism of finasteride. Drug Metab Dispos. 1995 Oct;23(10):1126-35.","parent_key":"BE0002638"} {"ref-id":"A183848","pubmed-id":21142863,"citation":"Hulin-Curtis SL, Petit D, Figg WD, Hsing AW, Reichardt JK: Finasteride metabolism and pharmacogenetics: new approaches to personalized prevention of prostate cancer. Future Oncol. 2010 Dec;6(12):1897-913. doi: 10.2217/fon.10.149.","parent_key":"BE0002638"} {"ref-id":"A184457","pubmed-id":21175441,"citation":"Kamdem LK, Liu Y, Stearns V, Kadlubar SA, Ramirez J, Jeter S, Shahverdi K, Ward BA, Ogburn E, Ratain MJ, Flockhart DA, Desta Z: In vitro and in vivo oxidative metabolism and glucuronidation of anastrozole. Br J Clin Pharmacol. 2010 Dec;70(6):854-69. doi: 10.1111/j.1365-2125.2010.03791.x.","parent_key":"BE0002638"} {"ref-id":"A33206","pubmed-id":9152599,"citation":"Grimm SW, Dyroff MC: Inhibition of human drug metabolizing cytochromes P450 by anastrozole, a potent and selective inhibitor of aromatase. Drug Metab Dispos. 1997 May;25(5):598-602.","parent_key":"BE0002638"} {"ref-id":"A184457","pubmed-id":21175441,"citation":"Kamdem LK, Liu Y, Stearns V, Kadlubar SA, Ramirez J, Jeter S, Shahverdi K, Ward BA, Ogburn E, Ratain MJ, Flockhart DA, Desta Z: In vitro and in vivo oxidative metabolism and glucuronidation of anastrozole. Br J Clin Pharmacol. 2010 Dec;70(6):854-69. doi: 10.1111/j.1365-2125.2010.03791.x.","parent_key":"BE0002362"} {"ref-id":"A184457","pubmed-id":21175441,"citation":"Kamdem LK, Liu Y, Stearns V, Kadlubar SA, Ramirez J, Jeter S, Shahverdi K, Ward BA, Ogburn E, Ratain MJ, Flockhart DA, Desta Z: In vitro and in vivo oxidative metabolism and glucuronidation of anastrozole. Br J Clin Pharmacol. 2010 Dec;70(6):854-69. doi: 10.1111/j.1365-2125.2010.03791.x.","parent_key":"BE0002887"} {"ref-id":"A184457","pubmed-id":21175441,"citation":"Kamdem LK, Liu Y, Stearns V, Kadlubar SA, Ramirez J, Jeter S, Shahverdi K, Ward BA, Ogburn E, Ratain MJ, Flockhart DA, Desta Z: In vitro and in vivo oxidative metabolism and glucuronidation of anastrozole. Br J Clin Pharmacol. 2010 Dec;70(6):854-69. doi: 10.1111/j.1365-2125.2010.03791.x.","parent_key":"BE0003677"} {"ref-id":"A184457","pubmed-id":21175441,"citation":"Kamdem LK, Liu Y, Stearns V, Kadlubar SA, Ramirez J, Jeter S, Shahverdi K, Ward BA, Ogburn E, Ratain MJ, Flockhart DA, Desta Z: In vitro and in vivo oxidative metabolism and glucuronidation of anastrozole. Br J Clin Pharmacol. 2010 Dec;70(6):854-69. doi: 10.1111/j.1365-2125.2010.03791.x.","parent_key":"BE0003679"} {"ref-id":"A33206","pubmed-id":9152599,"citation":"Grimm SW, Dyroff MC: Inhibition of human drug metabolizing cytochromes P450 by anastrozole, a potent and selective inhibitor of aromatase. Drug Metab Dispos. 1997 May;25(5):598-602.","parent_key":"BE0002433"} {"ref-id":"A39255","pubmed-id":8554939,"citation":"Halliday RC, Jones BC, Smith DA, Kitteringham NR, Park BK: An investigation of the interaction between halofantrine, CYP2D6 and CYP3A4: studies with human liver microsomes and heterologous enzyme expression systems. Br J Clin Pharmacol. 1995 Oct;40(4):369-78. doi: 10.1111/j.1365-2125.1995.tb04559.x.","parent_key":"BE0002363"} {"ref-id":"A185144","pubmed-id":10189263,"citation":"Khoo SM, Porter JH, Edwards GA, Charman WN: Metabolism of halofantrine to its equipotent metabolite, desbutylhalofantrine, is decreased when orally administered with ketoconazole. J Pharm Sci. 1998 Dec;87(12):1538-41. doi: 10.1021/js980185w.","parent_key":"BE0002638"} {"ref-id":"A38844","pubmed-id":10385214,"citation":"Baune B, Flinois JP, Furlan V, Gimenez F, Taburet AM, Becquemont L, Farinotti R: Halofantrine metabolism in microsomes in man: major role of CYP 3A4 and CYP 3A5. J Pharm Pharmacol. 1999 Apr;51(4):419-26.","parent_key":"BE0002638"} {"ref-id":"A185147","pubmed-id":12426515,"citation":"Charbit B, Becquemont L, Lepere B, Peytavin G, Funck-Brentano C: Pharmacokinetic and pharmacodynamic interaction between grapefruit juice and halofantrine. Clin Pharmacol Ther. 2002 Nov;72(5):514-23. doi: 10.1067/mcp.2002.128148b.","parent_key":"BE0002638"} {"ref-id":"A38844","pubmed-id":10385214,"citation":"Baune B, Flinois JP, Furlan V, Gimenez F, Taburet AM, Becquemont L, Farinotti R: Halofantrine metabolism in microsomes in man: major role of CYP 3A4 and CYP 3A5. J Pharm Pharmacol. 1999 Apr;51(4):419-26.","parent_key":"BE0002362"} {"ref-id":"A38844","pubmed-id":10385214,"citation":"Baune B, Flinois JP, Furlan V, Gimenez F, Taburet AM, Becquemont L, Farinotti R: Halofantrine metabolism in microsomes in man: major role of CYP 3A4 and CYP 3A5. J Pharm Pharmacol. 1999 Apr;51(4):419-26.","parent_key":"BE0002887"} {"ref-id":"A38603","pubmed-id":21505109,"citation":"Hoffman JT, Hartig C, Sonbol E, Lang M: Probable interaction between warfarin and rifaximin in a patient treated for small intestine bacterial overgrowth. Ann Pharmacother. 2011 May;45(5):e25. doi: 10.1345/aph.1P578. Epub 2011 Apr 19.","parent_key":"BE0002638"} {"ref-id":"A39372","pubmed-id":26064350,"citation":"Lin F, He Y, Zhang L, Zhang M, Zhang Y, Wen C: Assessment of the effect of ketamine on cytochrome P450 isoforms activity in rats by cocktail method. Int J Clin Exp Med. 2015 Mar 15;8(3):4335-41. eCollection 2015.","parent_key":"BE0002793"} {"ref-id":"A38874","pubmed-id":22023129,"citation":"Mossner LD, Schmitz A, Theurillat R, Thormann W, Mevissen M: Inhibition of cytochrome P450 enzymes involved in ketamine metabolism by use of liver microsomes and specific cytochrome P450 enzymes from horses, dogs, and humans. Am J Vet Res. 2011 Nov;72(11):1505-13. doi: 10.2460/ajvr.72.11.1505.","parent_key":"BE0002793"} {"ref-id":"A39374","pubmed-id":11353758,"citation":"Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, Iga T: Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2001 Jun;29(6):887-90.","parent_key":"BE0002793"} {"ref-id":"A39480","pubmed-id":12065445,"citation":"Hijazi Y, Boulieu R: Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002 Jul;30(7):853-8.","parent_key":"BE0002793"} {"ref-id":"A39372","pubmed-id":26064350,"citation":"Lin F, He Y, Zhang L, Zhang M, Zhang Y, Wen C: Assessment of the effect of ketamine on cytochrome P450 isoforms activity in rats by cocktail method. Int J Clin Exp Med. 2015 Mar 15;8(3):4335-41. eCollection 2015.","parent_key":"BE0002638"} {"ref-id":"A39480","pubmed-id":12065445,"citation":"Hijazi Y, Boulieu R: Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002 Jul;30(7):853-8.","parent_key":"BE0003549"} {"ref-id":"A39374","pubmed-id":11353758,"citation":"Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, Iga T: Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2001 Jun;29(6):887-90.","parent_key":"BE0003549"} {"ref-id":"A182765","pubmed-id":22612619,"citation":"Desta Z, Moaddel R, Ogburn ET, Xu C, Ramamoorthy A, Venkata SL, Sanghvi M, Goldberg ME, Torjman MC, Wainer IW: Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica. 2012 Nov;42(11):1076-87. doi: 10.3109/00498254.2012.685777. Epub 2012 May 21.","parent_key":"BE0002887"} {"ref-id":"A14993","pubmed-id":7720517,"citation":"Jonsson G, Astrom A, Andersson P: Budesonide is metabolized by cytochrome P450 3A (CYP3A) enzymes in human liver. Drug Metab Dispos. 1995 Jan;23(1):137-42.","parent_key":"BE0002638"} {"ref-id":"A183854","pubmed-id":28730856,"citation":"Chen N, Cui D, Wang Q, Wen Z, Finkelman RD, Welty D: In vitro drug-drug interactions of budesonide: inhibition and induction of transporters and cytochrome P450 enzymes. Xenobiotica. 2018 Jun;48(6):637-646. doi: 10.1080/00498254.2017.1344911. Epub 2017 Jul 21.","parent_key":"BE0002638"} {"ref-id":"A183860","pubmed-id":19138736,"citation":"Zimmermann C, van Waterschoot RA, Harmsen S, Maier A, Gutmann H, Schinkel AH: PXR-mediated induction of human CYP3A4 and mouse Cyp3a11 by the glucocorticoid budesonide. Eur J Pharm Sci. 2009 Mar 2;36(4-5):565-71. doi: 10.1016/j.ejps.2008.12.007. Epub 2008 Dec 24.","parent_key":"BE0002638"} {"ref-id":"A14813","pubmed-id":11996015,"citation":"Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.","parent_key":"BE0002362"} {"ref-id":"A39103","pubmed-id":9855322,"citation":"Macias WL, Bergstrom RF, Cerimele BJ, Kassahun K, Tatum DE, Callaghan JT: Lack of effect of olanzapine on the pharmacokinetics of a single aminophylline dose in healthy men. Pharmacotherapy. 1998 Nov-Dec;18(6):1237-48.","parent_key":"BE0002433"} {"ref-id":"A36659","pubmed-id":8786569,"citation":"Tjia JF, Colbert J, Back DJ: Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther. 1996 Mar;276(3):912-7.","parent_key":"BE0003533"} {"ref-id":"A36659","pubmed-id":8786569,"citation":"Tjia JF, Colbert J, Back DJ: Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther. 1996 Mar;276(3):912-7.","parent_key":"BE0002638"} {"ref-id":"A185768","pubmed-id":24240480,"citation":"Kim KA, Joo HJ, Lee HM, Park JY: Influence of ABCB1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of quetiapine in healthy volunteers. Pharmacogenet Genomics. 2014 Jan;24(1):35-42. doi: 10.1097/FPC.0000000000000020.","parent_key":"BE0002362"} {"ref-id":"A38464","pubmed-id":19022943,"citation":"Bakken GV, Rudberg I, Christensen H, Molden E, Refsum H, Hermann M: Metabolism of quetiapine by CYP3A4 and CYP3A5 in presence or absence of cytochrome B5. Drug Metab Dispos. 2009 Feb;37(2):254-8. doi: 10.1124/dmd.108.023291. Epub 2008 Nov 20.","parent_key":"BE0002362"} {"ref-id":"A14994","pubmed-id":11510628,"citation":"DeVane CL, Nemeroff CB: Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet. 2001;40(7):509-22. doi: 10.2165/00003088-200140070-00003.","parent_key":"BE0002638"} {"ref-id":"A38464","pubmed-id":19022943,"citation":"Bakken GV, Rudberg I, Christensen H, Molden E, Refsum H, Hermann M: Metabolism of quetiapine by CYP3A4 and CYP3A5 in presence or absence of cytochrome B5. Drug Metab Dispos. 2009 Feb;37(2):254-8. doi: 10.1124/dmd.108.023291. Epub 2008 Nov 20.","parent_key":"BE0002638"} {"ref-id":"A183863","pubmed-id":22688609,"citation":"Bakken GV, Molden E, Knutsen K, Lunder N, Hermann M: Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro. Drug Metab Dispos. 2012 Sep;40(9):1778-84. doi: 10.1124/dmd.112.045237. Epub 2012 Jun 11.","parent_key":"BE0002638"} {"ref-id":"A2189","pubmed-id":11051217,"citation":"Dev V, Raniwalla J: Quetiapine: a review of its safety in the management of schizophrenia. Drug Saf. 2000 Oct;23(4):295-307.","parent_key":"BE0002638"} {"ref-id":"A39272","pubmed-id":15516294,"citation":"Lin SN, Chang Y, Moody DE, Foltz RL: A liquid chromatographic-electrospray-tandem mass spectrometric method for quantitation of quetiapine in human plasma and liver microsomes: application to study in vitro metabolism. J Anal Toxicol. 2004 Sep;28(6):443-8. doi: 10.1093/jat/28.6.443.","parent_key":"BE0003536"} {"ref-id":"A185774","pubmed-id":26985117,"citation":"Bavle AD, Vishwaraj S: Warfarin-quetiapine interaction causing hemorrhage. Indian J Psychiatry. 2016 Jan-Mar;58(1):102-3. doi: 10.4103/0019-5545.174401.","parent_key":"BE0003536"} {"ref-id":"A185771","pubmed-id":25025989,"citation":"Cabaleiro T, Lopez-Rodriguez R, Roman M, Ochoa D, Novalbos J, Borobia A, Carcas A, Abad-Santos F: Pharmacogenetics of quetiapine in healthy volunteers: association with pharmacokinetics, pharmacodynamics, and adverse effects. Int Clin Psychopharmacol. 2015 Mar;30(2):82-8. doi: 10.1097/YIC.0000000000000047.","parent_key":"BE0003536"} {"ref-id":"A39272","pubmed-id":15516294,"citation":"Lin SN, Chang Y, Moody DE, Foltz RL: A liquid chromatographic-electrospray-tandem mass spectrometric method for quantitation of quetiapine in human plasma and liver microsomes: application to study in vitro metabolism. J Anal Toxicol. 2004 Sep;28(6):443-8. doi: 10.1093/jat/28.6.443.","parent_key":"BE0002363"} {"ref-id":"A185780","pubmed-id":16841513,"citation":"Hasselstrom J, Linnet K: In vitro studies on quetiapine metabolism using the substrate depletion approach with focus on drug-drug interactions. Drug Metabol Drug Interact. 2006;21(3-4):187-211.","parent_key":"BE0002363"} {"ref-id":"A183863","pubmed-id":22688609,"citation":"Bakken GV, Molden E, Knutsen K, Lunder N, Hermann M: Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro. Drug Metab Dispos. 2012 Sep;40(9):1778-84. doi: 10.1124/dmd.112.045237. Epub 2012 Jun 11.","parent_key":"BE0002363"} {"ref-id":"A39272","pubmed-id":15516294,"citation":"Lin SN, Chang Y, Moody DE, Foltz RL: A liquid chromatographic-electrospray-tandem mass spectrometric method for quantitation of quetiapine in human plasma and liver microsomes: application to study in vitro metabolism. J Anal Toxicol. 2004 Sep;28(6):443-8. doi: 10.1093/jat/28.6.443.","parent_key":"BE0003612"} {"ref-id":"A14995","pubmed-id":11504799,"citation":"Oda Y, Kharasch ED: Metabolism of methadone and levo-alpha-acetylmethadol (LAAM) by human intestinal cytochrome P450 3A4 (CYP3A4): potential contribution of intestinal metabolism to presystemic clearance and bioactivation. J Pharmacol Exp Ther. 2001 Sep;298(3):1021-32.","parent_key":"BE0002638"} {"ref-id":"A185171","pubmed-id":15966756,"citation":"Kharasch ED, Whittington D, Hoffer C, Krudys K, Craig K, Vicini P, Sheffels P, Lalovic B: Paradoxical role of cytochrome P450 3A in the bioactivation and clinical effects of levo-alpha-acetylmethadol: importance of clinical investigations to validate in vitro drug metabolism studies. Clin Pharmacokinet. 2005;44(7):731-51. doi: 10.2165/00003088-200544070-00005.","parent_key":"BE0002638"} {"ref-id":"A185198","pubmed-id":11851634,"citation":"Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A: Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol. 2002 Feb;53(2):111-22. doi: 10.1046/j.0306-5251.2001.01548.x.","parent_key":"BE0002363"} {"ref-id":"A38705","pubmed-id":9698296,"citation":"Fischer V, Rodriguez-Gascon A, Heitz F, Tynes R, Hauck C, Cohen D, Vickers AE: The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos. 1998 Aug;26(8):802-11.","parent_key":"BE0002638"} {"ref-id":"A183866","pubmed-id":7473140,"citation":"Sonnichsen DS, Liu Q, Schuetz EG, Schuetz JD, Pappo A, Relling MV: Variability in human cytochrome P450 paclitaxel metabolism. J Pharmacol Exp Ther. 1995 Nov;275(2):566-75.","parent_key":"BE0002638"} {"ref-id":"A183869","pubmed-id":24476576,"citation":"Wang Y, Wang M, Qi H, Pan P, Hou T, Li J, He G, Zhang H: Pathway-dependent inhibition of paclitaxel hydroxylation by kinase inhibitors and assessment of drug-drug interaction potentials. Drug Metab Dispos. 2014 Apr;42(4):782-95. doi: 10.1124/dmd.113.053793. Epub 2014 Jan 29.","parent_key":"BE0002638"} {"ref-id":"A38317","pubmed-id":9842986,"citation":"Desai PB, Duan JZ, Zhu YW, Kouzi S: Human liver microsomal metabolism of paclitaxel and drug interactions. Eur J Drug Metab Pharmacokinet. 1998 Jul-Sep;23(3):417-24.","parent_key":"BE0002638"} {"ref-id":"A183872","pubmed-id":15175893,"citation":"Nallani SC, Goodwin B, Buckley AR, Buckley DJ, Desai PB: Differences in the induction of cytochrome P450 3A4 by taxane anticancer drugs, docetaxel and paclitaxel, assessed employing primary human hepatocytes. Cancer Chemother Pharmacol. 2004 Sep;54(3):219-29. doi: 10.1007/s00280-004-0799-9. Epub 2004 Jun 3.","parent_key":"BE0002638"} {"ref-id":"A110593","pubmed-id":11668219,"citation":"Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA: Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics. 2001 Oct;11(7):597-607.","parent_key":"BE0002887"} {"ref-id":"A183866","pubmed-id":7473140,"citation":"Sonnichsen DS, Liu Q, Schuetz EG, Schuetz JD, Pappo A, Relling MV: Variability in human cytochrome P450 paclitaxel metabolism. J Pharmacol Exp Ther. 1995 Nov;275(2):566-75.","parent_key":"BE0002887"} {"ref-id":"A38317","pubmed-id":9842986,"citation":"Desai PB, Duan JZ, Zhu YW, Kouzi S: Human liver microsomal metabolism of paclitaxel and drug interactions. Eur J Drug Metab Pharmacokinet. 1998 Jul-Sep;23(3):417-24.","parent_key":"BE0002887"} {"ref-id":"A184016","pubmed-id":15373940,"citation":"Frohlich M, Hoffmann MM, Burhenne J, Mikus G, Weiss J, Haefeli WE: Association of the CYP3A5 A6986G (CYP3A5*3) polymorphism with saquinavir pharmacokinetics. Br J Clin Pharmacol. 2004 Oct;58(4):443-4. doi: 10.1111/j.1365-2125.2004.02159.x.","parent_key":"BE0002362"} {"ref-id":"A184019","pubmed-id":17329995,"citation":"Josephson F, Allqvist A, Janabi M, Sayi J, Aklillu E, Jande M, Mahindi M, Burhenne J, Bottiger Y, Gustafsson LL, Haefeli WE, Bertilsson L: CYP3A5 genotype has an impact on the metabolism of the HIV protease inhibitor saquinavir. Clin Pharmacol Ther. 2007 May;81(5):708-12. doi: 10.1038/sj.clpt.6100117. Epub 2007 Feb 28.","parent_key":"BE0002362"} {"ref-id":"A183875","pubmed-id":11824416,"citation":"Eagling VA, Wiltshire H, Whitcombe IW, Back DJ: CYP3A4-mediated hepatic metabolism of the HIV-1 protease inhibitor saquinavir in vitro. Xenobiotica. 2002 Jan;32(1):1-17. doi: 10.1080/00498250110085845.","parent_key":"BE0002638"} {"ref-id":"A183878","pubmed-id":19792991,"citation":"Schmitt C, Hofmann C, Riek M, Patel A, Zwanziger E: Effect of saquinavir-ritonavir on cytochrome P450 3A4 activity in healthy volunteers using midazolam as a probe. Pharmacotherapy. 2009 Oct;29(10):1175-81. doi: 10.1592/phco.29.10.1175.","parent_key":"BE0002638"} {"ref-id":"A34094","pubmed-id":17361129,"citation":"Parikh S, Ouedraogo JB, Goldstein JA, Rosenthal PJ, Kroetz DL: Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther. 2007 Aug;82(2):197-203. doi: 10.1038/sj.clpt.6100122. Epub 2007 Mar 14.","parent_key":"BE0002887"} {"ref-id":"A181280","pubmed-id":24010633,"citation":"Livezey MR, Briggs ED, Bolles AK, Nagy LD, Fujiwara R, Furge LL: Metoclopramide is metabolized by CYP2D6 and is a reversible inhibitor, but not inactivator, of CYP2D6. Xenobiotica. 2014 Apr;44(4):309-319. doi: 10.3109/00498254.2013.835885. Epub 2013 Sep 6.","parent_key":"BE0002363"} {"ref-id":"A181283","pubmed-id":11854155,"citation":"Desta Z, Wu GM, Morocho AM, Flockhart DA: The gastroprokinetic and antiemetic drug metoclopramide is a substrate and inhibitor of cytochrome P450 2D6. Drug Metab Dispos. 2002 Mar;30(3):336-43. doi: 10.1124/dmd.30.3.336.","parent_key":"BE0002363"} {"ref-id":"A181352","pubmed-id":22688139,"citation":"Camilleri M, Shin A: Lessons from pharmacogenetics and metoclopramide: toward the right dose of the right drug for the right patient. J Clin Gastroenterol. 2012 Jul;46(6):437-9. doi: 10.1097/MCG.0b013e3182549528.","parent_key":"BE0002363"} {"ref-id":"A184880","pubmed-id":21278804,"citation":"Lee A, Kuo B: Metoclopramide in the treatment of diabetic gastroparesis. Expert Rev Endocrinol Metab. 2010;5(5):653-662.","parent_key":"BE0002638"} {"ref-id":"A181280","pubmed-id":24010633,"citation":"Livezey MR, Briggs ED, Bolles AK, Nagy LD, Fujiwara R, Furge LL: Metoclopramide is metabolized by CYP2D6 and is a reversible inhibitor, but not inactivator, of CYP2D6. Xenobiotica. 2014 Apr;44(4):309-319. doi: 10.3109/00498254.2013.835885. Epub 2013 Sep 6.","parent_key":"BE0002638"} {"ref-id":"A184979","pubmed-id":23184849,"citation":"Bailey DG, Dresser G, Arnold JM: Grapefruit-medication interactions: forbidden fruit or avoidable consequences? CMAJ. 2013 Mar 5;185(4):309-16. doi: 10.1503/cmaj.120951. Epub 2012 Nov 26.","parent_key":"BE0002638"} {"ref-id":"A184880","pubmed-id":21278804,"citation":"Lee A, Kuo B: Metoclopramide in the treatment of diabetic gastroparesis. Expert Rev Endocrinol Metab. 2010;5(5):653-662.","parent_key":"BE0002433"} {"ref-id":"A181280","pubmed-id":24010633,"citation":"Livezey MR, Briggs ED, Bolles AK, Nagy LD, Fujiwara R, Furge LL: Metoclopramide is metabolized by CYP2D6 and is a reversible inhibitor, but not inactivator, of CYP2D6. Xenobiotica. 2014 Apr;44(4):309-319. doi: 10.3109/00498254.2013.835885. Epub 2013 Sep 6.","parent_key":"BE0002433"} {"ref-id":"A181352","pubmed-id":22688139,"citation":"Camilleri M, Shin A: Lessons from pharmacogenetics and metoclopramide: toward the right dose of the right drug for the right patient. J Clin Gastroenterol. 2012 Jul;46(6):437-9. doi: 10.1097/MCG.0b013e3182549528.","parent_key":"BE0002433"} {"ref-id":"A10059","pubmed-id":9141556,"citation":"Diederich S, Hanke B, Oelkers W, Bahr V: Metabolism of dexamethasone in the human kidney: nicotinamide adenine dinucleotide-dependent 11beta-reduction. J Clin Endocrinol Metab. 1997 May;82(5):1598-602.","parent_key":"BE0000131"} {"ref-id":"A188556","pubmed-id":9618784,"citation":"Diederich S, Hanke B, Burkhardt P, Muller M, Schoneshofer M, Bahr V, Oelkers W: Metabolism of synthetic corticosteroids by 11 beta-hydroxysteroid-dehydrogenases in man. Steroids. 1998 May-Jun;63(5-6):271-7. doi: 10.1016/s0039-128x(98)00039-7.","parent_key":"BE0000131"} {"ref-id":"A174751","pubmed-id":8866917,"citation":"Christians U, Schmidt G, Bader A, Lampen A, Schottmann R, Linck A, Sewing KF: Identification of drugs inhibiting the in vitro metabolism of tacrolimus by human liver microsomes. Br J Clin Pharmacol. 1996 Mar;41(3):187-90.","parent_key":"BE0002638"} {"ref-id":"A174754","pubmed-id":17207564,"citation":"Miranda SR, Meyer SA: Cytotoxicity of chloroacetanilide herbicide alachlor in HepG2 cells independent of CYP3A4 and CYP3A7. Food Chem Toxicol. 2007 May;45(5):871-7. doi: 10.1016/j.fct.2006.11.011. Epub 2006 Nov 26.","parent_key":"BE0002638"} {"ref-id":"A174757","pubmed-id":9010633,"citation":"Yamaguchi Y, Kirita S, Baba T, Aoyama J, Touchi A, Tukey RH, Guengerich FP, Matsubara T: Identification of rat and human cytochrome P450 forms involved in the metabolism of the thromboxane A2 receptor antagonist (+)-S-145. Drug Metab Dispos. 1997 Jan;25(1):75-80.","parent_key":"BE0002638"} {"ref-id":"A174760","pubmed-id":11231298,"citation":"Gomez-Lechon MJ, Donato T, Jover R, Rodriguez C, Ponsoda X, Glaise D, Castell JV, Guguen-Guillouzo C: Expression and induction of a large set of drug-metabolizing enzymes by the highly differentiated human hepatoma cell line BC2. Eur J Biochem. 2001 Mar;268(5):1448-59.","parent_key":"BE0002638"} {"ref-id":"A174763","pubmed-id":8386241,"citation":"Berson A, Wolf C, Chachaty C, Fisch C, Fau D, Eugene D, Loeper J, Gauthier JC, Beaune P, Pompon D, et al.: Metabolic activation of the nitroaromatic antiandrogen flutamide by rat and human cytochromes P-450, including forms belonging to the 3A and 1A subfamilies. J Pharmacol Exp Ther. 1993 Apr;265(1):366-72.","parent_key":"BE0002638"} {"ref-id":"A174766","pubmed-id":11061575,"citation":"McCune JS, Hawke RL, LeCluyse EL, Gillenwater HH, Hamilton G, Ritchie J, Lindley C: In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther. 2000 Oct;68(4):356-66. doi: 10.1067/mcp.2000.110215.","parent_key":"BE0002638"} {"ref-id":"A10059","pubmed-id":9141556,"citation":"Diederich S, Hanke B, Oelkers W, Bahr V: Metabolism of dexamethasone in the human kidney: nicotinamide adenine dinucleotide-dependent 11beta-reduction. J Clin Endocrinol Metab. 1997 May;82(5):1598-602.","parent_key":"BE0000329"} {"ref-id":"A188556","pubmed-id":9618784,"citation":"Diederich S, Hanke B, Burkhardt P, Muller M, Schoneshofer M, Bahr V, Oelkers W: Metabolism of synthetic corticosteroids by 11 beta-hydroxysteroid-dehydrogenases in man. Steroids. 1998 May-Jun;63(5-6):271-7. doi: 10.1016/s0039-128x(98)00039-7.","parent_key":"BE0000329"} {"ref-id":"A174754","pubmed-id":17207564,"citation":"Miranda SR, Meyer SA: Cytotoxicity of chloroacetanilide herbicide alachlor in HepG2 cells independent of CYP3A4 and CYP3A7. Food Chem Toxicol. 2007 May;45(5):871-7. doi: 10.1016/j.fct.2006.11.011. Epub 2006 Nov 26.","parent_key":"BE0003612"} {"ref-id":"A182738","pubmed-id":8385739,"citation":"Trzeciak WH, LeHoux JG, Waterman MR, Simpson ER: Dexamethasone inhibits corticotropin-induced accumulation of CYP11A and CYP17 messenger RNAs in bovine adrenocortical cells. Mol Endocrinol. 1993 Feb;7(2):206-13. doi: 10.1210/mend.7.2.8385739.","parent_key":"BE0000344"} {"ref-id":"A38991","pubmed-id":11286621,"citation":"Baron JM, Holler D, Schiffer R, Frankenberg S, Neis M, Merk HF, Jugert FK: Expression of multiple cytochrome p450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J Invest Dermatol. 2001 Apr;116(4):541-8. doi: 10.1046/j.1523-1747.2001.01298.x.","parent_key":"BE0003543"} {"ref-id":"A182735","pubmed-id":15620718,"citation":"Monostory K, Kohalmy K, Prough RA, Kobori L, Vereczkey L: The effect of synthetic glucocorticoid, dexamethasone on CYP1A1 inducibility in adult rat and human hepatocytes. FEBS Lett. 2005 Jan 3;579(1):229-35. doi: 10.1016/j.febslet.2004.11.080.","parent_key":"BE0003543"} {"ref-id":"A22135","pubmed-id":17978169,"citation":"Onica T, Nichols K, Larin M, Ng L, Maslen A, Dvorak Z, Pascussi JM, Vilarem MJ, Maurel P, Kirby GM: Dexamethasone-mediated up-regulation of human CYP2A6 involves the glucocorticoid receptor and increased binding of hepatic nuclear factor 4 alpha to the proximal promoter. Mol Pharmacol. 2008 Feb;73(2):451-60. Epub 2007 Oct 31.","parent_key":"BE0003336"} {"ref-id":"A184469","pubmed-id":10923861,"citation":"Meunier V, Bourrie M, Julian B, Marti E, Guillou F, Berger Y, Fabre G: Expression and induction of CYP1A1/1A2, CYP2A6 and CYP3A4 in primary cultures of human hepatocytes: a 10-year follow-up. Xenobiotica. 2000 Jun;30(6):589-607. doi: 10.1080/004982500406426 .","parent_key":"BE0003336"} {"ref-id":"A184472","pubmed-id":16719377,"citation":"Waxman DJ, Chang TK: Spectrofluorometric analysis of CYP2A6-catalyzed coumarin 7-hydroxylation. Methods Mol Biol. 2006;320:91-6. doi: 10.1385/1-59259-998-2:91.","parent_key":"BE0003336"} {"ref-id":"A38991","pubmed-id":11286621,"citation":"Baron JM, Holler D, Schiffer R, Frankenberg S, Neis M, Merk HF, Jugert FK: Expression of multiple cytochrome p450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J Invest Dermatol. 2001 Apr;116(4):541-8. doi: 10.1046/j.1523-1747.2001.01298.x.","parent_key":"BE0003549"} {"ref-id":"A33269","pubmed-id":12130704,"citation":"Raucy JL, Mueller L, Duan K, Allen SW, Strom S, Lasker JM: Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J Pharmacol Exp Ther. 2002 Aug;302(2):475-82. doi: 10.1124/jpet.102.033837.","parent_key":"BE0003536"} {"ref-id":"A38853","pubmed-id":22027650,"citation":"Scott SA, Sangkuhl K, Shuldiner AR, Hulot JS, Thorn CF, Altman RB, Klein TE: PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics. 2012 Feb;22(2):159-65. doi: 10.1097/FPC.0b013e32834d4962.","parent_key":"BE0003536"} {"ref-id":"A184478","pubmed-id":11093784,"citation":"Pascussi JM, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ: Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation. Mol Pharmacol. 2000 Dec;58(6):1441-50. doi: 10.1124/mol.58.6.1441.","parent_key":"BE0002887"} {"ref-id":"A38991","pubmed-id":11286621,"citation":"Baron JM, Holler D, Schiffer R, Frankenberg S, Neis M, Merk HF, Jugert FK: Expression of multiple cytochrome p450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J Invest Dermatol. 2001 Apr;116(4):541-8. doi: 10.1046/j.1523-1747.2001.01298.x.","parent_key":"BE0003533"} {"ref-id":"A184481","pubmed-id":9207195,"citation":"Sampol E, Mirrione A, Villard PH, Piccerelle P, Scoma H, Berbis P, Barra Y, Durand A, Lacarelle B: Evidence for a tissue-specific induction of cutaneous CYP2E1 by dexamethasone. Biochem Biophys Res Commun. 1997 Jun 27;235(3):557-61. doi: 10.1006/bbrc.1997.6829.","parent_key":"BE0003533"} {"ref-id":"A184484","pubmed-id":8249615,"citation":"Monostory K, Vereczkey L: Combined action of phenobarbital and dexamethasone on the activity of rat liver P450 system. Acta Pharm Hung. 1993 Sep;63(5):296-300.","parent_key":"BE0003533"} {"ref-id":"A182732","pubmed-id":12679136,"citation":"Krusekopf S, Roots I, Kleeberg U: Differential drug-induced mRNA expression of human CYP3A4 compared to CYP3A5, CYP3A7 and CYP3A43. Eur J Pharmacol. 2003 Apr 11;466(1-2):7-12. doi: 10.1016/s0014-2999(03)01481-x.","parent_key":"BE0003550"} {"ref-id":"A182729","pubmed-id":12464261,"citation":"Savas U, Hsu MH, Johnson EF: Differential regulation of human CYP4A genes by peroxisome proliferators and dexamethasone. Arch Biochem Biophys. 2003 Jan 1;409(1):212-20. doi: 10.1016/s0003-9861(02)00499-x.","parent_key":"BE0000421"} {"ref-id":"A182744","pubmed-id":11600544,"citation":"Fardella CE, Pinto M, Mosso L, Gomez-Sanchez C, Jalil J, Montero J: Genetic study of patients with dexamethasone-suppressible aldosteronism without the chimeric CYP11B1/CYP11B2 gene. J Clin Endocrinol Metab. 2001 Oct;86(10):4805-7. doi: 10.1210/jcem.86.10.7920.","parent_key":"BE0000731"} {"ref-id":"A183884","pubmed-id":7486145,"citation":"Kharasch ED: Biotransformation of sevoflurane. Anesth Analg. 1995 Dec;81(6 Suppl):S27-38. doi: 10.1097/00000539-199512001-00005.","parent_key":"BE0003533"} {"ref-id":"A183887","pubmed-id":9322481,"citation":"Wandel C, Neff S, Keppler G, Bohrer H, Stockinger K, Wilkinson GR, Wood M, Martin E: The relationship between cytochrome P4502E1 activity and plasma fluoride levels after sevoflurane anesthesia in humans. Anesth Analg. 1997 Oct;85(4):924-30. doi: 10.1097/00000539-199710000-00038.","parent_key":"BE0003533"} {"ref-id":"A182726","pubmed-id":7879937,"citation":"Kharasch ED, Hankins DC, Thummel KE: Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995 Mar;82(3):689-99. doi: 10.1097/00000542-199503000-00011.","parent_key":"BE0003549"} {"ref-id":"A38367","pubmed-id":17164689,"citation":"Molden E, Lunde H, Lunder N, Refsum H: Pharmacokinetic variability of aripiprazole and the active metabolite dehydroaripiprazole in psychiatric patients. Ther Drug Monit. 2006 Dec;28(6):744-9. doi: 10.1097/01.ftd.0000249944.42859.bf.","parent_key":"BE0002638"} {"ref-id":"A34329","pubmed-id":21739267,"citation":"Azuma J, Hasunuma T, Kubo M, Miyatake M, Koue T, Higashi K, Fujiwara T, Kitahara S, Katano T, Hara S: The relationship between clinical pharmacokinetics of aripiprazole and CYP2D6 genetic polymorphism: effects of CYP enzyme inhibition by coadministration of paroxetine or fluvoxamine. Eur J Clin Pharmacol. 2012 Jan;68(1):29-37. doi: 10.1007/s00228-011-1094-4. Epub 2011 Jul 8.","parent_key":"BE0002638"} {"ref-id":"A39214","pubmed-id":17214606,"citation":"Spina E, de Leon J: Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol. 2007 Jan;100(1):4-22. doi: 10.1111/j.1742-7843.2007.00017.x.","parent_key":"BE0002363"} {"ref-id":"A11184","pubmed-id":15257633,"citation":"Swainston Harrison T, Perry CM: Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs. 2004;64(15):1715-36.","parent_key":"BE0002363"} {"ref-id":"A184112","pubmed-id":15770075,"citation":"Kubo M, Koue T, Inaba A, Takeda H, Maune H, Fukuda T, Azuma J: Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic ARIPIPRAZOLE. Drug Metab Pharmacokinet. 2005 Feb;20(1):55-64.","parent_key":"BE0002363"} {"ref-id":"A15166","pubmed-id":22472994,"citation":"Honkalammi J, Niemi M, Neuvonen PJ, Backman JT: Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses. Clin Pharmacol Ther. 2012 May;91(5):846-55. doi: 10.1038/clpt.2011.313.","parent_key":"BE0002887"} {"ref-id":"A33210","pubmed-id":11602509,"citation":"Wen X, Wang JS, Backman JT, Kivisto KT, Neuvonen PJ: Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab Dispos. 2001 Nov;29(11):1359-61.","parent_key":"BE0003536"} {"ref-id":"A33210","pubmed-id":11602509,"citation":"Wen X, Wang JS, Backman JT, Kivisto KT, Neuvonen PJ: Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab Dispos. 2001 Nov;29(11):1359-61.","parent_key":"BE0002793"} {"ref-id":"A33212","pubmed-id":17333159,"citation":"Tornio A, Niemi M, Neuvonen PJ, Backman JT: Stereoselective interaction between the CYP2C8 inhibitor gemfibrozil and racemic ibuprofen. Eur J Clin Pharmacol. 2007 May;63(5):463-9. doi: 10.1007/s00228-007-0273-9. Epub 2007 Feb 27.","parent_key":"BE0002793"} {"ref-id":"A33210","pubmed-id":11602509,"citation":"Wen X, Wang JS, Backman JT, Kivisto KT, Neuvonen PJ: Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab Dispos. 2001 Nov;29(11):1359-61.","parent_key":"BE0002433"} {"ref-id":"A185783","pubmed-id":17670842,"citation":"Mano Y, Usui T, Kamimura H: The UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver. Drug Metab Dispos. 2007 Nov;35(11):2040-4. doi: 10.1124/dmd.107.017269. Epub 2007 Aug 1.","parent_key":"BE0003679"} {"ref-id":"A35828","pubmed-id":21175442,"citation":"Gan J, Chen W, Shen H, Gao L, Hong Y, Tian Y, Li W, Zhang Y, Tang Y, Zhang H, Humphreys WG, Rodrigues AD: Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism. Br J Clin Pharmacol. 2010 Dec;70(6):870-80. doi: 10.1111/j.1365-2125.2010.03772.x.","parent_key":"BE0003677"} {"ref-id":"A39949","pubmed-id":28940478,"citation":"Hirvensalo P, Tornio A, Neuvonen M, Tapaninen T, Paile-Hyvarinen M, Karja V, Mannisto VT, Pihlajamaki J, Backman JT, Niemi M: Comprehensive Pharmacogenomic Study Reveals an Important Role of UGT1A3 in Montelukast Pharmacokinetics. Clin Pharmacol Ther. 2018 Jul;104(1):158-168. doi: 10.1002/cpt.891. Epub 2017 Nov 6.","parent_key":"BE0003677"} {"ref-id":"A185783","pubmed-id":17670842,"citation":"Mano Y, Usui T, Kamimura H: The UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver. Drug Metab Dispos. 2007 Nov;35(11):2040-4. doi: 10.1124/dmd.107.017269. Epub 2007 Aug 1.","parent_key":"BE0003677"} {"ref-id":"A185783","pubmed-id":17670842,"citation":"Mano Y, Usui T, Kamimura H: The UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver. Drug Metab Dispos. 2007 Nov;35(11):2040-4. doi: 10.1124/dmd.107.017269. Epub 2007 Aug 1.","parent_key":"BE0003538"} {"ref-id":"A185783","pubmed-id":17670842,"citation":"Mano Y, Usui T, Kamimura H: The UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver. Drug Metab Dispos. 2007 Nov;35(11):2040-4. doi: 10.1124/dmd.107.017269. Epub 2007 Aug 1.","parent_key":"BE0003681"} {"ref-id":"A183890","pubmed-id":8667235,"citation":"Nielsen KK, Flinois JP, Beaune P, Brosen K: The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther. 1996 Jun;277(3):1659-64.","parent_key":"BE0002363"} {"ref-id":"A184250","pubmed-id":28470111,"citation":"Brown JT, Schneiderhan M, Eum S, Bishop JR: Serum clomipramine and desmethylclomipramine levels in a CYP2C19 and CYP2D6 intermediate metabolizer. Pharmacogenomics. 2017 May;18(7):601-605. doi: 10.2217/pgs-2017-0015. Epub 2017 May 4.","parent_key":"BE0003536"} {"ref-id":"A184253","pubmed-id":11763000,"citation":"Yokono A, Morita S, Someya T, Hirokane G, Okawa M, Shimoda K: The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J Clin Psychopharmacol. 2001 Dec;21(6):549-55.","parent_key":"BE0003536"} {"ref-id":"A39055","pubmed-id":9231305,"citation":"Fisman S, Reniers D, Diaz P: Erythromycin interaction with risperidone or clomipramine in an adolescent. J Child Adolesc Psychopharmacol. 1996 Summer;6(2):133-8. doi: 10.1089/cap.1996.6.133.","parent_key":"BE0002433"} {"ref-id":"A183890","pubmed-id":8667235,"citation":"Nielsen KK, Flinois JP, Beaune P, Brosen K: The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther. 1996 Jun;277(3):1659-64.","parent_key":"BE0002433"} {"ref-id":"A183890","pubmed-id":8667235,"citation":"Nielsen KK, Flinois JP, Beaune P, Brosen K: The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther. 1996 Jun;277(3):1659-64.","parent_key":"BE0002638"} {"ref-id":"A6584","pubmed-id":17471183,"citation":"Gillman PK: Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007 Jul;151(6):737-48. Epub 2007 Apr 30.","parent_key":"BE0002638"} {"ref-id":"A185192","pubmed-id":26195225,"citation":"Doki K, Sekiguchi Y, Kuga K, Aonuma K, Homma M: Serum flecainide S/R ratio reflects the CYP2D6 genotype and changes in CYP2D6 activity. Drug Metab Pharmacokinet. 2015 Aug;30(4):257-62. doi: 10.1016/j.dmpk.2015.04.001. Epub 2015 Apr 11.","parent_key":"BE0002363"} {"ref-id":"A185195","pubmed-id":16508157,"citation":"Taguchi M, Fujiki A, Iwamoto J, Inoue H, Tahara K, Saigusa K, Horiuchi I, Oshima Y, Hashimoto Y: Nonlinear mixed effects model analysis of the pharmacokinetics of routinely administered bepridil in Japanese patients with arrhythmias. Biol Pharm Bull. 2006 Mar;29(3):517-21. doi: 10.1248/bpb.29.517.","parent_key":"BE0002363"} {"ref-id":"A184268","pubmed-id":10092957,"citation":"Clarke SJ, Rivory LP: Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet. 1999 Feb;36(2):99-114. doi: 10.2165/00003088-199936020-00002.","parent_key":"BE0002638"} {"ref-id":"A184271","pubmed-id":10778948,"citation":"Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH: The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res. 2000 Apr;6(4):1255-8.","parent_key":"BE0002638"} {"ref-id":"A182717","pubmed-id":12386117,"citation":"Bournique B, Lemarie A: Docetaxel (Taxotere) is not metabolized by recombinant human CYP1B1 in vitro, but acts as an effector of this isozyme. Drug Metab Dispos. 2002 Nov;30(11):1149-52. doi: 10.1124/dmd.30.11.1149.","parent_key":"BE0001111"} {"ref-id":"A15000","pubmed-id":18556438,"citation":"Wang L, Christopher LJ, Cui D, Li W, Iyer R, Humphreys WG, Zhang D: Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2008 Sep;36(9):1828-39. doi: 10.1124/dmd.107.020255. Epub 2008 Jun 12.","parent_key":"BE0002638"} {"ref-id":"A15000","pubmed-id":18556438,"citation":"Wang L, Christopher LJ, Cui D, Li W, Iyer R, Humphreys WG, Zhang D: Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2008 Sep;36(9):1828-39. doi: 10.1124/dmd.107.020255. Epub 2008 Jun 12.","parent_key":"BE0003543"} {"ref-id":"A15000","pubmed-id":18556438,"citation":"Wang L, Christopher LJ, Cui D, Li W, Iyer R, Humphreys WG, Zhang D: Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2008 Sep;36(9):1828-39. doi: 10.1124/dmd.107.020255. Epub 2008 Jun 12.","parent_key":"BE0002433"} {"ref-id":"A15000","pubmed-id":18556438,"citation":"Wang L, Christopher LJ, Cui D, Li W, Iyer R, Humphreys WG, Zhang D: Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2008 Sep;36(9):1828-39. doi: 10.1124/dmd.107.020255. Epub 2008 Jun 12.","parent_key":"BE0001111"} {"ref-id":"A15000","pubmed-id":18556438,"citation":"Wang L, Christopher LJ, Cui D, Li W, Iyer R, Humphreys WG, Zhang D: Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2008 Sep;36(9):1828-39. doi: 10.1124/dmd.107.020255. Epub 2008 Jun 12.","parent_key":"BE0002362"} {"ref-id":"A15000","pubmed-id":18556438,"citation":"Wang L, Christopher LJ, Cui D, Li W, Iyer R, Humphreys WG, Zhang D: Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2008 Sep;36(9):1828-39. doi: 10.1124/dmd.107.020255. Epub 2008 Jun 12.","parent_key":"BE0003606"} {"ref-id":"A40243","pubmed-id":24594478,"citation":"Hutson PH, Pennick M, Secker R: Preclinical pharmacokinetics, pharmacology and toxicology of lisdexamfetamine: a novel d-amphetamine pro-drug. Neuropharmacology. 2014 Dec;87:41-50. doi: 10.1016/j.neuropharm.2014.02.014. Epub 2014 Mar 1.","parent_key":"BE0002363"} {"ref-id":"A40244","pubmed-id":23526481,"citation":"Tan-Kam T, Suthisisang C, Pavasuthipaisit C, Limsila P, Puangpetch A, Sukasem C: Importance of pharmacogenetics in the treatment of children with attention deficit hyperactive disorder: a case report. Pharmgenomics Pers Med. 2013;6:3-7. doi: 10.2147/PGPM.S36782. Epub 2013 Jan 11.","parent_key":"BE0002363"} {"ref-id":"A2254","pubmed-id":18803986,"citation":"Medina PJ, Goodin S: Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 2008 Aug;30(8):1426-47. doi: 10.1016/j.clinthera.2008.08.008.","parent_key":"BE0002638"} {"ref-id":"A15002","pubmed-id":20624855,"citation":"Teng WC, Oh JW, New LS, Wahlin MD, Nelson SD, Ho HK, Chan EC: Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol. 2010 Oct;78(4):693-703. doi: 10.1124/mol.110.065839. Epub 2010 Jul 12.","parent_key":"BE0002638"} {"ref-id":"A2254","pubmed-id":18803986,"citation":"Medina PJ, Goodin S: Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 2008 Aug;30(8):1426-47. doi: 10.1016/j.clinthera.2008.08.008.","parent_key":"BE0002362"} {"ref-id":"A15002","pubmed-id":20624855,"citation":"Teng WC, Oh JW, New LS, Wahlin MD, Nelson SD, Ho HK, Chan EC: Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol. 2010 Oct;78(4):693-703. doi: 10.1124/mol.110.065839. Epub 2010 Jul 12.","parent_key":"BE0002887"} {"ref-id":"A2254","pubmed-id":18803986,"citation":"Medina PJ, Goodin S: Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 2008 Aug;30(8):1426-47. doi: 10.1016/j.clinthera.2008.08.008.","parent_key":"BE0003536"} {"ref-id":"A14792","pubmed-id":19733976,"citation":"van Erp NP, Gelderblom H, Guchelaar HJ: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706. doi: 10.1016/j.ctrv.2009.08.004. Epub 2009 Sep 5.","parent_key":"BE0003536"} {"ref-id":"A38659","pubmed-id":18472989,"citation":"Nelson MH, Dolder CR: A review of lapatinib ditosylate in the treatment of refractory or advanced breast cancer. Ther Clin Risk Manag. 2007 Aug;3(4):665-73.","parent_key":"BE0003536"} {"ref-id":"A15001","pubmed-id":20590741,"citation":"Scheen AJ: Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab. 2010 Aug;12(8):648-58. doi: 10.1111/j.1463-1326.2010.01212.x.","parent_key":"BE0002638"} {"ref-id":"A15001","pubmed-id":20590741,"citation":"Scheen AJ: Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab. 2010 Aug;12(8):648-58. doi: 10.1111/j.1463-1326.2010.01212.x.","parent_key":"BE0002887"} {"ref-id":"A15003","pubmed-id":18190324,"citation":"Nagappan V, Deresinski S: Reviews of anti-infective agents: posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis. 2007 Dec 15;45(12):1610-7. doi: 10.1086/523576.","parent_key":"BE0002638"} {"ref-id":"A15004","pubmed-id":20181649,"citation":"Kharuzhyk SA, Matskevich SA, Filjustin AE, Bogushevich EV, Ugolkova SA: Survey of computed tomography doses and establishment of national diagnostic reference levels in the Republic of Belarus. Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):367-70. doi: 10.1093/rpd/ncq070. Epub 2010 Feb 24.","parent_key":"BE0002638"} {"ref-id":"A2273","pubmed-id":17516880,"citation":"Kwon DS, Mylonakis E: Posaconazole: a new broad-spectrum antifungal agent. Expert Opin Pharmacother. 2007 Jun;8(8):1167-78.","parent_key":"BE0002638"} {"ref-id":"A11430","pubmed-id":19323590,"citation":"McKeage K, Perry CM, Keam SJ: Darunavir: a review of its use in the management of HIV infection in adults. Drugs. 2009;69(4):477-503. doi: 10.2165/00003495-200969040-00007.","parent_key":"BE0002638"} {"ref-id":"A2278","pubmed-id":19209258,"citation":"Tremblay CL: Combating HIV resistance - focus on darunavir. Ther Clin Risk Manag. 2008 Aug;4(4):759-66.","parent_key":"BE0002638"} {"ref-id":"A35951","pubmed-id":17646561,"citation":"Busse KH, Penzak SR: Darunavir: a second-generation protease inhibitor. Am J Health Syst Pharm. 2007 Aug 1;64(15):1593-602. doi: 10.2146/ajhp060668.","parent_key":"BE0002638"} {"ref-id":"A34107","pubmed-id":19492868,"citation":"Brown KC, Paul S, Kashuba AD: Drug interactions with new and investigational antiretrovirals. Clin Pharmacokinet. 2009;48(4):211-41.","parent_key":"BE0002638"} {"ref-id":"A17584","pubmed-id":18708991,"citation":"Gunes A, Spina E, Dahl ML, Scordo MG: ABCB1 polymorphisms influence steady-state plasma levels of 9-hydroxyrisperidone and risperidone active moiety. Ther Drug Monit. 2008 Oct;30(5):628-33. doi: 10.1097/FTD.0b013e3181858ca9.","parent_key":"BE0002638"} {"ref-id":"A17585","pubmed-id":15767244,"citation":"Boerth JM, Caley CF, Goethe JW: Interpreting serum risperidone concentrations. Pharmacotherapy. 2005 Feb;25(2):299-302.","parent_key":"BE0002363"} {"ref-id":"A14885","pubmed-id":11560868,"citation":"Yasui-Furukori N, Hidestrand M, Spina E, Facciola G, Scordo MG, Tybring G: Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab Dispos. 2001 Oct;29(10):1263-8.","parent_key":"BE0002362"} {"ref-id":"A14928","pubmed-id":17627976,"citation":"Somers GI, Lindsay N, Lowdon BM, Jones AE, Freathy C, Ho S, Woodrooffe AJ, Bayliss MK, Manchee GR: A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab Dispos. 2007 Oct;35(10):1797-805. Epub 2007 Jul 12.","parent_key":"BE0002363"} {"ref-id":"A14929","pubmed-id":10671910,"citation":"Zhang M, Fawcett JP, Kennedy JM, Shaw JP: Stereoselective glucuronidation of formoterol by human liver microsomes. Br J Clin Pharmacol. 2000 Feb;49(2):152-7.","parent_key":"BE0002363"} {"ref-id":"A14928","pubmed-id":17627976,"citation":"Somers GI, Lindsay N, Lowdon BM, Jones AE, Freathy C, Ho S, Woodrooffe AJ, Bayliss MK, Manchee GR: A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab Dispos. 2007 Oct;35(10):1797-805. Epub 2007 Jul 12.","parent_key":"BE0003536"} {"ref-id":"A14929","pubmed-id":10671910,"citation":"Zhang M, Fawcett JP, Kennedy JM, Shaw JP: Stereoselective glucuronidation of formoterol by human liver microsomes. Br J Clin Pharmacol. 2000 Feb;49(2):152-7.","parent_key":"BE0003536"} {"ref-id":"A14928","pubmed-id":17627976,"citation":"Somers GI, Lindsay N, Lowdon BM, Jones AE, Freathy C, Ho S, Woodrooffe AJ, Bayliss MK, Manchee GR: A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab Dispos. 2007 Oct;35(10):1797-805. Epub 2007 Jul 12.","parent_key":"BE0003336"} {"ref-id":"A14929","pubmed-id":10671910,"citation":"Zhang M, Fawcett JP, Kennedy JM, Shaw JP: Stereoselective glucuronidation of formoterol by human liver microsomes. Br J Clin Pharmacol. 2000 Feb;49(2):152-7.","parent_key":"BE0003336"} {"ref-id":"A14928","pubmed-id":17627976,"citation":"Somers GI, Lindsay N, Lowdon BM, Jones AE, Freathy C, Ho S, Woodrooffe AJ, Bayliss MK, Manchee GR: A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab Dispos. 2007 Oct;35(10):1797-805. Epub 2007 Jul 12.","parent_key":"BE0002793"} {"ref-id":"A14929","pubmed-id":10671910,"citation":"Zhang M, Fawcett JP, Kennedy JM, Shaw JP: Stereoselective glucuronidation of formoterol by human liver microsomes. Br J Clin Pharmacol. 2000 Feb;49(2):152-7.","parent_key":"BE0002793"} {"ref-id":"A39013","pubmed-id":16372823,"citation":"Rordorf CM, Choi L, Marshall P, Mangold JB: Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet. 2005;44(12):1247-66. doi: 10.2165/00003088-200544120-00004.","parent_key":"BE0002793"} {"ref-id":"A39013","pubmed-id":16372823,"citation":"Rordorf CM, Choi L, Marshall P, Mangold JB: Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet. 2005;44(12):1247-66. doi: 10.2165/00003088-200544120-00004.","parent_key":"BE0003536"} {"ref-id":"A39013","pubmed-id":16372823,"citation":"Rordorf CM, Choi L, Marshall P, Mangold JB: Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet. 2005;44(12):1247-66. doi: 10.2165/00003088-200544120-00004.","parent_key":"BE0002433"} {"ref-id":"A35759","pubmed-id":11788380,"citation":"Hanafusa J, Mune T, Tanahashi T, Isomura Y, Suwa T, Isaji M, Daido H, Morita H, Murayama M, Yasuda K: Altered corticosteroid metabolism differentially affects pituitary corticotropin response. Am J Physiol Endocrinol Metab. 2002 Feb;282(2):E466-73. doi: 10.1152/ajpendo.00065.2001.","parent_key":"BE0002638"} {"ref-id":"A14749","pubmed-id":1346993,"citation":"Sarkar MA, Hunt C, Guzelian PS, Karnes HT: Characterization of human liver cytochromes P-450 involved in theophylline metabolism. Drug Metab Dispos. 1992 Jan-Feb;20(1):31-7.","parent_key":"BE0002433"} {"ref-id":"A39066","pubmed-id":21989077,"citation":"Thorn CF, Aklillu E, Klein TE, Altman RB: PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenet Genomics. 2012 Jan;22(1):73-7. doi: 10.1097/FPC.0b013e32834c6efd.","parent_key":"BE0002433"} {"ref-id":"A184196","pubmed-id":16757678,"citation":"Hester EK, Chandler HV, Sims KM: Fosamprenavir: drug development for adherence. Ann Pharmacother. 2006 Jul-Aug;40(7-8):1301-10. doi: 10.1345/aph.1G034. Epub 2006 Jun 6.","parent_key":"BE0002638"} {"ref-id":"A15672","pubmed-id":19202563,"citation":"Sahi J, Shord SS, Lindley C, Ferguson S, LeCluyse EL: Regulation of cytochrome P450 2C9 expression in primary cultures of human hepatocytes. J Biochem Mol Toxicol. 2009 Jan-Feb;23(1):43-58. doi: 10.1002/jbt.20264.","parent_key":"BE0002793"} {"ref-id":"A15673","pubmed-id":11678778,"citation":"Goldstein JA: Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol. 2001 Oct;52(4):349-55.","parent_key":"BE0002793"} {"ref-id":"A15010","pubmed-id":17375979,"citation":"Klotz U: The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 2007;46(4):271-9.","parent_key":"BE0002793"} {"ref-id":"A15008","pubmed-id":18367977,"citation":"Anderson GD: Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic drugs. Ther Drug Monit. 2008 Apr;30(2):173-80. doi: 10.1097/FTD.0b013e318167d11b.","parent_key":"BE0003536"} {"ref-id":"A15009","pubmed-id":19617466,"citation":"Hennessy S, Leonard CE, Freeman CP, Metlay JP, Chu X, Strom BL, Bilker WB: CYP2C9, CYP2C19, and ABCB1 genotype and hospitalization for phenytoin toxicity. J Clin Pharmacol. 2009 Dec;49(12):1483-7. doi: 10.1177/0091270009343006. Epub 2009 Jul 17.","parent_key":"BE0003536"} {"ref-id":"A15010","pubmed-id":17375979,"citation":"Klotz U: The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 2007;46(4):271-9.","parent_key":"BE0003536"} {"ref-id":"A37741","pubmed-id":16873909,"citation":"Rosemary J, Surendiran A, Rajan S, Shashindran CH, Adithan C: Influence of the CYP2C9 AND CYP2C19 polymorphisms on phenytoin hydroxylation in healthy individuals from south India. Indian J Med Res. 2006 May;123(5):665-70.","parent_key":"BE0003536"} {"ref-id":"A184673","pubmed-id":25032007,"citation":"McDonnell AM, Dang CH: Basic review of the cytochrome p450 system. J Adv Pract Oncol. 2013 Jul;4(4):263-8.","parent_key":"BE0002638"} {"ref-id":"A15668","pubmed-id":15123723,"citation":"Wang H, Faucette S, Moore R, Sueyoshi T, Negishi M, LeCluyse E: Human constitutive androstane receptor mediates induction of CYP2B6 gene expression by phenytoin. J Biol Chem. 2004 Jul 9;279(28):29295-301. Epub 2004 Apr 28.","parent_key":"BE0003549"} {"ref-id":"A36852","pubmed-id":29849211,"citation":"Clark SL, Leloux MR, Dierkhising RA, Cascino GD, Hocker SE: IV fosphenytoin in obese patients: Dosing strategies, safety, and efficacy. Neurol Clin Pract. 2017 Feb;7(1):45-52. doi: 10.1212/CPJ.0000000000000322.","parent_key":"BE0002433"} {"ref-id":"A18700","pubmed-id":15025748,"citation":"Wenk M, Todesco L, Krahenbuhl S: Effect of St John's wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females. Br J Clin Pharmacol. 2004 Apr;57(4):495-9.","parent_key":"BE0002638"} {"ref-id":"A39958","pubmed-id":21168483,"citation":"Hokkanen J, Tolonen A, Mattila S, Turpeinen M: Metabolism of hyperforin, the active constituent of St. John's wort, in human liver microsomes. Eur J Pharm Sci. 2011 Feb 14;42(3):273-84. doi: 10.1016/j.ejps.2010.12.002. Epub 2010 Dec 17.","parent_key":"BE0002638"} {"ref-id":"A39958","pubmed-id":21168483,"citation":"Hokkanen J, Tolonen A, Mattila S, Turpeinen M: Metabolism of hyperforin, the active constituent of St. John's wort, in human liver microsomes. Eur J Pharm Sci. 2011 Feb 14;42(3):273-84. doi: 10.1016/j.ejps.2010.12.002. Epub 2010 Dec 17.","parent_key":"BE0002363"} {"ref-id":"A39958","pubmed-id":21168483,"citation":"Hokkanen J, Tolonen A, Mattila S, Turpeinen M: Metabolism of hyperforin, the active constituent of St. John's wort, in human liver microsomes. Eur J Pharm Sci. 2011 Feb 14;42(3):273-84. doi: 10.1016/j.ejps.2010.12.002. Epub 2010 Dec 17.","parent_key":"BE0003536"} {"ref-id":"A40150","pubmed-id":22606944,"citation":"Rahimi R, Abdollahi M: An update on the ability of St. John's wort to affect the metabolism of other drugs. Expert Opin Drug Metab Toxicol. 2012 Jun;8(6):691-708. doi: 10.1517/17425255.2012.680886.","parent_key":"BE0003536"} {"ref-id":"A34970","pubmed-id":18928560,"citation":"Bibi Z: Role of cytochrome P450 in drug interactions. Nutr Metab (Lond). 2008 Oct 18;5:27. doi: 10.1186/1743-7075-5-27.","parent_key":"BE0002638"} {"ref-id":"A15646","pubmed-id":8004130,"citation":"Adedoyin A, Prakash C, O'Shea D, Blair IA, Wilkinson GR: Stereoselective disposition of hexobarbital and its metabolites: relationship to the S-mephenytoin polymorphism in Caucasian and Chinese subjects. Pharmacogenetics. 1994 Feb;4(1):27-38.","parent_key":"BE0003536"} {"ref-id":"A14829","pubmed-id":11996013,"citation":"Lewis DF, Modi S, Dickins M: Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002 Feb-May;34(1-2):69-82.","parent_key":"BE0003536"} {"ref-id":"A38644","pubmed-id":17487889,"citation":"Saito K, Dan H, Masuda K, Katsu T, Hanioka N, Yamamoto S, Miyano K, Yamano S, Narimatsu S: Stereoselective hexobarbital 3'-hydroxylation by CYP2C19 expressed in yeast cells and the roles of amino acid residues at positions 300 and 476. Chirality. 2007 Jul;19(7):550-8. doi: 10.1002/chir.20412.","parent_key":"BE0003536"} {"ref-id":"A185186","pubmed-id":16475710,"citation":"Knupfer H, Stanitz D, Preiss R: CYP2C9 polymorphisms in human tumors. Anticancer Res. 2006 Jan-Feb;26(1A):299-305.","parent_key":"BE0002793"} {"ref-id":"A38018","pubmed-id":23960808,"citation":"Gavhane YN, Yadav AV: Loss of orally administered drugs in GI tract. Saudi Pharm J. 2012 Oct;20(4):331-44. doi: 10.1016/j.jsps.2012.03.005. Epub 2012 Apr 20.","parent_key":"BE0002887"} {"ref-id":"A15006","pubmed-id":18488080,"citation":"Lecht S, Haroutiunian S, Hoffman A, Lazarovici P: Rasagiline - a novel MAO B inhibitor in Parkinson's disease therapy. Ther Clin Risk Manag. 2007 Jun;3(3):467-74.","parent_key":"BE0002433"} {"ref-id":"A2421","pubmed-id":20517484,"citation":"Leegwater-Kim J, Bortan E: The role of rasagiline in the treatment of Parkinson's disease. Clin Interv Aging. 2010 May 25;5:149-56.","parent_key":"BE0002433"} {"ref-id":"A2422","pubmed-id":18035186,"citation":"Chen JJ, Swope DM, Dashtipour K: Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson's disease. Clin Ther. 2007 Sep;29(9):1825-49.","parent_key":"BE0002433"} {"ref-id":"A17700","pubmed-id":10511396,"citation":"Rubinstein E, Prokocimer P, Talbot GH: Safety and tolerability of quinupristin/dalfopristin: administration guidelines. J Antimicrob Chemother. 1999 Sep;44 Suppl A:37-46.","parent_key":"BE0002638"} {"ref-id":"A17701","pubmed-id":15005638,"citation":"Bearden DT: Clinical pharmacokinetics of quinupristin/dalfopristin. Clin Pharmacokinet. 2004;43(4):239-52.","parent_key":"BE0002638"} {"ref-id":"A17702","pubmed-id":11130220,"citation":"Delgado G Jr, Neuhauser MM, Bearden DT, Danziger LH: Quinupristin-dalfopristin: an overview. Pharmacotherapy. 2000 Dec;20(12):1469-85.","parent_key":"BE0002638"} {"ref-id":"A183251","pubmed-id":26924289,"citation":"Luo X, Zhu LJ, Cai NF, Zheng LY, Cheng ZN: Prediction of tacrolimus metabolism and dosage requirements based on CYP3A4 phenotype and CYP3A5(*)3 genotype in Chinese renal transplant recipients. Acta Pharmacol Sin. 2016 Apr;37(4):555-60. doi: 10.1038/aps.2015.163. Epub 2016 Feb 29.","parent_key":"BE0002638"} {"ref-id":"A15124","pubmed-id":15992226,"citation":"Yale SH, Glurich I: Analysis of the inhibitory potential of Ginkgo biloba, Echinacea purpurea, and Serenoa repens on the metabolic activity of cytochrome P450 3A4, 2D6, and 2C9. J Altern Complement Med. 2005 Jun;11(3):433-9.","parent_key":"BE0002793"} {"ref-id":"A15125","pubmed-id":16432273,"citation":"Greenblatt DJ, von Moltke LL, Luo Y, Perloff ES, Horan KA, Bruce A, Reynolds RC, Harmatz JS, Avula B, Khan IA, Goldman P: Ginkgo biloba does not alter clearance of flurbiprofen, a cytochrome P450-2C9 substrate. J Clin Pharmacol. 2006 Feb;46(2):214-21.","parent_key":"BE0002793"} {"ref-id":"A33246","pubmed-id":10546924,"citation":"Backman JT, Wang JS, Wen X, Kivisto KT, Neuvonen PJ: Mibefradil but not isradipine substantially elevates the plasma concentrations of the CYP3A4 substrate triazolam. Clin Pharmacol Ther. 1999 Oct;66(4):401-7. doi: 10.1053/cp.1999.v66.a101461.","parent_key":"BE0002638"} {"ref-id":"A33249","pubmed-id":14517191,"citation":"Veronese ML, Gillen LP, Dorval EP, Hauck WW, Waldman SA, Greenberg HE: Effect of mibefradil on CYP3A4 in vivo. J Clin Pharmacol. 2003 Oct;43(10):1091-100. doi: 10.1177/0091270003256687.","parent_key":"BE0002638"} {"ref-id":"A181433","pubmed-id":21256842,"citation":"Quesada A, Bui PH, Homanics GE, Hankinson O, Handforth A: Comparison of mibefradil and derivative NNC 55-0396 effects on behavior, cytochrome P450 activity, and tremor in mouse models of essential tremor. Eur J Pharmacol. 2011 May 20;659(1):30-6. doi: 10.1016/j.ejphar.2011.01.004. Epub 2011 Jan 21.","parent_key":"BE0002638"} {"ref-id":"A185177","pubmed-id":18411403,"citation":"Bui PH, Quesada A, Handforth A, Hankinson O: The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil. Drug Metab Dispos. 2008 Jul;36(7):1291-9. doi: 10.1124/dmd.107.020115. Epub 2008 Apr 14.","parent_key":"BE0002638"} {"ref-id":"A39099","pubmed-id":9620098,"citation":"Ernst ME, Kelly MW: Mibefradil, a pharmacologically distinct calcium antagonist. Pharmacotherapy. 1998 May-Jun;18(3):463-85.","parent_key":"BE0002433"} {"ref-id":"A185177","pubmed-id":18411403,"citation":"Bui PH, Quesada A, Handforth A, Hankinson O: The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil. Drug Metab Dispos. 2008 Jul;36(7):1291-9. doi: 10.1124/dmd.107.020115. Epub 2008 Apr 14.","parent_key":"BE0002363"} {"ref-id":"A185177","pubmed-id":18411403,"citation":"Bui PH, Quesada A, Handforth A, Hankinson O: The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil. Drug Metab Dispos. 2008 Jul;36(7):1291-9. doi: 10.1124/dmd.107.020115. Epub 2008 Apr 14.","parent_key":"BE0002362"} {"ref-id":"A16128","pubmed-id":10901697,"citation":"Wandel C, Kim RB, Guengerich FP, Wood AJ: Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos. 2000 Aug;28(8):895-8.","parent_key":"BE0002362"} {"ref-id":"A185177","pubmed-id":18411403,"citation":"Bui PH, Quesada A, Handforth A, Hankinson O: The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil. Drug Metab Dispos. 2008 Jul;36(7):1291-9. doi: 10.1124/dmd.107.020115. Epub 2008 Apr 14.","parent_key":"BE0003612"} {"ref-id":"A16128","pubmed-id":10901697,"citation":"Wandel C, Kim RB, Guengerich FP, Wood AJ: Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos. 2000 Aug;28(8):895-8.","parent_key":"BE0003612"} {"ref-id":"A185183","pubmed-id":16424797,"citation":"Imagawa K, Okayama S, Takaoka M, Kawata H, Naya N, Nakajima T, Horii M, Uemura S, Saito Y: Inhibitory effect of efonidipine on aldosterone synthesis and secretion in human adrenocarcinoma (H295R) cells. J Cardiovasc Pharmacol. 2006 Jan;47(1):133-8. doi: 10.1097/01.fjc.0000197539.12685.f5.","parent_key":"BE0000731"} {"ref-id":"A39280","pubmed-id":15289791,"citation":"Le Corre P, Parmer RJ, Kailasam MT, Kennedy BP, Skaar TP, Ho H, Leverge R, Smith DW, Ziegler MG, Insel PA, Schork NJ, Flockhart DA, O'connor DT: Human sympathetic activation by alpha2-adrenergic blockade with yohimbine: Bimodal, epistatic influence of cytochrome P450-mediated drug metabolism. Clin Pharmacol Ther. 2004 Aug;76(2):139-53. doi: 10.1016/j.clpt.2004.04.010.","parent_key":"BE0002363"} {"ref-id":"A39280","pubmed-id":15289791,"citation":"Le Corre P, Parmer RJ, Kailasam MT, Kennedy BP, Skaar TP, Ho H, Leverge R, Smith DW, Ziegler MG, Insel PA, Schork NJ, Flockhart DA, O'connor DT: Human sympathetic activation by alpha2-adrenergic blockade with yohimbine: Bimodal, epistatic influence of cytochrome P450-mediated drug metabolism. Clin Pharmacol Ther. 2004 Aug;76(2):139-53. doi: 10.1016/j.clpt.2004.04.010.","parent_key":"BE0002638"} {"ref-id":"A182711","pubmed-id":16176562,"citation":"Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT: Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol. 2005 Oct;97(4):249-56. doi: 10.1111/j.1742-7843.2005.pto_157.x.","parent_key":"BE0002887"} {"ref-id":"A38738","pubmed-id":11144118,"citation":"Dvorak Z, Ulrichova J, Modriansky M, Maurel P: Effect of colchicine and its derivatives on the expression of selected isoforms of cytochrome P450 in primary cultures of human hepatocytes. Acta Univ Palacki Olomuc Fac Med. 2000;143:47-50.","parent_key":"BE0002638"} {"ref-id":"A38529","pubmed-id":8960070,"citation":"Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ: Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation. Biochem Pharmacol. 1997 Jan 10;53(1):111-6. doi: 10.1016/s0006-2952(96)00693-4.","parent_key":"BE0002638"} {"ref-id":"A33280","pubmed-id":12815172,"citation":"Dvorak Z, Modriansky M, Pichard-Garcia L, Balaguer P, Vilarem MJ, Ulrichova J, Maurel P, Pascussi JM: Colchicine down-regulates cytochrome P450 2B6, 2C8, 2C9, and 3A4 in human hepatocytes by affecting their glucocorticoid receptor-mediated regulation. Mol Pharmacol. 2003 Jul;64(1):160-9. doi: 10.1124/mol.64.1.160.","parent_key":"BE0002638"} {"ref-id":"A33280","pubmed-id":12815172,"citation":"Dvorak Z, Modriansky M, Pichard-Garcia L, Balaguer P, Vilarem MJ, Ulrichova J, Maurel P, Pascussi JM: Colchicine down-regulates cytochrome P450 2B6, 2C8, 2C9, and 3A4 in human hepatocytes by affecting their glucocorticoid receptor-mediated regulation. Mol Pharmacol. 2003 Jul;64(1):160-9. doi: 10.1124/mol.64.1.160.","parent_key":"BE0003549"} {"ref-id":"A38738","pubmed-id":11144118,"citation":"Dvorak Z, Ulrichova J, Modriansky M, Maurel P: Effect of colchicine and its derivatives on the expression of selected isoforms of cytochrome P450 in primary cultures of human hepatocytes. Acta Univ Palacki Olomuc Fac Med. 2000;143:47-50.","parent_key":"BE0003533"} {"ref-id":"A35775","pubmed-id":26271371,"citation":"Wiesinger H, Berse M, Klein S, Gschwend S, Hochel J, Zollmann FS, Schutt B: Pharmacokinetic interaction between the CYP3A4 inhibitor ketoconazole and the hormone drospirenone in combination with ethinylestradiol or estradiol. Br J Clin Pharmacol. 2015 Dec;80(6):1399-410. doi: 10.1111/bcp.12745. Epub 2015 Oct 28.","parent_key":"BE0002638"} {"ref-id":"A183044","pubmed-id":25890012,"citation":"Cadeddu G, Deidda A, Stochino ME, Velluti N, Burrai C, Del Zompo M: Clozapine toxicity due to a multiple drug interaction: a case report. J Med Case Rep. 2015 Apr 2;9:77. doi: 10.1186/s13256-015-0547-2.","parent_key":"BE0002638"} {"ref-id":"A38053","pubmed-id":28986954,"citation":"Zhang N, Shon J, Kim MJ, Yu C, Zhang L, Huang SM, Lee L, Tran D, Li L: Role of CYP3A in Oral Contraceptives Clearance. Clin Transl Sci. 2018 May;11(3):251-260. doi: 10.1111/cts.12499. Epub 2017 Oct 6.","parent_key":"BE0002638"} {"ref-id":"A185090","pubmed-id":1944247,"citation":"Eberhart DC, Gemzik B, Halvorson MR, Parkinson A: Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin. Mol Pharmacol. 1991 Nov;40(5):859-67.","parent_key":"BE0002638"} {"ref-id":"A39296","pubmed-id":10954064,"citation":"Yoshimura R, Ueda N, Nakamura J: Low dosage of levomepromazine did not increase plasma concentrations of fluvoxamine. Int Clin Psychopharmacol. 2000 Jul;15(4):233-5.","parent_key":"BE0002363"} {"ref-id":"A39297","pubmed-id":11888334,"citation":"Yukawa E, Hokazono T, Yukawa M, Ichimaru R, Maki T, Matsunaga K, Ohdo S, Anai M, Higuchi S, Goto Y: Population pharmacokinetics of haloperidol using routine clinical pharmacokinetic data in Japanese patients. Clin Pharmacokinet. 2002;41(2):153-9. doi: 10.2165/00003088-200241020-00006.","parent_key":"BE0002363"} {"ref-id":"A181340","pubmed-id":18728628,"citation":"Mannheimer B, von Bahr C, Pettersson H, Eliasson E: Impact of multiple inhibitors or substrates of cytochrome P450 2D6 on plasma risperidone levels in patients on polypharmacy. Ther Drug Monit. 2008 Oct;30(5):565-9. doi: 10.1097/FTD.0b013e31818679c9.","parent_key":"BE0002363"} {"ref-id":"A182708","pubmed-id":11985335,"citation":"Daniel WA, Syrek M, Rylko Z, Kot M: Effects of phenothiazine neuroleptics on the rate of caffeine demethylation and hydroxylation in the rat liver. Pol J Pharmacol. 2001 Nov-Dec;53(6):615-21.","parent_key":"BE0003533"} {"ref-id":"A39069","pubmed-id":11502527,"citation":"Randinitis EJ, Alvey CW, Koup JR, Rausch G, Abel R, Bron NJ, Hounslow NJ, Vassos AB, Sedman AJ: Drug interactions with clinafloxacin. Antimicrob Agents Chemother. 2001 Sep;45(9):2543-52.","parent_key":"BE0002433"} {"ref-id":"A185066","pubmed-id":15710352,"citation":"Abdulla D, Renton KW: Beta-adrenergic receptor modulation of the LPS-mediated depression in CYP1A activity in astrocytes. Biochem Pharmacol. 2005 Mar 1;69(5):741-50. doi: 10.1016/j.bcp.2004.11.020. Epub 2005 Jan 13.","parent_key":"BE0003543"} {"ref-id":"A14765","pubmed-id":15350163,"citation":"Keam SJ, Keating GM: Tiotropium bromide. A review of its use as maintenance therapy in patients with COPD. Treat Respir Med. 2004;3(4):247-68.","parent_key":"BE0002363"} {"ref-id":"A183911","pubmed-id":26908999,"citation":"Mosley JF 2nd, Smith LL, Dutton BN: Tiotropium Bromide/Olodaterol (Stiolto Respimat): Once-Daily Combination Therapy for the Maintenance of COPD. P T. 2016 Feb;41(2):97-102.","parent_key":"BE0002363"} {"ref-id":"A14765","pubmed-id":15350163,"citation":"Keam SJ, Keating GM: Tiotropium bromide. A review of its use as maintenance therapy in patients with COPD. Treat Respir Med. 2004;3(4):247-68.","parent_key":"BE0002638"} {"ref-id":"A183902","pubmed-id":18399715,"citation":"Bohmer GM, Drollmann A, Gleiter CH, Nave R: Effect of coadministered ketoconazole, a strong cytochrome P450 3A4 enzyme inhibitor, on the pharmacokinetics of ciclesonide and its active metabolite desisobutyryl-ciclesonide. Clin Pharmacokinet. 2008;47(5):343-9. doi: 10.2165/00003088-200847050-00005.","parent_key":"BE0002638"} {"ref-id":"A183905","pubmed-id":21436981,"citation":"Nave R, McCracken N: Metabolism of ciclesonide in the upper and lower airways: review of available data. J Asthma Allergy. 2008 Sep 7;1:11-8.","parent_key":"BE0002638"} {"ref-id":"A15012","pubmed-id":16435573,"citation":"Peet CF, Enos T, Nave R, Zech K, Hall M: Identification of enzymes involved in phase I metabolism of ciclesonide by human liver microsomes. Eur J Drug Metab Pharmacokinet. 2005 Oct-Dec;30(4):275-86.","parent_key":"BE0002363"} {"ref-id":"A15011","pubmed-id":19122337,"citation":"Nakade S, Yamauchi A, Komaba J, Ohno T, Kitagawa J, Honda N, Hasegawa C, Yoneda K, Kodama Y, Yasuda K, Azuma J, Miyata Y: Effect of clarithromycin on the pharmacokinetics of pranlukast in healthy volunteers. Drug Metab Pharmacokinet. 2008;23(6):428-33.","parent_key":"BE0002638"} {"ref-id":"A39469","pubmed-id":15370959,"citation":"Liu KH, Lee YM, Shon JH, Kim MJ, Lee SS, Yoon YR, Cha IJ, Shin JG: Potential of pranlukast and zafirlukast in the inhibition of human liver cytochrome P450 enzymes. Xenobiotica. 2004 May;34(5):429-38. doi: 10.1080/00498250410001691253 .","parent_key":"BE0002793"} {"ref-id":"A16887","pubmed-id":10215755,"citation":"Gates S, Miners JO: Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism. Br J Clin Pharmacol. 1999 Mar;47(3):299-305.","parent_key":"BE0002433"} {"ref-id":"A16887","pubmed-id":10215755,"citation":"Gates S, Miners JO: Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism. Br J Clin Pharmacol. 1999 Mar;47(3):299-305.","parent_key":"BE0003533"} {"ref-id":"A20309","pubmed-id":18021343,"citation":"Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS: Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther. 2007 Dec;32(6):641-9.","parent_key":"BE0002793"} {"ref-id":"A39413","pubmed-id":12844136,"citation":"Thijssen HH, Ritzen B: Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clin Pharmacol Ther. 2003 Jul;74(1):61-8. doi: 10.1016/S0009-9236(03)00088-2.","parent_key":"BE0002793"} {"ref-id":"A20309","pubmed-id":18021343,"citation":"Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS: Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther. 2007 Dec;32(6):641-9.","parent_key":"BE0002433"} {"ref-id":"A20309","pubmed-id":18021343,"citation":"Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS: Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther. 2007 Dec;32(6):641-9.","parent_key":"BE0003536"} {"ref-id":"A17306","pubmed-id":19843835,"citation":"Morales-Molina JA, Arrebola MA, Robles PA, Mangana JC: Possible interaction between topical terbinafine and acenocoumarol. Ann Pharmacother. 2009 Nov;43(11):1911-2. doi: 10.1345/aph.1M299. Epub 2009 Oct 20.","parent_key":"BE0002638"} {"ref-id":"A38701","pubmed-id":10784435,"citation":"Niwa T, Tsutsui M, Kishimoto K, Yabusaki Y, Ishibashi F, Katagiri M: Inhibition of drug-metabolizing enzyme activity in human hepatic cytochrome P450s by bisphenol A. Biol Pharm Bull. 2000 Apr;23(4):498-501.","parent_key":"BE0003536"} {"ref-id":"A38944","pubmed-id":10199594,"citation":"Niwa T, Sato R, Yabusaki Y, Ishibashi F, Katagiri M: Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica. 1999 Feb;29(2):187-93. doi: 10.1080/004982599238731 .","parent_key":"BE0002433"} {"ref-id":"A38944","pubmed-id":10199594,"citation":"Niwa T, Sato R, Yabusaki Y, Ishibashi F, Katagiri M: Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica. 1999 Feb;29(2):187-93. doi: 10.1080/004982599238731 .","parent_key":"BE0002887"} {"ref-id":"A38944","pubmed-id":10199594,"citation":"Niwa T, Sato R, Yabusaki Y, Ishibashi F, Katagiri M: Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica. 1999 Feb;29(2):187-93. doi: 10.1080/004982599238731 .","parent_key":"BE0002793"} {"ref-id":"A38944","pubmed-id":10199594,"citation":"Niwa T, Sato R, Yabusaki Y, Ishibashi F, Katagiri M: Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica. 1999 Feb;29(2):187-93. doi: 10.1080/004982599238731 .","parent_key":"BE0002363"} {"ref-id":"A38944","pubmed-id":10199594,"citation":"Niwa T, Sato R, Yabusaki Y, Ishibashi F, Katagiri M: Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica. 1999 Feb;29(2):187-93. doi: 10.1080/004982599238731 .","parent_key":"BE0002638"} {"ref-id":"A38944","pubmed-id":10199594,"citation":"Niwa T, Sato R, Yabusaki Y, Ishibashi F, Katagiri M: Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica. 1999 Feb;29(2):187-93. doi: 10.1080/004982599238731 .","parent_key":"BE0000344"} {"ref-id":"A39305","pubmed-id":8485023,"citation":"Ebner T, Eichelbaum M: The metabolism of aprindine in relation to the sparteine/debrisoquine polymorphism. Br J Clin Pharmacol. 1993 Apr;35(4):426-30.","parent_key":"BE0002363"} {"ref-id":"A15581","pubmed-id":8681486,"citation":"Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M: Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59(6):613-23.","parent_key":"BE0002887"} {"ref-id":"A15581","pubmed-id":8681486,"citation":"Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M: Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59(6):613-23.","parent_key":"BE0002793"} {"ref-id":"A15582","pubmed-id":8801065,"citation":"Sharer JE, Wrighton SA: Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Drug Metab Dispos. 1996 Apr;24(4):487-94.","parent_key":"BE0002793"} {"ref-id":"A15581","pubmed-id":8681486,"citation":"Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M: Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59(6):613-23.","parent_key":"BE0002433"} {"ref-id":"A38983","pubmed-id":12071338,"citation":"Sotaniemi EA, Pelkonen O, Arranto AJ, Tapanainen P, Rautio A, Pasanen M: Diabetes and elimination of antipyrine in man: an analysis of 298 patients classified by type of diabetes, age, sex, duration of disease and liver involvement. Pharmacol Toxicol. 2002 Mar;90(3):155-60.","parent_key":"BE0002433"} {"ref-id":"A33773","pubmed-id":14570767,"citation":"Lu P, Schrag ML, Slaughter DE, Raab CE, Shou M, Rodrigues AD: Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor. Drug Metab Dispos. 2003 Nov;31(11):1352-60. doi: 10.1124/dmd.31.11.1352.","parent_key":"BE0002433"} {"ref-id":"A15582","pubmed-id":8801065,"citation":"Sharer JE, Wrighton SA: Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Drug Metab Dispos. 1996 Apr;24(4):487-94.","parent_key":"BE0002433"} {"ref-id":"A15582","pubmed-id":8801065,"citation":"Sharer JE, Wrighton SA: Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Drug Metab Dispos. 1996 Apr;24(4):487-94.","parent_key":"BE0003536"} {"ref-id":"A15581","pubmed-id":8681486,"citation":"Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M: Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59(6):613-23.","parent_key":"BE0003536"} {"ref-id":"A15581","pubmed-id":8681486,"citation":"Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M: Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59(6):613-23.","parent_key":"BE0002638"} {"ref-id":"A15582","pubmed-id":8801065,"citation":"Sharer JE, Wrighton SA: Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Drug Metab Dispos. 1996 Apr;24(4):487-94.","parent_key":"BE0002638"} {"ref-id":"A15582","pubmed-id":8801065,"citation":"Sharer JE, Wrighton SA: Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Drug Metab Dispos. 1996 Apr;24(4):487-94.","parent_key":"BE0003336"} {"ref-id":"A15581","pubmed-id":8681486,"citation":"Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M: Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59(6):613-23.","parent_key":"BE0003549"} {"ref-id":"A15581","pubmed-id":8681486,"citation":"Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M: Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996 Jun;59(6):613-23.","parent_key":"BE0002363"} {"ref-id":"A15582","pubmed-id":8801065,"citation":"Sharer JE, Wrighton SA: Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Drug Metab Dispos. 1996 Apr;24(4):487-94.","parent_key":"BE0002363"} {"ref-id":"A15582","pubmed-id":8801065,"citation":"Sharer JE, Wrighton SA: Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Drug Metab Dispos. 1996 Apr;24(4):487-94.","parent_key":"BE0003533"} {"ref-id":"A39976","pubmed-id":12036392,"citation":"Williams D, Feely J: Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 2002;41(5):343-70. doi: 10.2165/00003088-200241050-00003.","parent_key":"BE0002363"} {"ref-id":"A2481","pubmed-id":7654478,"citation":"Aasmundstad TA, Xu BQ, Johansson I, Ripel A, Bjorneboe A, Christophersen AS, Bodd E, Morland J: Biotransformation and pharmacokinetics of ethylmorphine after a single oral dose. Br J Clin Pharmacol. 1995 Jun;39(6):611-20.","parent_key":"BE0002363"} {"ref-id":"A185027","pubmed-id":7756104,"citation":"Liu Z, Mortimer O, Smith CA, Wolf CR, Rane A: Evidence for a role of cytochrome P450 2D6 and 3A4 in ethylmorphine metabolism. Br J Clin Pharmacol. 1995 Jan;39(1):77-80. doi: 10.1111/j.1365-2125.1995.tb04413.x.","parent_key":"BE0002363"} {"ref-id":"A185027","pubmed-id":7756104,"citation":"Liu Z, Mortimer O, Smith CA, Wolf CR, Rane A: Evidence for a role of cytochrome P450 2D6 and 3A4 in ethylmorphine metabolism. Br J Clin Pharmacol. 1995 Jan;39(1):77-80. doi: 10.1111/j.1365-2125.1995.tb04413.x.","parent_key":"BE0002638"} {"ref-id":"A39070","pubmed-id":8873215,"citation":"Buters JT, Tang BK, Pineau T, Gelboin HV, Kimura S, Gonzalez FJ: Role of CYP1A2 in caffeine pharmacokinetics and metabolism: studies using mice deficient in CYP1A2. Pharmacogenetics. 1996 Aug;6(4):291-6.","parent_key":"BE0002433"} {"ref-id":"A39071","pubmed-id":19519341,"citation":"Hakooz NM: Caffeine metabolic ratios for the in vivo evaluation of CYP1A2, N-acetyltransferase 2, xanthine oxidase and CYP2A6 enzymatic activities. Curr Drug Metab. 2009 May;10(4):329-38.","parent_key":"BE0002433"} {"ref-id":"A39072","pubmed-id":8738764,"citation":"Rasmussen BB, Brosen K: Determination of urinary metabolites of caffeine for the assessment of cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activity in humans. Ther Drug Monit. 1996 Jun;18(3):254-62.","parent_key":"BE0002433"} {"ref-id":"A36507","pubmed-id":22293536,"citation":"Thorn CF, Aklillu E, McDonagh EM, Klein TE, Altman RB: PharmGKB summary: caffeine pathway. Pharmacogenet Genomics. 2012 May;22(5):389-95. doi: 10.1097/FPC.0b013e3283505d5e.","parent_key":"BE0002433"} {"ref-id":"A38643","pubmed-id":22331680,"citation":"Lee SM, Chung JY, Lee YM, Park MS, Namgung R, Park KI, Lee C: Effects of cytochrome P450 (CYP)2C19 polymorphisms on pharmacokinetics of phenobarbital in neonates and infants with seizures. Arch Dis Child. 2012 Jun;97(6):569-72. doi: 10.1136/archdischild-2011-300538. Epub 2012 Feb 13.","parent_key":"BE0003536"} {"ref-id":"A38860","pubmed-id":23121279,"citation":"Hukkanen J: Induction of cytochrome P450 enzymes: a view on human in vivo findings. Expert Rev Clin Pharmacol. 2012 Sep;5(5):569-85. doi: 10.1586/ecp.12.39.","parent_key":"BE0003536"} {"ref-id":"A185024","pubmed-id":12640218,"citation":"Gafni I, Busto UE, Tyndale RF, Kaplan HL, Sellers EM: The role of cytochrome P450 2C19 activity in flunitrazepam metabolism in vivo. J Clin Psychopharmacol. 2003 Apr;23(2):169-75.","parent_key":"BE0003536"} {"ref-id":"A16775","pubmed-id":2119476,"citation":"Thomassin J, Tephly TR: Photoaffinity labeling of rat liver microsomal morphine UDP-glucuronosyltransferase by [3H]flunitrazepam. Mol Pharmacol. 1990 Sep;38(3):294-8.","parent_key":"BE0003679"} {"ref-id":"A16776","pubmed-id":9848110,"citation":"Cheng Z, Rios GR, King CD, Coffman BL, Green MD, Mojarrabi B, Mackenzie PI, Tephly TR: Glucuronidation of catechol estrogens by expressed human UDP-glucuronosyltransferases (UGTs) 1A1, 1A3, and 2B7. Toxicol Sci. 1998 Sep;45(1):52-7.","parent_key":"BE0003679"} {"ref-id":"A185018","pubmed-id":11159802,"citation":"Hesse LM, Venkatakrishnan K, von Moltke LL, Shader RI, Greenblatt DJ: CYP3A4 is the major CYP isoform mediating the in vitro hydroxylation and demethylation of flunitrazepam. Drug Metab Dispos. 2001 Feb;29(2):133-40.","parent_key":"BE0002638"} {"ref-id":"A16776","pubmed-id":9848110,"citation":"Cheng Z, Rios GR, King CD, Coffman BL, Green MD, Mojarrabi B, Mackenzie PI, Tephly TR: Glucuronidation of catechol estrogens by expressed human UDP-glucuronosyltransferases (UGTs) 1A1, 1A3, and 2B7. Toxicol Sci. 1998 Sep;45(1):52-7.","parent_key":"BE0003677"} {"ref-id":"A39299","pubmed-id":12420793,"citation":"Schmidt H, Vormfelde Sv, Klinder K, Gundert-Remy U, Gleiter CH, Skopp G, Aderjan R, Fuhr U: Affinities of dihydrocodeine and its metabolites to opioid receptors. Pharmacol Toxicol. 2002 Aug;91(2):57-63.","parent_key":"BE0002363"} {"ref-id":"A184115","pubmed-id":7586928,"citation":"Fromm MF, Hofmann U, Griese EU, Mikus G: Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther. 1995 Oct;58(4):374-82. doi: 10.1016/0009-9236(95)90049-7.","parent_key":"BE0002363"} {"ref-id":"A14410","pubmed-id":12665158,"citation":"Schmidt H, Vormfelde SV, Walchner-Bonjean M, Klinder K, Freudenthaler S, Gleiter CH, Gundert-Remy U, Skopp G, Aderjan R, Fuhr U: The role of active metabolites in dihydrocodeine effects. Int J Clin Pharmacol Ther. 2003 Mar;41(3):95-106.","parent_key":"BE0002363"} {"ref-id":"A33839","pubmed-id":9435993,"citation":"Sproule BA, Naranjo CA, Brenmer KE, Hassan PC: Selective serotonin reuptake inhibitors and CNS drug interactions. A critical review of the evidence. Clin Pharmacokinet. 1997 Dec;33(6):454-71. doi: 10.2165/00003088-199733060-00004.","parent_key":"BE0002433"} {"ref-id":"A33839","pubmed-id":9435993,"citation":"Sproule BA, Naranjo CA, Brenmer KE, Hassan PC: Selective serotonin reuptake inhibitors and CNS drug interactions. A critical review of the evidence. Clin Pharmacokinet. 1997 Dec;33(6):454-71. doi: 10.2165/00003088-199733060-00004.","parent_key":"BE0003536"} {"ref-id":"A38744","pubmed-id":16141545,"citation":"Niwa T, Shiraga T, Ishii I, Kagayama A, Takagi A: Contribution of human hepatic cytochrome p450 isoforms to the metabolism of psychotropic drugs. Biol Pharm Bull. 2005 Sep;28(9):1711-6.","parent_key":"BE0003536"} {"ref-id":"A38744","pubmed-id":16141545,"citation":"Niwa T, Shiraga T, Ishii I, Kagayama A, Takagi A: Contribution of human hepatic cytochrome p450 isoforms to the metabolism of psychotropic drugs. Biol Pharm Bull. 2005 Sep;28(9):1711-6.","parent_key":"BE0002638"} {"ref-id":"A2495","pubmed-id":12006905,"citation":"Pritzker D, Kanungo A, Kilicarslan T, Tyndale RF, Sellers EM: Designer drugs that are potent inhibitors of CYP2D6. J Clin Psychopharmacol. 2002 Jun;22(3):330-2. doi: 10.1097/00004714-200206000-00015.","parent_key":"BE0002363"} {"ref-id":"A39261","pubmed-id":11505218,"citation":"Ramamoorthy Y, Tyndale RF, Sellers EM: Cytochrome P450 2D6.1 and cytochrome P450 2D6.10 differ in catalytic activity for multiple substrates. Pharmacogenetics. 2001 Aug;11(6):477-87.","parent_key":"BE0002363"} {"ref-id":"A39262","pubmed-id":9311621,"citation":"Lin LY, Di Stefano EW, Schmitz DA, Hsu L, Ellis SW, Lennard MS, Tucker GT, Cho AK: Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos. 1997 Sep;25(9):1059-64.","parent_key":"BE0002363"} {"ref-id":"A184859","pubmed-id":17559204,"citation":"McMasters DR, Torres RA, Crathern SJ, Dooney DL, Nachbar RB, Sheridan RP, Korzekwa KR: Inhibition of recombinant cytochrome P450 isoforms 2D6 and 2C9 by diverse drug-like molecules. J Med Chem. 2007 Jul 12;50(14):3205-13. doi: 10.1021/jm0700060. Epub 2007 Jun 9.","parent_key":"BE0002363"} {"ref-id":"A35870","pubmed-id":12584577,"citation":"Dresser GK, Bailey DG: A basic conceptual and practical overview of interactions with highly prescribed drugs. Can J Clin Pharmacol. 2002 Winter;9(4):191-8.","parent_key":"BE0002638"} {"ref-id":"A38973","pubmed-id":12143038,"citation":"Paolini M, Pozzetti L, Montagnani M, Potenza G, Sabatini L, Antelli A, Cantelli-Forti G, Roda A: Ursodeoxycholic acid (UDCA) prevents DCA effects on male mouse liver via up-regulation of CYP [correction of CXP] and preservation of BSEP activities. Hepatology. 2002 Aug;36(2):305-14. doi: 10.1053/jhep.2002.34939.","parent_key":"BE0003533"} {"ref-id":"A184862","pubmed-id":28903606,"citation":"Dinis-Oliveira RJ: Metabolic profile of oxazepam and related benzodiazepines: clinical and forensic aspects. Drug Metab Rev. 2017 Nov;49(4):451-463. doi: 10.1080/03602532.2017.1377223. Epub 2017 Sep 14.","parent_key":"BE0002638"} {"ref-id":"A31235","pubmed-id":15801544,"citation":"Miura M, Ohkubo T: In vitro metabolism of quazepam in human liver and intestine and assessment of drug interactions. Xenobiotica. 2004 Nov-Dec;34(11-12):1001-11.","parent_key":"BE0003536"} {"ref-id":"A39410","pubmed-id":16416305,"citation":"Sugimoto K, Araki N, Ohmori M, Harada K, Cui Y, Tsuruoka S, Kawaguchi A, Fujimura A: Interaction between grapefruit juice and hypnotic drugs: comparison of triazolam and quazepam. Eur J Clin Pharmacol. 2006 Mar;62(3):209-15. doi: 10.1007/s00228-005-0071-1. Epub 2006 Jan 17.","parent_key":"BE0002793"} {"ref-id":"A39410","pubmed-id":16416305,"citation":"Sugimoto K, Araki N, Ohmori M, Harada K, Cui Y, Tsuruoka S, Kawaguchi A, Fujimura A: Interaction between grapefruit juice and hypnotic drugs: comparison of triazolam and quazepam. Eur J Clin Pharmacol. 2006 Mar;62(3):209-15. doi: 10.1007/s00228-005-0071-1. Epub 2006 Jan 17.","parent_key":"BE0002638"} {"ref-id":"A182690","pubmed-id":15373933,"citation":"Kawaguchi A, Ohmori M, Tsuruoka S, Nishiki K, Harada K, Miyamori I, Yano R, Nakamura T, Masada M, Fujimura A: Drug interaction between St John's Wort and quazepam. Br J Clin Pharmacol. 2004 Oct;58(4):403-10. doi: 10.1111/j.1365-2125.2004.02171.x.","parent_key":"BE0002638"} {"ref-id":"A31235","pubmed-id":15801544,"citation":"Miura M, Ohkubo T: In vitro metabolism of quazepam in human liver and intestine and assessment of drug interactions. Xenobiotica. 2004 Nov-Dec;34(11-12):1001-11.","parent_key":"BE0002638"} {"ref-id":"A181247","pubmed-id":19566112,"citation":"Doroshyenko O, Fuhr U: Clinical pharmacokinetics and pharmacodynamics of solifenacin. Clin Pharmacokinet. 2009;48(5):281-302. doi: 10.2165/00003088-200948050-00001.","parent_key":"BE0002638"} {"ref-id":"A183914","pubmed-id":16867168,"citation":"Swart PJ, Krauwinkel WJ, Smulders RA, Smith NN: Pharmacokinetic effect of ketoconazole on solifenacin in healthy volunteers. Basic Clin Pharmacol Toxicol. 2006 Jul;99(1):33-6. doi: 10.1111/j.1742-7843.2006.pto_285.x.","parent_key":"BE0002638"} {"ref-id":"A181247","pubmed-id":19566112,"citation":"Doroshyenko O, Fuhr U: Clinical pharmacokinetics and pharmacodynamics of solifenacin. Clin Pharmacokinet. 2009;48(5):281-302. doi: 10.2165/00003088-200948050-00001.","parent_key":"BE0003543"} {"ref-id":"A181247","pubmed-id":19566112,"citation":"Doroshyenko O, Fuhr U: Clinical pharmacokinetics and pharmacodynamics of solifenacin. Clin Pharmacokinet. 2009;48(5):281-302. doi: 10.2165/00003088-200948050-00001.","parent_key":"BE0002363"} {"ref-id":"A23262","pubmed-id":20080160,"citation":"Vrzal R, Kubesova K, Pavek P, Dvorak Z: Benzodiazepines medazepam and midazolam are activators of pregnane X receptor and weak inducers of CYP3A4: investigation in primary cultures of human hepatocytes and hepatocarcinoma cell lines. Toxicol Lett. 2010 Mar 15;193(2):183-8. doi: 10.1016/j.toxlet.2010.01.004. Epub 2010 Jan 18.","parent_key":"BE0002638"} {"ref-id":"A33187","pubmed-id":16639344,"citation":"Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ Jr, Klein CE, Rublein JC, Kashuba AD: Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006 May;42(1):52-60. doi: 10.1097/01.qai.0000219774.20174.64.","parent_key":"BE0002638"} {"ref-id":"A33184","pubmed-id":12724045,"citation":"Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ: Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol. 2003 Mar;55(3):381-6. doi: 10.1211/002235702739.","parent_key":"BE0002638"} {"ref-id":"A33208","pubmed-id":11378352,"citation":"Sham HL, Betebenner DA, Herrin T, Kumar G, Saldivar A, Vasavanonda S, Molla A, Kempf DJ, Plattner JJ, Norbeck DW: Synthesis and antiviral activities of the major metabolites of the HIV protease inhibitor ABT-378 (Lopinavir). Bioorg Med Chem Lett. 2001 Jun 4;11(11):1351-3.","parent_key":"BE0002638"} {"ref-id":"A35954","pubmed-id":21953914,"citation":"Li F, Lu J, Ma X: CYP3A4-mediated lopinavir bioactivation and its inhibition by ritonavir. Drug Metab Dispos. 2012 Jan;40(1):18-24. doi: 10.1124/dmd.111.041400. Epub 2011 Sep 27.","parent_key":"BE0002638"} {"ref-id":"A33184","pubmed-id":12724045,"citation":"Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ: Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol. 2003 Mar;55(3):381-6. doi: 10.1211/002235702739.","parent_key":"BE0002363"} {"ref-id":"A35954","pubmed-id":21953914,"citation":"Li F, Lu J, Ma X: CYP3A4-mediated lopinavir bioactivation and its inhibition by ritonavir. Drug Metab Dispos. 2012 Jan;40(1):18-24. doi: 10.1124/dmd.111.041400. Epub 2011 Sep 27.","parent_key":"BE0002363"} {"ref-id":"A35954","pubmed-id":21953914,"citation":"Li F, Lu J, Ma X: CYP3A4-mediated lopinavir bioactivation and its inhibition by ritonavir. Drug Metab Dispos. 2012 Jan;40(1):18-24. doi: 10.1124/dmd.111.041400. Epub 2011 Sep 27.","parent_key":"BE0002433"} {"ref-id":"A33184","pubmed-id":12724045,"citation":"Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ: Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol. 2003 Mar;55(3):381-6. doi: 10.1211/002235702739.","parent_key":"BE0002433"} {"ref-id":"A33184","pubmed-id":12724045,"citation":"Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ: Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol. 2003 Mar;55(3):381-6. doi: 10.1211/002235702739.","parent_key":"BE0003536"} {"ref-id":"A33184","pubmed-id":12724045,"citation":"Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ: Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol. 2003 Mar;55(3):381-6. doi: 10.1211/002235702739.","parent_key":"BE0003549"} {"ref-id":"A33184","pubmed-id":12724045,"citation":"Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ: Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol. 2003 Mar;55(3):381-6. doi: 10.1211/002235702739.","parent_key":"BE0002793"} {"ref-id":"A38405","pubmed-id":17698824,"citation":"Hughes CA, Freitas A, Miedzinski LJ: Interaction between lopinavir/ritonavir and warfarin. CMAJ. 2007 Aug 14;177(4):357-9. doi: 10.1503/cmaj.061284.","parent_key":"BE0002793"} {"ref-id":"A33803","pubmed-id":15247556,"citation":"Lim ML, Min SS, Eron JJ, Bertz RJ, Robinson M, Gaedigk A, Kashuba AD: Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. J Acquir Immune Defic Syndr. 2004 Aug 15;36(5):1034-40.","parent_key":"BE0002793"} {"ref-id":"A33184","pubmed-id":12724045,"citation":"Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ: Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol. 2003 Mar;55(3):381-6. doi: 10.1211/002235702739.","parent_key":"BE0004866"} {"ref-id":"A17705","pubmed-id":19940232,"citation":"Skerjanec A, Wang J, Maren K, Rojkjaer L: Investigation of the pharmacokinetic interactions of deferasirox, a once-daily oral iron chelator, with midazolam, rifampin, and repaglinide in healthy volunteers. J Clin Pharmacol. 2010 Feb;50(2):205-13. doi: 10.1177/0091270009340418. Epub 2009 Nov 25.","parent_key":"BE0002638"} {"ref-id":"A38547","pubmed-id":28346059,"citation":"Allegra S, De Francia S, Cusato J, Arduino A, Massano D, Longo F, Piga A, D'Avolio A: Deferasirox pharmacogenetic influence on pharmacokinetic, efficacy and toxicity in a cohort of pediatric patients. Pharmacogenomics. 2017 Apr;18(6):539-554. doi: 10.2217/pgs-2016-0176. Epub 2017 Mar 27.","parent_key":"BE0003677"} {"ref-id":"A38548","pubmed-id":17576806,"citation":"Nakajima M, Yamanaka H, Fujiwara R, Katoh M, Yokoi T: Stereoselective glucuronidation of 5-(4'-hydroxyphenyl)-5-phenylhydantoin by human UDP-glucuronosyltransferase (UGT) 1A1, UGT1A9, and UGT2B15: effects of UGT-UGT interactions. Drug Metab Dispos. 2007 Sep;35(9):1679-86. doi: 10.1124/dmd.107.015909. Epub 2007 Jun 18.","parent_key":"BE0003538"} {"ref-id":"A39188","pubmed-id":20097723,"citation":"Waldmeier F, Bruin GJ, Glaenzel U, Hazell K, Sechaud R, Warrington S, Porter JB: Pharmacokinetics, metabolism, and disposition of deferasirox in beta-thalassemic patients with transfusion-dependent iron overload who are at pharmacokinetic steady state. Drug Metab Dispos. 2010 May;38(5):808-16. doi: 10.1124/dmd.109.030833. Epub 2010 Jan 22.","parent_key":"BE0002433"} {"ref-id":"A183056","pubmed-id":19188392,"citation":"Lim HS, Im JS, Cho JY, Bae KS, Klein TA, Yeom JS, Kim TS, Choi JS, Jang IJ, Park JW: Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob Agents Chemother. 2009 Apr;53(4):1468-75. doi: 10.1128/AAC.00339-08. Epub 2009 Feb 2.","parent_key":"BE0002638"} {"ref-id":"A183059","pubmed-id":29438998,"citation":"Collins KP, Jackson KM, Gustafson DL: Hydroxychloroquine: A Physiologically-Based Pharmacokinetic Model in the Context of Cancer-Related Autophagy Modulation. J Pharmacol Exp Ther. 2018 Jun;365(3):447-459. doi: 10.1124/jpet.117.245639. Epub 2018 Feb 8.","parent_key":"BE0002638"} {"ref-id":"A198852","pubmed-id":32356252,"citation":"Chary MA, Barbuto AF, Izadmehr S, Hayes BD, Burns MM: COVID-19: Therapeutics and Their Toxicities. J Med Toxicol. 2020 Apr 30. pii: 10.1007/s13181-020-00777-5. doi: 10.1007/s13181-020-00777-5.","parent_key":"BE0002638"} {"ref-id":"A16884","pubmed-id":10848718,"citation":"Somer M, Kallio J, Pesonen U, Pyykko K, Huupponen R, Scheinin M: Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol. 2000 Jun;49(6):549-54.","parent_key":"BE0002363"} {"ref-id":"A198852","pubmed-id":32356252,"citation":"Chary MA, Barbuto AF, Izadmehr S, Hayes BD, Burns MM: COVID-19: Therapeutics and Their Toxicities. J Med Toxicol. 2020 Apr 30. pii: 10.1007/s13181-020-00777-5. doi: 10.1007/s13181-020-00777-5.","parent_key":"BE0002363"} {"ref-id":"A198852","pubmed-id":32356252,"citation":"Chary MA, Barbuto AF, Izadmehr S, Hayes BD, Burns MM: COVID-19: Therapeutics and Their Toxicities. J Med Toxicol. 2020 Apr 30. pii: 10.1007/s13181-020-00777-5. doi: 10.1007/s13181-020-00777-5.","parent_key":"BE0002887"} {"ref-id":"A15694","pubmed-id":20615392,"citation":"Wojcikowski J, Boksa J, Daniel WA: Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver--A comparison with other phenothiazines. Biochem Pharmacol. 2010 Oct 15;80(8):1252-9. doi: 10.1016/j.bcp.2010.06.045. Epub 2010 Jul 6.","parent_key":"BE0002638"} {"ref-id":"A15657","pubmed-id":15797796,"citation":"Bhoopathy S, Xin B, Unger SE, Karnes HT: A novel incubation direct injection LC/MS/MS technique for in vitro drug metabolism screening studies involving the CYP 2D6 and the CYP 3A4 isozymes. J Pharm Biomed Anal. 2005 Apr 1;37(4):739-49. Epub 2004 Dec 30.","parent_key":"BE0002363"} {"ref-id":"A15694","pubmed-id":20615392,"citation":"Wojcikowski J, Boksa J, Daniel WA: Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver--A comparison with other phenothiazines. Biochem Pharmacol. 2010 Oct 15;80(8):1252-9. doi: 10.1016/j.bcp.2010.06.045. Epub 2010 Jul 6.","parent_key":"BE0003536"} {"ref-id":"A38997","pubmed-id":28357125,"citation":"Xie C, Pogribna M, Word B, Lyn-Cook L Jr, Lyn-Cook BD, Hammons GJ: In vitro analysis of factors influencing CYP1A2 expression as potential determinants of interindividual variation. Pharmacol Res Perspect. 2017 Mar 2;5(2):e00299. doi: 10.1002/prp2.299. eCollection 2017 Apr.","parent_key":"BE0002433"} {"ref-id":"A38485","pubmed-id":20946203,"citation":"Davies SJ, Westin AA, Castberg I, Lewis G, Lennard MS, Taylor S, Spigset O: Characterisation of zuclopenthixol metabolism by in vitro and therapeutic drug monitoring studies. Acta Psychiatr Scand. 2010 Dec;122(6):444-53. doi: 10.1111/j.1600-0447.2010.01619.x. Epub 2010 Oct 12.","parent_key":"BE0002363"} {"ref-id":"A184136","pubmed-id":26514968,"citation":"Lisbeth P, Vincent H, Kristof M, Bernard S, Manuel M, Hugo N: Genotype and co-medication dependent CYP2D6 metabolic activity: effects on serum concentrations of aripiprazole, haloperidol, risperidone, paliperidone and zuclopenthixol. Eur J Clin Pharmacol. 2016 Feb;72(2):175-84. doi: 10.1007/s00228-015-1965-1. Epub 2015 Oct 30.","parent_key":"BE0002363"} {"ref-id":"A38485","pubmed-id":20946203,"citation":"Davies SJ, Westin AA, Castberg I, Lewis G, Lennard MS, Taylor S, Spigset O: Characterisation of zuclopenthixol metabolism by in vitro and therapeutic drug monitoring studies. Acta Psychiatr Scand. 2010 Dec;122(6):444-53. doi: 10.1111/j.1600-0447.2010.01619.x. Epub 2010 Oct 12.","parent_key":"BE0002638"} {"ref-id":"A15224","pubmed-id":18840026,"citation":"Takemoto JK, Reynolds JK, Remsberg CM, Vega-Villa KR, Davies NM: Clinical pharmacokinetic and pharmacodynamic profile of etoricoxib. Clin Pharmacokinet. 2008;47(11):703-20.","parent_key":"BE0002638"} {"ref-id":"A38772","pubmed-id":11353749,"citation":"Kassahun K, McIntosh IS, Shou M, Walsh DJ, Rodeheffer C, Slaughter DE, Geer LA, Halpin RA, Agrawal N, Rodrigues AD: Role of human liver cytochrome P4503A in the metabolism of etoricoxib, a novel cyclooxygenase-2 selective inhibitor. Drug Metab Dispos. 2001 Jun;29(6):813-20.","parent_key":"BE0002793"} {"ref-id":"A38772","pubmed-id":11353749,"citation":"Kassahun K, McIntosh IS, Shou M, Walsh DJ, Rodeheffer C, Slaughter DE, Geer LA, Halpin RA, Agrawal N, Rodrigues AD: Role of human liver cytochrome P4503A in the metabolism of etoricoxib, a novel cyclooxygenase-2 selective inhibitor. Drug Metab Dispos. 2001 Jun;29(6):813-20.","parent_key":"BE0002433"} {"ref-id":"A38772","pubmed-id":11353749,"citation":"Kassahun K, McIntosh IS, Shou M, Walsh DJ, Rodeheffer C, Slaughter DE, Geer LA, Halpin RA, Agrawal N, Rodrigues AD: Role of human liver cytochrome P4503A in the metabolism of etoricoxib, a novel cyclooxygenase-2 selective inhibitor. Drug Metab Dispos. 2001 Jun;29(6):813-20.","parent_key":"BE0003536"} {"ref-id":"A38773","pubmed-id":18443385,"citation":"Medhi B, Sukhija M, Prakash A, Gaikwad S, Bansal V, Pandhi P: Effects of etoricoxib on the pharmacokinetics of phenytoin. Pharmacol Rep. 2008 Mar-Apr;60(2):233-7.","parent_key":"BE0003536"} {"ref-id":"A38772","pubmed-id":11353749,"citation":"Kassahun K, McIntosh IS, Shou M, Walsh DJ, Rodeheffer C, Slaughter DE, Geer LA, Halpin RA, Agrawal N, Rodrigues AD: Role of human liver cytochrome P4503A in the metabolism of etoricoxib, a novel cyclooxygenase-2 selective inhibitor. Drug Metab Dispos. 2001 Jun;29(6):813-20.","parent_key":"BE0003533"} {"ref-id":"A16501","pubmed-id":12814970,"citation":"Hu M, Krausz K, Chen J, Ge X, Li J, Gelboin HL, Gonzalez FJ: Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Drug Metab Dispos. 2003 Jul;31(7):924-31.","parent_key":"BE0002433"} {"ref-id":"A33101","pubmed-id":9865428,"citation":"Xu X, Duncan AM, Merz BE, Kurzer MS: Effects of soy isoflavones on estrogen and phytoestrogen metabolism in premenopausal women. Cancer Epidemiol Biomarkers Prev. 1998 Dec;7(12):1101-8.","parent_key":"BE0002433"} {"ref-id":"A39001","pubmed-id":20806393,"citation":"Shimada H, Eto M, Ohtaguro M, Ohtsubo M, Mizukami Y, Ide T, Imamura Y: Differential mechanisms for the inhibition of human cytochrome P450 1A2 by apigenin and genistein. J Biochem Mol Toxicol. 2010 Jul-Aug;24(4):230-4. doi: 10.1002/jbt.20328.","parent_key":"BE0002433"} {"ref-id":"A39002","pubmed-id":12828569,"citation":"Breinholt VM, Rasmussen SE, Brosen K, Friedberg TH: In vitro metabolism of genistein and tangeretin by human and murine cytochrome P450s. Pharmacol Toxicol. 2003 Jul;93(1):14-22.","parent_key":"BE0002433"} {"ref-id":"A36683","pubmed-id":21943317,"citation":"Xiao CQ, Chen R, Lin J, Wang G, Chen Y, Tan ZR, Zhou HH: Effect of genistein on the activities of cytochrome P450 3A and P-glycoprotein in Chinese healthy participants. Xenobiotica. 2012 Feb;42(2):173-8. doi: 10.3109/00498254.2011.615954. Epub 2011 Sep 26.","parent_key":"BE0002638"} {"ref-id":"A38467","pubmed-id":22421519,"citation":"Kelly Freeman ML: Clinical Considerations for Roflumilast: A New Treatment for COPD. Consult Pharm. 2012 Mar;27(3):189-93. doi: 10.4140/TCP.n.2012.189.","parent_key":"BE0002638"} {"ref-id":"A38469","pubmed-id":22605906,"citation":"Baye J: Roflumilast (daliresp): a novel phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. P T. 2012 Mar;37(3):149-61.","parent_key":"BE0002638"} {"ref-id":"A38468","pubmed-id":21232047,"citation":"Rabe KF: Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol. 2011 May;163(1):53-67. doi: 10.1111/j.1476-5381.2011.01218.x.","parent_key":"BE0002638"} {"ref-id":"A19665","pubmed-id":17761779,"citation":"Omura K, Nakazawa T, Sato T, Iwanaga T, Nagata O: Characterization of N-glucuronidation of 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl) pyridine-2-carbonitrile (FYX-051): a new xanthine oxidoreductase inhibitor. Drug Metab Dispos. 2007 Dec;35(12):2143-8. Epub 2007 Aug 30.","parent_key":"BE0003538"} {"ref-id":"A38750","pubmed-id":18451520,"citation":"Fujita T, Kawase A, Niwa T, Tomohiro N, Masuda M, Matsuda H, Iwaki M: Comparative evaluation of 12 immature citrus fruit extracts for the inhibition of cytochrome P450 isoform activities. Biol Pharm Bull. 2008 May;31(5):925-30.","parent_key":"BE0002638"} {"ref-id":"A184868","pubmed-id":27845750,"citation":"Patel O, Muller C, Joubert E, Louw J, Rosenkranz B, Awortwe C: Inhibitory Interactions of Aspalathus linearis (Rooibos) Extracts and Compounds, Aspalathin and Z-2-(beta-d-Glucopyranosyloxy)-3-phenylpropenoic Acid, on Cytochromes Metabolizing Hypoglycemic and Hypolipidemic Drugs. Molecules. 2016 Nov 12;21(11). pii: molecules21111515. doi: 10.3390/molecules21111515.","parent_key":"BE0002638"} {"ref-id":"A192966","pubmed-id":31072872,"citation":"Guengerich FP, Wilkey CJ, Glass SM, Reddish MJ: Conformational selection dominates binding of steroids to human cytochrome P450 17A1. J Biol Chem. 2019 Jun 28;294(26):10028-10041. doi: 10.1074/jbc.RA119.008860. Epub 2019 May 9.","parent_key":"BE0000344"} {"ref-id":"A2424","pubmed-id":10651391,"citation":"Lamb HM, Figgitt DP, Faulds D: Quinupristin/dalfopristin: a review of its use in the management of serious gram-positive infections. Drugs. 1999 Dec;58(6):1061-97.","parent_key":"BE0002638"} {"ref-id":"A181295","pubmed-id":11697456,"citation":"Nomiyama T, Haufroid V, Buchet JP, Miyauchi H, Tanaka S, Yamauchi T, Imamiya S, Seki Y, Omae K, Lison D: Insertion polymorphism of CYP2E1 and urinary N-methylformamide after N,N- dimethylformamide exposure in Japanese workers. Int Arch Occup Environ Health. 2001 Sep;74(7):519-22.","parent_key":"BE0003533"} {"ref-id":"A181298","pubmed-id":22953193,"citation":"Kim TH, Kim SG: Clinical outcomes of occupational exposure to n,n-dimethylformamide: perspectives from experimental toxicology. Saf Health Work. 2011 Jun;2(2):97-104. doi: 10.5491/SHAW.2011.2.2.97. Epub 2011 Jun 30.","parent_key":"BE0003533"} {"ref-id":"A181301","pubmed-id":30993423,"citation":"Jiang H, Zhang X, Shen J, Zhang Y, Gu Y, Tian T, Chu M, Zhuang X, Lian Y: Association between CYP2E1 and GOT2 gene polymorphisms and susceptibility and low-dose N,N-dimethylformamide occupational exposure-induced liver injury. Int Arch Occup Environ Health. 2019 Apr 16. pii: 10.1007/s00420-019-01436-1. doi: 10.1007/s00420-019-01436-1.","parent_key":"BE0003533"} {"ref-id":"A36684","pubmed-id":3242586,"citation":"Cerasa LA, Bertino JS Jr, Ludwig EA, Savliwala M, Middleton E Jr, Slaughter RL: Lack of effect of atenolol on the pharmacokinetics of theophylline. Br J Clin Pharmacol. 1988 Dec;26(6):800-2.","parent_key":"BE0002433"} {"ref-id":"A39067","pubmed-id":9152602,"citation":"Shimada T, Gillam EM, Sutter TR, Strickland PT, Guengerich FP, Yamazaki H: Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab Dispos. 1997 May;25(5):617-22.","parent_key":"BE0002433"} {"ref-id":"A39068","pubmed-id":14586384,"citation":"Chainuvati S, Nafziger AN, Leeder JS, Gaedigk A, Kearns GL, Sellers E, Zhang Y, Kashuba AD, Rowland E, Bertino JS Jr: Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the \"Cooperstown 5+1 cocktail\". Clin Pharmacol Ther. 2003 Nov;74(5):437-47. doi: 10.1016/S0009-9236(03)00229-7.","parent_key":"BE0002433"} {"ref-id":"A39061","pubmed-id":15529418,"citation":"Yin OQ, Lam SS, Lo CM, Chow MS: Rapid determination of five probe drugs and their metabolites in human plasma and urine by liquid chromatography/tandem mass spectrometry: application to cytochrome P450 phenotyping studies. Rapid Commun Mass Spectrom. 2004;18(23):2921-33. doi: 10.1002/rcm.1704.","parent_key":"BE0002433"} {"ref-id":"A181385","pubmed-id":1664256,"citation":"Guengerich FP, Kim DH, Iwasaki M: Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 1991 Mar-Apr;4(2):168-79.","parent_key":"BE0003533"} {"ref-id":"A181388","pubmed-id":15997102,"citation":"Ohashi Y, Yamada K, Takemoto I, Mizutani T, Saeki K: Inhibition of human cytochrome P450 2E1 by halogenated anilines, phenols, and thiophenols. Biol Pharm Bull. 2005 Jul;28(7):1221-3. doi: 10.1248/bpb.28.1221.","parent_key":"BE0003533"} {"ref-id":"A14962","pubmed-id":11501186,"citation":"Lu AH, Shu Y, Huang SL, Wang W, Ou-Yang DS, Zhou HH: In vitro proguanil activation to cycloguanil is mediated by CYP2C19 and CYP3A4 in adult Chinese liver microsomes. Acta Pharmacol Sin. 2000 Aug;21(8):747-52.","parent_key":"BE0002638"} {"ref-id":"A184679","pubmed-id":23418369,"citation":"Real AM, Hong S, Pissios P: Nicotinamide N-oxidation by CYP2E1 in human liver microsomes. Drug Metab Dispos. 2013 Mar;41(3):550-3. doi: 10.1124/dmd.112.049734. Epub 2012 Dec 21.","parent_key":"BE0003533"} {"ref-id":"A31323","pubmed-id":15762770,"citation":"Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, McLeod HL: Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 2005;44(3):279-304. doi: 10.2165/00003088-200544030-00005.","parent_key":"BE0002638"} {"ref-id":"A37748","pubmed-id":29027845,"citation":"Lin XX, Lian GH, Xu Y, Zhao Q, Xiao J, Peng SF, Xiao MF, Ouyang DS, Tan ZR, Wang YC, Peng JB, Zhang W, Chen Y: The potent mechanism-based inactivation of CYP2D6 and CYP3A4 with fusidic acid in in vivo bioaccumulation. Xenobiotica. 2018 Oct;48(10):999-1005. doi: 10.1080/00498254.2017.1390628. Epub 2017 Nov 10.","parent_key":"BE0002363"} {"ref-id":"A37750","pubmed-id":27571049,"citation":"Chen D, Lin XX, Zhao Q, Xiao J, Peng SF, Xiao MF, Ouyang DS, Tan ZR, Wang YC, Peng JB, Zhang W, Chen Y: Screening of drug metabolizing enzymes for fusidic acid and its interactions with isoform-selective substrates in vitro. Xenobiotica. 2017 Sep;47(9):778-784. doi: 10.1080/00498254.2016.1230795. Epub 2016 Nov 15.","parent_key":"BE0002363"} {"ref-id":"A37748","pubmed-id":29027845,"citation":"Lin XX, Lian GH, Xu Y, Zhao Q, Xiao J, Peng SF, Xiao MF, Ouyang DS, Tan ZR, Wang YC, Peng JB, Zhang W, Chen Y: The potent mechanism-based inactivation of CYP2D6 and CYP3A4 with fusidic acid in in vivo bioaccumulation. Xenobiotica. 2018 Oct;48(10):999-1005. doi: 10.1080/00498254.2017.1390628. Epub 2017 Nov 10.","parent_key":"BE0002638"} {"ref-id":"A37750","pubmed-id":27571049,"citation":"Chen D, Lin XX, Zhao Q, Xiao J, Peng SF, Xiao MF, Ouyang DS, Tan ZR, Wang YC, Peng JB, Zhang W, Chen Y: Screening of drug metabolizing enzymes for fusidic acid and its interactions with isoform-selective substrates in vitro. Xenobiotica. 2017 Sep;47(9):778-784. doi: 10.1080/00498254.2016.1230795. Epub 2016 Nov 15.","parent_key":"BE0002638"} {"ref-id":"A37756","pubmed-id":27458210,"citation":"Gupta A, Harris JJ, Lin J, Bulgarelli JP, Birmingham BK, Grimm SW: Fusidic Acid Inhibits Hepatic Transporters and Metabolic Enzymes: Potential Cause of Clinical Drug-Drug Interaction Observed with Statin Coadministration. Antimicrob Agents Chemother. 2016 Sep 23;60(10):5986-94. doi: 10.1128/AAC.01335-16. Print 2016 Oct.","parent_key":"BE0002638"} {"ref-id":"A15222","pubmed-id":15276085,"citation":"Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D: Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol. 2004 Aug 15;68(4):773-82.","parent_key":"BE0002433"} {"ref-id":"A15221","pubmed-id":11714871,"citation":"Chang TK, Chen J, Lee WB: Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther. 2001 Dec;299(3):874-82.","parent_key":"BE0002433"} {"ref-id":"A15221","pubmed-id":11714871,"citation":"Chang TK, Chen J, Lee WB: Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther. 2001 Dec;299(3):874-82.","parent_key":"BE0003543"} {"ref-id":"A15222","pubmed-id":15276085,"citation":"Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D: Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol. 2004 Aug 15;68(4):773-82.","parent_key":"BE0003543"} {"ref-id":"A15221","pubmed-id":11714871,"citation":"Chang TK, Chen J, Lee WB: Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther. 2001 Dec;299(3):874-82.","parent_key":"BE0001111"} {"ref-id":"A16710","pubmed-id":20716633,"citation":"Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS: Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila). 2010 Sep;3(9):1168-75. doi: 10.1158/1940-6207.CAPR-09-0155. Epub 2010 Aug 17.","parent_key":"BE0002638"} {"ref-id":"A16711","pubmed-id":11701226,"citation":"Piver B, Berthou F, Dreano Y, Lucas D: Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol Lett. 2001 Dec 15;125(1-3):83-91.","parent_key":"BE0002638"} {"ref-id":"A35887","pubmed-id":18048490,"citation":"Felmlee MA, Lon HK, Gonzalez FJ, Yu AM: Cytochrome P450 expression and regulation in CYP3A4/CYP2D6 double transgenic humanized mice. Drug Metab Dispos. 2008 Feb;36(2):435-41. doi: 10.1124/dmd.107.018838. Epub 2007 Nov 29.","parent_key":"BE0002638"} {"ref-id":"A23561","pubmed-id":17438109,"citation":"Wang H, Huang H, Li H, Teotico DG, Sinz M, Baker SD, Staudinger J, Kalpana G, Redinbo MR, Mani S: Activated pregnenolone X-receptor is a target for ketoconazole and its analogs. Clin Cancer Res. 2007 Apr 15;13(8):2488-95.","parent_key":"BE0002638"} {"ref-id":"A20570","pubmed-id":16630558,"citation":"Tang W, Norlin M: Regulation of steroid hydroxylase CYP7B1 by androgens and estrogens in prostate cancer LNCaP cells. Biochem Biophys Res Commun. 2006 Jun 2;344(2):540-6. Epub 2006 Apr 4.","parent_key":"BE0000344"} {"ref-id":"A36255","pubmed-id":7756103,"citation":"Sotaniemi EA, Rautio A, Backstrom M, Arvela P, Pelkonen O: CYP3A4 and CYP2A6 activities marked by the metabolism of lignocaine and coumarin in patients with liver and kidney diseases and epileptic patients. Br J Clin Pharmacol. 1995 Jan;39(1):71-6.","parent_key":"BE0002638"} {"ref-id":"A35777","pubmed-id":22290292,"citation":"Gherezghiher TB, Michalsen B, Chandrasena RE, Qin Z, Sohn J, Thatcher GR, Bolton JL: The naphthol selective estrogen receptor modulator (SERM), LY2066948, is oxidized to an o-quinone analogous to the naphthol equine estrogen, equilenin. Chem Biol Interact. 2012 Mar 5;196(1-2):1-10. doi: 10.1016/j.cbi.2012.01.004. Epub 2012 Jan 28.","parent_key":"BE0002638"} {"ref-id":"A16503","pubmed-id":11502731,"citation":"Cherstniakova SA, Bi D, Fuller DR, Mojsiak JZ, Collins JM, Cantilena LR: Metabolism of vanoxerine, 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine, by human cytochrome P450 enzymes. Drug Metab Dispos. 2001 Sep;29(9):1216-20.","parent_key":"BE0002638"} {"ref-id":"A19439","pubmed-id":16978661,"citation":"Yao HT, Chang YW, Lan SJ, Chen CT, Hsu JT, Yeh TK: The inhibitory effect of polyunsaturated fatty acids on human CYP enzymes. Life Sci. 2006 Nov 25;79(26):2432-40. Epub 2006 Aug 23.","parent_key":"BE0002793"} {"ref-id":"A39369","pubmed-id":21945326,"citation":"Westphal C, Konkel A, Schunck WH: CYP-eicosanoids--a new link between omega-3 fatty acids and cardiac disease? Prostaglandins Other Lipid Mediat. 2011 Nov;96(1-4):99-108. doi: 10.1016/j.prostaglandins.2011.09.001. Epub 2011 Sep 16.","parent_key":"BE0002793"} {"ref-id":"A14822","pubmed-id":12401364,"citation":"Zhang T, Zhu Y, Gunaratna C: Rapid and quantitative determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography-electrospray ionization-ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Nov 25;780(2):371-9.","parent_key":"BE0002433"} {"ref-id":"A15642","pubmed-id":10421611,"citation":"Kobayashi K, Nakajima M, Oshima K, Shimada N, Yokoi T, Chiba K: Involvement of CYP2E1 as A low-affinity enzyme in phenacetin O-deethylation in human liver microsomes. Drug Metab Dispos. 1999 Aug;27(8):860-5.","parent_key":"BE0002433"} {"ref-id":"A38986","pubmed-id":22949628,"citation":"Huang Q, Deshmukh RS, Ericksen SS, Tu Y, Szklarz GD: Preferred binding orientations of phenacetin in CYP1A1 and CYP1A2 are associated with isoform-selective metabolism. Drug Metab Dispos. 2012 Dec;40(12):2324-31. doi: 10.1124/dmd.112.047308. Epub 2012 Sep 4.","parent_key":"BE0002433"} {"ref-id":"A38987","pubmed-id":11284709,"citation":"Yun CH, Miller GP, Guengerich FP: Oxidations of p-alkoxyacylanilides catalyzed by human cytochrome P450 1A2: structure-activity relationships and simulation of rate constants of individual steps in catalysis. Biochemistry. 2001 Apr 10;40(14):4521-30.","parent_key":"BE0002433"} {"ref-id":"A14750","pubmed-id":10901704,"citation":"Echizen H, Tanizaki M, Tatsuno J, Chiba K, Berwick T, Tani M, Gonzalez FJ, Ishizaki T: Identification of CYP3A4 as the enzyme involved in the mono-N-dealkylation of disopyramide enantiomers in humans. Drug Metab Dispos. 2000 Aug;28(8):937-44.","parent_key":"BE0003543"} {"ref-id":"A15642","pubmed-id":10421611,"citation":"Kobayashi K, Nakajima M, Oshima K, Shimada N, Yokoi T, Chiba K: Involvement of CYP2E1 as A low-affinity enzyme in phenacetin O-deethylation in human liver microsomes. Drug Metab Dispos. 1999 Aug;27(8):860-5.","parent_key":"BE0003536"} {"ref-id":"A184892","pubmed-id":10548449,"citation":"Nakajima M, Kobayashi K, Oshima K, Shimada N, Tokudome S, Chiba K, Yokoi T: Activation of phenacetin O-deethylase activity by alpha-naphthoflavone in human liver microsomes. Xenobiotica. 1999 Sep;29(9):885-98. doi: 10.1080/004982599238137 .","parent_key":"BE0002793"} {"ref-id":"A15642","pubmed-id":10421611,"citation":"Kobayashi K, Nakajima M, Oshima K, Shimada N, Yokoi T, Chiba K: Involvement of CYP2E1 as A low-affinity enzyme in phenacetin O-deethylation in human liver microsomes. Drug Metab Dispos. 1999 Aug;27(8):860-5.","parent_key":"BE0003533"} {"ref-id":"A15642","pubmed-id":10421611,"citation":"Kobayashi K, Nakajima M, Oshima K, Shimada N, Yokoi T, Chiba K: Involvement of CYP2E1 as A low-affinity enzyme in phenacetin O-deethylation in human liver microsomes. Drug Metab Dispos. 1999 Aug;27(8):860-5.","parent_key":"BE0002638"} {"ref-id":"A36869","pubmed-id":12735109,"citation":"Smith AG, Davies R, Dalton TP, Miller ML, Judah D, Riley J, Gant T, Nebert DW: Intrinsic hepatic phenotype associated with the Cyp1a2 gene as shown by cDNA expression microarray analysis of the knockout mouse. EHP Toxicogenomics. 2003 Jan;111(1T):45-51.","parent_key":"BE0002433"} {"ref-id":"A39059","pubmed-id":10942180,"citation":"Carrillo JA, Christensen M, Ramos SI, Alm C, Dahl ML, Benitez J, Bertilsson L: Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther Drug Monit. 2000 Aug;22(4):409-17.","parent_key":"BE0002433"} {"ref-id":"A17769","pubmed-id":14348191,"citation":"STIRPE F, DELLACORTE E: REGULATION OF XANTHINE DEHYDROGENASE IN CHICK LIVER. EFFECT OF STARVATION AND OF ADMINISTRATION OF PURINES AND PURINE NUCLEOSIDES. Biochem J. 1965 Feb;94:309-13.","parent_key":"BE0002204"} {"ref-id":"A183311","pubmed-id":11950782,"citation":"Rae JM, Soukhova NV, Flockhart DA, Desta Z: Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab Dispos. 2002 May;30(5):525-30. doi: 10.1124/dmd.30.5.525.","parent_key":"BE0003549"} {"ref-id":"A182684","pubmed-id":12107550,"citation":"Jacobson PA, Green K, Birnbaum A, Remmel RP: Cytochrome P450 isozymes 3A4 and 2B6 are involved in the in vitro human metabolism of thiotepa to TEPA. Cancer Chemother Pharmacol. 2002 Jun;49(6):461-7. doi: 10.1007/s00280-002-0453-3. Epub 2002 Apr 23.","parent_key":"BE0002638"} {"ref-id":"A15683","pubmed-id":15282264,"citation":"Williams ET, Leyk M, Wrighton SA, Davies PJ, Loose DS, Shipley GL, Strobel HW: Estrogen regulation of the cytochrome P450 3A subfamily in humans. J Pharmacol Exp Ther. 2004 Nov;311(2):728-35. Epub 2004 Jul 28.","parent_key":"BE0002638"} {"ref-id":"A38989","pubmed-id":16537715,"citation":"Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM: Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol Biomarkers Prev. 2006 Mar;15(3):551-8. doi: 10.1158/1055-9965.EPI-05-0801.","parent_key":"BE0002433"} {"ref-id":"A17293","pubmed-id":14557374,"citation":"Egnell AC, Eriksson C, Albertson N, Houston B, Boyer S: Generation and evaluation of a CYP2C9 heteroactivation pharmacophore. J Pharmacol Exp Ther. 2003 Dec;307(3):878-87. Epub 2003 Oct 13.","parent_key":"BE0002793"} {"ref-id":"A184901","pubmed-id":12457455,"citation":"Fallo F, Pezzi V, Barzon L, Mulatero P, Veglio F, Sonino N, Mathis JM: Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas. Eur J Endocrinol. 2002 Dec;147(6):795-802.","parent_key":"BE0000731"} {"ref-id":"A184904","pubmed-id":11422109,"citation":"Takeda Y, Yoneda T, Demura M, Furukawa K, Koshida H, Miyamori I, Mabuchi H: Genetic analysis of the cytochrome P-450c17alpha (CYP17) and aldosterone synthase (CYP11B2) in Japanese patients with 17alpha-hydroxylase deficiency. Clin Endocrinol (Oxf). 2001 Jun;54(6):751-8. doi: 10.1046/j.1365-2265.2001.01272.x.","parent_key":"BE0000344"} {"ref-id":"A35728","pubmed-id":14690416,"citation":"Torimoto N, Ishii I, Hata M, Nakamura H, Imada H, Ariyoshi N, Ohmori S, Igarashi T, Kitada M: Direct interaction between substrates and endogenous steroids in the active site may change the activity of cytochrome P450 3A4. Biochemistry. 2003 Dec 30;42(51):15068-77. doi: 10.1021/bi034409n.","parent_key":"BE0002638"} {"ref-id":"A35729","pubmed-id":20177008,"citation":"Maron BA, Leopold JA: Aldosterone receptor antagonists: effective but often forgotten. Circulation. 2010 Feb 23;121(7):934-9. doi: 10.1161/CIRCULATIONAHA.109.895235.","parent_key":"BE0002638"} {"ref-id":"A35757","pubmed-id":28930203,"citation":"Manda VK, Avula B, Dale OR, Chittiboyina AG, Khan IA, Walker LA, Khan SI: Studies on Pharmacokinetic Drug Interaction Potential of Vinpocetine. Medicines (Basel). 2015 Jun 5;2(2):93-105. doi: 10.3390/medicines2020093.","parent_key":"BE0002638"} {"ref-id":"A34256","pubmed-id":10950859,"citation":"Kajita J, Kuwabara T, Kobayashi H, Kobayashi S: CYP3A4 is mainly responsibile for the metabolism of a new vinca alkaloid, vinorelbine, in human liver microsomes. Drug Metab Dispos. 2000 Sep;28(9):1121-7.","parent_key":"BE0002638"} {"ref-id":"A39471","pubmed-id":18268076,"citation":"Albrecht W, Unger A, Nussler AK, Laufer S: In vitro metabolism of 2-[6-(4-chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid (licofelone, ML3000), an inhibitor of cyclooxygenase-1 and -2 and 5-lipoxygenase. Drug Metab Dispos. 2008 May;36(5):894-903. doi: 10.1124/dmd.108.020347. Epub 2008 Feb 11.","parent_key":"BE0002887"} {"ref-id":"A39168","pubmed-id":17344806,"citation":"Saussele T, Burk O, Blievernicht JK, Klein K, Nussler A, Nussler N, Hengstler JG, Eichelbaum M, Schwab M, Zanger UM: Selective induction of human hepatic cytochromes P450 2B6 and 3A4 by metamizole. Clin Pharmacol Ther. 2007 Sep;82(3):265-74. doi: 10.1038/sj.clpt.6100138. Epub 2007 Mar 7.","parent_key":"BE0003549"} {"ref-id":"A39168","pubmed-id":17344806,"citation":"Saussele T, Burk O, Blievernicht JK, Klein K, Nussler A, Nussler N, Hengstler JG, Eichelbaum M, Schwab M, Zanger UM: Selective induction of human hepatic cytochromes P450 2B6 and 3A4 by metamizole. Clin Pharmacol Ther. 2007 Sep;82(3):265-74. doi: 10.1038/sj.clpt.6100138. Epub 2007 Mar 7.","parent_key":"BE0002638"} {"ref-id":"A36471","pubmed-id":16669850,"citation":"Polasek TM, Elliot DJ, Somogyi AA, Gillam EM, Lewis BC, Miners JO: An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. Br J Clin Pharmacol. 2006 May;61(5):570-84. doi: 10.1111/j.1365-2125.2006.02627.x.","parent_key":"BE0002793"} {"ref-id":"A17643","pubmed-id":6689178,"citation":"Sugihara K, Kitamura S, Tatsumi K: Involvement of liver aldehyde oxidase in conversion of N-hydroxyurethane to urethane. J Pharmacobiodyn. 1983 Sep;6(9):677-83.","parent_key":"BE0003539"} {"ref-id":"A38785","pubmed-id":16251255,"citation":"Chen Q, Doss GA, Tung EC, Liu W, Tang YS, Braun MP, Didolkar V, Strauss JR, Wang RW, Stearns RA, Evans DC, Baillie TA, Tang W: Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats. Drug Metab Dispos. 2006 Jan;34(1):145-51. doi: 10.1124/dmd.105.004341. Epub 2005 Oct 26.","parent_key":"BE0002638"} {"ref-id":"A39317","pubmed-id":18454322,"citation":"Yu AM: Indolealkylamines: biotransformations and potential drug-drug interactions. AAPS J. 2008 Jun;10(2):242-53. doi: 10.1208/s12248-008-9028-5. Epub 2008 May 3.","parent_key":"BE0002363"} {"ref-id":"A184907","pubmed-id":12900872,"citation":"Prost F, Thormann W: Assessment of the stereoselective metabolism of methaqualone in man by capillary electrophoresis. Electrophoresis. 2003 Aug;24(15):2598-607. doi: 10.1002/elps.200305512.","parent_key":"BE0002638"} {"ref-id":"A15013","pubmed-id":19704163,"citation":"Abel S, Back DJ, Vourvahis M: Maraviroc: pharmacokinetics and drug interactions. Antivir Ther. 2009;14(5):607-18.","parent_key":"BE0002638"} {"ref-id":"A15014","pubmed-id":18333864,"citation":"Abel S, Jenkins TM, Whitlock LA, Ridgway CE, Muirhead GJ: Effects of CYP3A4 inducers with and without CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers. Br J Clin Pharmacol. 2008 Apr;65 Suppl 1:38-46. doi: 10.1111/j.1365-2125.2008.03134.x.","parent_key":"BE0002638"} {"ref-id":"A15015","pubmed-id":21080015,"citation":"Mannu J, Jenardhanan P, Mathur PP: A computational study of CYP3A4 mediated drug interaction profiles for anti-HIV drugs. J Mol Model. 2011 Aug;17(8):1847-54. doi: 10.1007/s00894-010-0890-6. Epub 2010 Nov 16.","parent_key":"BE0002638"} {"ref-id":"A20331","pubmed-id":26327902,"citation":"Binkowska M, Woron J: Progestogens in menopausal hormone therapy. Prz Menopauzalny. 2015 Jun;14(2):134-43. doi: 10.5114/pm.2015.52154. Epub 2015 Jun 22.","parent_key":"BE0002638"} {"ref-id":"A184049","pubmed-id":12023534,"citation":"Granvil CP, Krausz KW, Gelboin HV, Idle JR, Gonzalez FJ: 4-Hydroxylation of debrisoquine by human CYP1A1 and its inhibition by quinidine and quinine. J Pharmacol Exp Ther. 2002 Jun;301(3):1025-32. doi: 10.1124/jpet.301.3.1025.","parent_key":"BE0003543"} {"ref-id":"A37589","pubmed-id":8951176,"citation":"Kariya S, Isozaki S, Uchino K, Suzuki T, Narimatsu S: Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol Pharm Bull. 1996 Nov;19(11):1511-4. doi: 10.1248/bpb.19.1511.","parent_key":"BE0002363"} {"ref-id":"A15658","pubmed-id":20442355,"citation":"Poon LH, Kang GA, Lee AJ: Role of tetrabenazine for Huntington's disease-associated chorea. Ann Pharmacother. 2010 Jun;44(6):1080-9. doi: 10.1345/aph.1M582. Epub 2010 May 4.","parent_key":"BE0002363"} {"ref-id":"A15689","pubmed-id":18451235,"citation":"Goel S, Cohen M, Comezoglu SN, Perrin L, Andre F, Jayabalan D, Iacono L, Comprelli A, Ly VT, Zhang D, Xu C, Humphreys WG, McDaid H, Goldberg G, Horwitz SB, Mani S: The effect of ketoconazole on the pharmacokinetics and pharmacodynamics of ixabepilone: a first in class epothilone B analogue in late-phase clinical development. Clin Cancer Res. 2008 May 1;14(9):2701-9. doi: 10.1158/1078-0432.CCR-07-4151.","parent_key":"BE0002638"} {"ref-id":"A15682","pubmed-id":20472816,"citation":"Dorian P: Clinical pharmacology of dronedarone: implications for the therapy of atrial fibrillation. J Cardiovasc Pharmacol Ther. 2010 Dec;15(4 Suppl):15S-8S. doi: 10.1177/1074248410367792. Epub 2010 May 14.","parent_key":"BE0002638"} {"ref-id":"A15659","pubmed-id":20074258,"citation":"Schafer JA, Kjesbo NK, Gleason PP: Dronedarone: current evidence and future questions. Cardiovasc Ther. 2010 Spring;28(1):38-47. doi: 10.1111/j.1755-5922.2009.00112.x.","parent_key":"BE0002638"} {"ref-id":"A2749","pubmed-id":22971242,"citation":"De Ferrari GM, Dusi V: Drug safety evaluation of dronedarone in atrial fibrillation. Expert Opin Drug Saf. 2012 Nov;11(6):1023-45. doi: 10.1517/14740338.2012.722994. Epub 2012 Sep 13.","parent_key":"BE0002638"} {"ref-id":"A15659","pubmed-id":20074258,"citation":"Schafer JA, Kjesbo NK, Gleason PP: Dronedarone: current evidence and future questions. Cardiovasc Ther. 2010 Spring;28(1):38-47. doi: 10.1111/j.1755-5922.2009.00112.x.","parent_key":"BE0002363"} {"ref-id":"A2749","pubmed-id":22971242,"citation":"De Ferrari GM, Dusi V: Drug safety evaluation of dronedarone in atrial fibrillation. Expert Opin Drug Saf. 2012 Nov;11(6):1023-45. doi: 10.1517/14740338.2012.722994. Epub 2012 Sep 13.","parent_key":"BE0002363"} {"ref-id":"A186107","pubmed-id":28942006,"citation":"Kim MS, Baek IH: Effect of dronedarone on the pharmacokinetics of carvedilol following oral administration to rats. Eur J Pharm Sci. 2018 Jan 1;111:13-19. doi: 10.1016/j.ejps.2017.09.029. Epub 2017 Sep 20.","parent_key":"BE0002363"} {"ref-id":"A186110","pubmed-id":25505590,"citation":"Klieber S, Arabeyre-Fabre C, Moliner P, Marti E, Mandray M, Ngo R, Ollier C, Brun P, Fabre G: Identification of metabolic pathways and enzyme systems involved in the in vitro human hepatic metabolism of dronedarone, a potent new oral antiarrhythmic drug. Pharmacol Res Perspect. 2014 Jun;2(3):e00044. doi: 10.1002/prp2.44. Epub 2014 Apr 22.","parent_key":"BE0002363"} {"ref-id":"A186110","pubmed-id":25505590,"citation":"Klieber S, Arabeyre-Fabre C, Moliner P, Marti E, Mandray M, Ngo R, Ollier C, Brun P, Fabre G: Identification of metabolic pathways and enzyme systems involved in the in vitro human hepatic metabolism of dronedarone, a potent new oral antiarrhythmic drug. Pharmacol Res Perspect. 2014 Jun;2(3):e00044. doi: 10.1002/prp2.44. Epub 2014 Apr 22.","parent_key":"BE0002362"} {"ref-id":"A186185","pubmed-id":26490246,"citation":"Hong Y, Chia YM, Yeo RH, Venkatesan G, Koh SK, Chai CL, Zhou L, Kojodjojo P, Chan EC: Inactivation of Human Cytochrome P450 3A4 and 3A5 by Dronedarone and N-Desbutyl Dronedarone. Mol Pharmacol. 2016 Jan;89(1):1-13. doi: 10.1124/mol.115.100891. Epub 2015 Oct 21.","parent_key":"BE0002362"} {"ref-id":"A15213","pubmed-id":15108219,"citation":"Hall M, Persiani S, Cheung YL, Matthews A, Cybulski ZR, Holding JD, Kapil R, D'Amato M, Makovec F, Rovati LC: Interaction of dexloxiglumide, a cholecystokinin type-1 receptor antagonist, with human cytochromes P450. Biopharm Drug Dispos. 2004 May;25(4):163-76.","parent_key":"BE0002362"} {"ref-id":"A15213","pubmed-id":15108219,"citation":"Hall M, Persiani S, Cheung YL, Matthews A, Cybulski ZR, Holding JD, Kapil R, D'Amato M, Makovec F, Rovati LC: Interaction of dexloxiglumide, a cholecystokinin type-1 receptor antagonist, with human cytochromes P450. Biopharm Drug Dispos. 2004 May;25(4):163-76.","parent_key":"BE0002638"} {"ref-id":"A185810","pubmed-id":16236040,"citation":"Jakate AS, Roy P, Patel A, Abramowitz W, Persiani S, Wangsa J, Kapil R: Effect of azole antifungals ketoconazole and fluconazole on the pharmacokinetics of dexloxiglumide. Br J Clin Pharmacol. 2005 Nov;60(5):498-507. doi: 10.1111/j.1365-2125.2005.02465.x.","parent_key":"BE0002638"} {"ref-id":"A15213","pubmed-id":15108219,"citation":"Hall M, Persiani S, Cheung YL, Matthews A, Cybulski ZR, Holding JD, Kapil R, D'Amato M, Makovec F, Rovati LC: Interaction of dexloxiglumide, a cholecystokinin type-1 receptor antagonist, with human cytochromes P450. Biopharm Drug Dispos. 2004 May;25(4):163-76.","parent_key":"BE0002793"} {"ref-id":"A15213","pubmed-id":15108219,"citation":"Hall M, Persiani S, Cheung YL, Matthews A, Cybulski ZR, Holding JD, Kapil R, D'Amato M, Makovec F, Rovati LC: Interaction of dexloxiglumide, a cholecystokinin type-1 receptor antagonist, with human cytochromes P450. Biopharm Drug Dispos. 2004 May;25(4):163-76.","parent_key":"BE0003549"} {"ref-id":"A185810","pubmed-id":16236040,"citation":"Jakate AS, Roy P, Patel A, Abramowitz W, Persiani S, Wangsa J, Kapil R: Effect of azole antifungals ketoconazole and fluconazole on the pharmacokinetics of dexloxiglumide. Br J Clin Pharmacol. 2005 Nov;60(5):498-507. doi: 10.1111/j.1365-2125.2005.02465.x.","parent_key":"BE0003549"} {"ref-id":"A15213","pubmed-id":15108219,"citation":"Hall M, Persiani S, Cheung YL, Matthews A, Cybulski ZR, Holding JD, Kapil R, D'Amato M, Makovec F, Rovati LC: Interaction of dexloxiglumide, a cholecystokinin type-1 receptor antagonist, with human cytochromes P450. Biopharm Drug Dispos. 2004 May;25(4):163-76.","parent_key":"BE0003533"} {"ref-id":"A17850","pubmed-id":7710944,"citation":"Khan S, O'Brien PJ: Molecular mechanisms of tirapazamine (SR 4233, Win 59075)-induced hepatocyte toxicity under low oxygen concentrations. Br J Cancer. 1995 Apr;71(4):780-5.","parent_key":"BE0003533"} {"ref-id":"A2762","pubmed-id":16961165,"citation":"Gielen W, Cleophas TJ, Agrawal R: Nebivolol: a review of its clinical and pharmacological characteristics. Int J Clin Pharmacol Ther. 2006 Aug;44(8):344-57.","parent_key":"BE0002363"} {"ref-id":"A39969","pubmed-id":20095790,"citation":"Hocht C, Bertera FM, Mayer MA, Taira CA: Issues in drug metabolism of major antihypertensive drugs: beta-blockers, calcium channel antagonists and angiotensin receptor blockers. Expert Opin Drug Metab Toxicol. 2010 Feb;6(2):199-211. doi: 10.1517/17425250903397381.","parent_key":"BE0002638"} {"ref-id":"A183038","pubmed-id":27538917,"citation":"Hu X, Lan T, Dai D, Xu RA, Yuan L, Zhou Q, Li Y, Cai J, Hu G: Evaluation of 24 CYP2D6 Variants on the Metabolism of Nebivolol In Vitro. Drug Metab Dispos. 2016 Nov;44(11):1828-1831. doi: 10.1124/dmd.116.071811. Epub 2016 Aug 18.","parent_key":"BE0003536"} {"ref-id":"A15690","pubmed-id":20702754,"citation":"Tanaka C, Yin OQ, Smith T, Sethuraman V, Grouss K, Galitz L, Harrell R, Schran H: Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol. 2011 Jan;51(1):75-83. doi: 10.1177/0091270010367428. Epub 2010 Aug 11.","parent_key":"BE0002638"} {"ref-id":"A15660","pubmed-id":20810928,"citation":"Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA: Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87. doi: 10.1182/blood-2010-07-294330. Epub 2010 Sep 1.","parent_key":"BE0002638"} {"ref-id":"A15691","pubmed-id":20110053,"citation":"Yin OQ, Gallagher N, Tanaka C, Fisher D, Sethuraman V, Zhou W, Lin TH, Heuman D, Schran H: Effects of hepatic impairment on the pharmacokinetics of nilotinib: an open-label, single-dose, parallel-group study. Clin Ther. 2009;31 Pt 2:2459-69. doi: 10.1016/j.clinthera.2009.11.015.","parent_key":"BE0002638"} {"ref-id":"A15661","pubmed-id":19108785,"citation":"Deremer DL, Ustun C, Natarajan K: Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther. 2008 Nov;30(11):1956-75. doi: 10.1016/j.clinthera.2008.11.014.","parent_key":"BE0002638"} {"ref-id":"A15660","pubmed-id":20810928,"citation":"Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA: Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87. doi: 10.1182/blood-2010-07-294330. Epub 2010 Sep 1.","parent_key":"BE0002887"} {"ref-id":"A15661","pubmed-id":19108785,"citation":"Deremer DL, Ustun C, Natarajan K: Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther. 2008 Nov;30(11):1956-75. doi: 10.1016/j.clinthera.2008.11.014.","parent_key":"BE0002887"} {"ref-id":"A15661","pubmed-id":19108785,"citation":"Deremer DL, Ustun C, Natarajan K: Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther. 2008 Nov;30(11):1956-75. doi: 10.1016/j.clinthera.2008.11.014.","parent_key":"BE0002793"} {"ref-id":"A15660","pubmed-id":20810928,"citation":"Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA: Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87. doi: 10.1182/blood-2010-07-294330. Epub 2010 Sep 1.","parent_key":"BE0002363"} {"ref-id":"A15661","pubmed-id":19108785,"citation":"Deremer DL, Ustun C, Natarajan K: Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther. 2008 Nov;30(11):1956-75. doi: 10.1016/j.clinthera.2008.11.014.","parent_key":"BE0002363"} {"ref-id":"A15660","pubmed-id":20810928,"citation":"Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA: Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87. doi: 10.1182/blood-2010-07-294330. Epub 2010 Sep 1.","parent_key":"BE0003549"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0002433"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0003336"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0003549"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0003536"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0002363"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0002638"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0003609"} {"ref-id":"A17926","pubmed-id":22266842,"citation":"Usmani KA, Chen WG, Sadeque AJ: Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012 Apr;40(4):761-71. doi: 10.1124/dmd.111.043414. Epub 2012 Jan 20.","parent_key":"BE0003543"} {"ref-id":"A37689","pubmed-id":23024705,"citation":"McMahon CG: Dapoxetine: a new option in the medical management of premature ejaculation. Ther Adv Urol. 2012 Oct;4(5):233-51. doi: 10.1177/1756287212453866.","parent_key":"BE0002638"} {"ref-id":"A37689","pubmed-id":23024705,"citation":"McMahon CG: Dapoxetine: a new option in the medical management of premature ejaculation. Ther Adv Urol. 2012 Oct;4(5):233-51. doi: 10.1177/1756287212453866.","parent_key":"BE0002363"} {"ref-id":"A185369","pubmed-id":28769808,"citation":"Wu X, Zhang Q, Guo J, Jia Y, Zhang Z, Zhao M, Yang Y, Wang B, Hu J, Sheng L, Li Y: Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol. Front Pharmacol. 2017 Jul 19;8:479. doi: 10.3389/fphar.2017.00479. eCollection 2017.","parent_key":"BE0002638"} {"ref-id":"A2835","pubmed-id":17881661,"citation":"Erickson DA, Hollfelder S, Tenge J, Gohdes M, Burkhardt JJ, Krieter PA: In vitro metabolism of the analgesic bicifadine in the mouse, rat, monkey, and human. Drug Metab Dispos. 2007 Dec;35(12):2232-41. Epub 2007 Sep 19.","parent_key":"BE0002363"} {"ref-id":"A2835","pubmed-id":17881661,"citation":"Erickson DA, Hollfelder S, Tenge J, Gohdes M, Burkhardt JJ, Krieter PA: In vitro metabolism of the analgesic bicifadine in the mouse, rat, monkey, and human. Drug Metab Dispos. 2007 Dec;35(12):2232-41. Epub 2007 Sep 19.","parent_key":"BE0002433"} {"ref-id":"A37702","pubmed-id":19608694,"citation":"Paris BL, Ogilvie BW, Scheinkoenig JA, Ndikum-Moffor F, Gibson R, Parkinson A: In vitro inhibition and induction of human liver cytochrome p450 enzymes by milnacipran. Drug Metab Dispos. 2009 Oct;37(10):2045-54. doi: 10.1124/dmd.109.028274. Epub 2009 Jul 16.","parent_key":"BE0002638"} {"ref-id":"A2914","pubmed-id":10755318,"citation":"Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304.","parent_key":"BE0002638"} {"ref-id":"A2914","pubmed-id":10755318,"citation":"Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304.","parent_key":"BE0002363"} {"ref-id":"A2914","pubmed-id":10755318,"citation":"Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304.","parent_key":"BE0003543"} {"ref-id":"A2922","pubmed-id":26412054,"citation":"Deeks ED: Flibanserin: First Global Approval. Drugs. 2015 Oct;75(15):1815-22. doi: 10.1007/s40265-015-0474-y.","parent_key":"BE0002638"} {"ref-id":"A185297","pubmed-id":25673895,"citation":"Cada DJ, Baker DE: Oritavancin diphosphate. Hosp Pharm. 2014 Dec;49(11):1049-60. doi: 10.1310/hjp4911-1049.","parent_key":"BE0002363"} {"ref-id":"A185303","pubmed-id":26831328,"citation":"Brade KD, Rybak JM, Rybak MJ: Oritavancin: A New Lipoglycopeptide Antibiotic in the Treatment of Gram-Positive Infections. Infect Dis Ther. 2016 Mar;5(1):1-15. doi: 10.1007/s40121-016-0103-4. Epub 2016 Feb 1.","parent_key":"BE0002363"} {"ref-id":"A39384","pubmed-id":29491695,"citation":"Rosenthal S, Decano AG, Bandali A, Lai D, Malat GE, Bias TE: Oritavancin (Orbactiv): A New-Generation Lipoglycopeptide for the Treatment Of Acute Bacterial Skin and Skin Structure Infections. P T. 2018 Mar;43(3):143-179.","parent_key":"BE0002793"} {"ref-id":"A185297","pubmed-id":25673895,"citation":"Cada DJ, Baker DE: Oritavancin diphosphate. Hosp Pharm. 2014 Dec;49(11):1049-60. doi: 10.1310/hjp4911-1049.","parent_key":"BE0002793"} {"ref-id":"A185303","pubmed-id":26831328,"citation":"Brade KD, Rybak JM, Rybak MJ: Oritavancin: A New Lipoglycopeptide Antibiotic in the Treatment of Gram-Positive Infections. Infect Dis Ther. 2016 Mar;5(1):1-15. doi: 10.1007/s40121-016-0103-4. Epub 2016 Feb 1.","parent_key":"BE0003536"} {"ref-id":"A185297","pubmed-id":25673895,"citation":"Cada DJ, Baker DE: Oritavancin diphosphate. Hosp Pharm. 2014 Dec;49(11):1049-60. doi: 10.1310/hjp4911-1049.","parent_key":"BE0003536"} {"ref-id":"A2957","pubmed-id":16501008,"citation":"Zhang JG, Dehal SS, Ho T, Johnson J, Chandler C, Blanchard AP, Clark RJ Jr, Crespi CL, Stresser DM, Wong J: Human cytochrome p450 induction and inhibition potential of clevidipine and its primary metabolite h152/81. Drug Metab Dispos. 2006 May;34(5):734-7. Epub 2006 Feb 24.","parent_key":"BE0002793"} {"ref-id":"A2957","pubmed-id":16501008,"citation":"Zhang JG, Dehal SS, Ho T, Johnson J, Chandler C, Blanchard AP, Clark RJ Jr, Crespi CL, Stresser DM, Wong J: Human cytochrome p450 induction and inhibition potential of clevidipine and its primary metabolite h152/81. Drug Metab Dispos. 2006 May;34(5):734-7. Epub 2006 Feb 24.","parent_key":"BE0002363"} {"ref-id":"A2957","pubmed-id":16501008,"citation":"Zhang JG, Dehal SS, Ho T, Johnson J, Chandler C, Blanchard AP, Clark RJ Jr, Crespi CL, Stresser DM, Wong J: Human cytochrome p450 induction and inhibition potential of clevidipine and its primary metabolite h152/81. Drug Metab Dispos. 2006 May;34(5):734-7. Epub 2006 Feb 24.","parent_key":"BE0003533"} {"ref-id":"A2957","pubmed-id":16501008,"citation":"Zhang JG, Dehal SS, Ho T, Johnson J, Chandler C, Blanchard AP, Clark RJ Jr, Crespi CL, Stresser DM, Wong J: Human cytochrome p450 induction and inhibition potential of clevidipine and its primary metabolite h152/81. Drug Metab Dispos. 2006 May;34(5):734-7. Epub 2006 Feb 24.","parent_key":"BE0002638"} {"ref-id":"A23593","pubmed-id":19326768,"citation":"Das PC, Streit TM, Cao Y, Rose RL, Cherrington N, Ross MK, Wallace AD, Hodgson E: Pyrethroids: cytotoxicity and induction of CYP isoforms in human hepatocytes. Drug Metabol Drug Interact. 2008;23(3-4):211-36.","parent_key":"BE0003549"} {"ref-id":"A184832","pubmed-id":29779438,"citation":"Hedges L, Brown S, MacLeod AK, Vardy A, Doyle E, Song G, Moreau M, Yoon M, Osimitz TG, Lake BG: Metabolism of deltamethrin and cis- and trans-permethrin by human expressed cytochrome P450 and carboxylesterase enzymes. Xenobiotica. 2019 May;49(5):521-527. doi: 10.1080/00498254.2018.1474283. Epub 2018 Jun 4.","parent_key":"BE0003549"} {"ref-id":"A184835","pubmed-id":24155662,"citation":"Gong Y, Li T, Zhang L, Gao X, Liu N: Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus. Int J Biol Sci. 2013 Sep 5;9(9):863-71. doi: 10.7150/ijbs.6744. eCollection 2013.","parent_key":"BE0003549"} {"ref-id":"A2994","pubmed-id":10923859,"citation":"Mae T, Inaba T, Konishi E, Hosoe K, Hidaka T: Identification of enzymes responsible for rifalazil metabolism in human liver microsomes. Xenobiotica. 2000 Jun;30(6):565-74.","parent_key":"BE0002638"} {"ref-id":"A3004","pubmed-id":23729558,"citation":"Tolonen A, Koskimies P, Turpeinen M, Uusitalo J, Lammintausta R, Pelkonen O: Ospemifene metabolism in humans in vitro and in vivo: metabolite identification, quantitation, and CYP assignment of major hydroxylations. Drug Metabol Drug Interact. 2013;28(3):153-61. doi: 10.1515/dmdi-2013-0016.","parent_key":"BE0002638"} {"ref-id":"A3004","pubmed-id":23729558,"citation":"Tolonen A, Koskimies P, Turpeinen M, Uusitalo J, Lammintausta R, Pelkonen O: Ospemifene metabolism in humans in vitro and in vivo: metabolite identification, quantitation, and CYP assignment of major hydroxylations. Drug Metabol Drug Interact. 2013;28(3):153-61. doi: 10.1515/dmdi-2013-0016.","parent_key":"BE0002793"} {"ref-id":"A3004","pubmed-id":23729558,"citation":"Tolonen A, Koskimies P, Turpeinen M, Uusitalo J, Lammintausta R, Pelkonen O: Ospemifene metabolism in humans in vitro and in vivo: metabolite identification, quantitation, and CYP assignment of major hydroxylations. Drug Metabol Drug Interact. 2013;28(3):153-61. doi: 10.1515/dmdi-2013-0016.","parent_key":"BE0003536"} {"ref-id":"A3004","pubmed-id":23729558,"citation":"Tolonen A, Koskimies P, Turpeinen M, Uusitalo J, Lammintausta R, Pelkonen O: Ospemifene metabolism in humans in vitro and in vivo: metabolite identification, quantitation, and CYP assignment of major hydroxylations. Drug Metabol Drug Interact. 2013;28(3):153-61. doi: 10.1515/dmdi-2013-0016.","parent_key":"BE0003549"} {"ref-id":"A15656","pubmed-id":9732390,"citation":"Mutlib AE, Klein JT: Application of liquid chromatography/mass spectrometry in accelerating the identification of human liver cytochrome P450 isoforms involved in the metabolism of iloperidone. J Pharmacol Exp Ther. 1998 Sep;286(3):1285-93.","parent_key":"BE0002363"} {"ref-id":"A3024","pubmed-id":21034370,"citation":"Citrome L: Iloperidone: chemistry, pharmacodynamics, pharmacokinetics and metabolism, clinical efficacy, safety and tolerability, regulatory affairs, and an opinion. Expert Opin Drug Metab Toxicol. 2010 Dec;6(12):1551-64. doi: 10.1517/17425255.2010.531259. Epub 2010 Nov 1.","parent_key":"BE0002363"} {"ref-id":"A15656","pubmed-id":9732390,"citation":"Mutlib AE, Klein JT: Application of liquid chromatography/mass spectrometry in accelerating the identification of human liver cytochrome P450 isoforms involved in the metabolism of iloperidone. J Pharmacol Exp Ther. 1998 Sep;286(3):1285-93.","parent_key":"BE0002638"} {"ref-id":"A3024","pubmed-id":21034370,"citation":"Citrome L: Iloperidone: chemistry, pharmacodynamics, pharmacokinetics and metabolism, clinical efficacy, safety and tolerability, regulatory affairs, and an opinion. Expert Opin Drug Metab Toxicol. 2010 Dec;6(12):1551-64. doi: 10.1517/17425255.2010.531259. Epub 2010 Nov 1.","parent_key":"BE0002638"} {"ref-id":"A15656","pubmed-id":9732390,"citation":"Mutlib AE, Klein JT: Application of liquid chromatography/mass spectrometry in accelerating the identification of human liver cytochrome P450 isoforms involved in the metabolism of iloperidone. J Pharmacol Exp Ther. 1998 Sep;286(3):1285-93.","parent_key":"BE0002362"} {"ref-id":"A15656","pubmed-id":9732390,"citation":"Mutlib AE, Klein JT: Application of liquid chromatography/mass spectrometry in accelerating the identification of human liver cytochrome P450 isoforms involved in the metabolism of iloperidone. J Pharmacol Exp Ther. 1998 Sep;286(3):1285-93.","parent_key":"BE0003612"} {"ref-id":"A15656","pubmed-id":9732390,"citation":"Mutlib AE, Klein JT: Application of liquid chromatography/mass spectrometry in accelerating the identification of human liver cytochrome P450 isoforms involved in the metabolism of iloperidone. J Pharmacol Exp Ther. 1998 Sep;286(3):1285-93.","parent_key":"BE0003533"} {"ref-id":"A39044","pubmed-id":24636270,"citation":"Arai T, Inoue Y, Sasaki Y, Tachibana K, Nakao K, Sugimoto C, Okuma T, Akira M, Kitaichi M, Hayashi S: Predictors of the clinical effects of pirfenidone on idiopathic pulmonary fibrosis. Respir Investig. 2014 Mar;52(2):136-43. doi: 10.1016/j.resinv.2013.09.002. Epub 2013 Oct 24.","parent_key":"BE0002433"} {"ref-id":"A17814","pubmed-id":10220490,"citation":"Hiller A, Nguyen N, Strassburg CP, Li Q, Jainta H, Pechstein B, Ruus P, Engel J, Tukey RH, Kronbach T: Retigabine N-glucuronidation and its potential role in enterohepatic circulation. Drug Metab Dispos. 1999 May;27(5):605-12.","parent_key":"BE0003677"} {"ref-id":"A17814","pubmed-id":10220490,"citation":"Hiller A, Nguyen N, Strassburg CP, Li Q, Jainta H, Pechstein B, Ruus P, Engel J, Tukey RH, Kronbach T: Retigabine N-glucuronidation and its potential role in enterohepatic circulation. Drug Metab Dispos. 1999 May;27(5):605-12.","parent_key":"BE0003538"} {"ref-id":"A3068","pubmed-id":16052551,"citation":"Riley P, Figary PC, Entwisle JR, Roe AL, Thompson GA, Ohashi R, Ohashi N, Moorehead TJ: The metabolic profile of azimilide in man: in vivo and in vitro evaluations. J Pharm Sci. 2005 Sep;94(9):2084-95.","parent_key":"BE0003543"} {"ref-id":"A3068","pubmed-id":16052551,"citation":"Riley P, Figary PC, Entwisle JR, Roe AL, Thompson GA, Ohashi R, Ohashi N, Moorehead TJ: The metabolic profile of azimilide in man: in vivo and in vitro evaluations. J Pharm Sci. 2005 Sep;94(9):2084-95.","parent_key":"BE0002638"} {"ref-id":"A3068","pubmed-id":16052551,"citation":"Riley P, Figary PC, Entwisle JR, Roe AL, Thompson GA, Ohashi R, Ohashi N, Moorehead TJ: The metabolic profile of azimilide in man: in vivo and in vitro evaluations. J Pharm Sci. 2005 Sep;94(9):2084-95.","parent_key":"BE0002362"} {"ref-id":"A3068","pubmed-id":16052551,"citation":"Riley P, Figary PC, Entwisle JR, Roe AL, Thompson GA, Ohashi R, Ohashi N, Moorehead TJ: The metabolic profile of azimilide in man: in vivo and in vitro evaluations. J Pharm Sci. 2005 Sep;94(9):2084-95.","parent_key":"BE0002363"} {"ref-id":"A17590","pubmed-id":16410820,"citation":"Yakkundi A, McErlane V, Murray M, McCarthy HO, Ward C, Hughes CM, Patterson LH, Hirst DG, McKeown SR, Robson T: Tumor-selective drug activation: a GDEPT approach utilizing cytochrome P450 1A1 and AQ4N. Cancer Gene Ther. 2006 Jun;13(6):598-605.","parent_key":"BE0003543"} {"ref-id":"A17589","pubmed-id":12489027,"citation":"McCarthy HO, Yakkundi A, McErlane V, Hughes CM, Keilty G, Murray M, Patterson LH, Hirst DG, McKeown SR, Robson T: Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther. 2003 Jan;10(1):40-8.","parent_key":"BE0002638"} {"ref-id":"A17590","pubmed-id":16410820,"citation":"Yakkundi A, McErlane V, Murray M, McCarthy HO, Ward C, Hughes CM, Patterson LH, Hirst DG, McKeown SR, Robson T: Tumor-selective drug activation: a GDEPT approach utilizing cytochrome P450 1A1 and AQ4N. Cancer Gene Ther. 2006 Jun;13(6):598-605.","parent_key":"BE0003549"} {"ref-id":"A3112","pubmed-id":15712360,"citation":"McErlane V, Yakkundi A, McCarthy HO, Hughes CM, Patterson LH, Hirst DG, Robson T, McKeown SR: A cytochrome P450 2B6 meditated gene therapy strategy to enhance the effects of radiation or cyclophosphamide when combined with the bioreductive drug AQ4N. J Gene Med. 2005 Jul;7(7):851-9.","parent_key":"BE0003549"} {"ref-id":"A3131","pubmed-id":16633717,"citation":"Brandon EF, Sparidans RW, van Ooijen RD, Meijerman I, Lazaro LL, Manzanares I, Beijnen JH, Schellens JH: In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Invest New Drugs. 2007 Feb;25(1):9-19.","parent_key":"BE0002638"} {"ref-id":"A3131","pubmed-id":16633717,"citation":"Brandon EF, Sparidans RW, van Ooijen RD, Meijerman I, Lazaro LL, Manzanares I, Beijnen JH, Schellens JH: In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Invest New Drugs. 2007 Feb;25(1):9-19.","parent_key":"BE0003336"} {"ref-id":"A3131","pubmed-id":16633717,"citation":"Brandon EF, Sparidans RW, van Ooijen RD, Meijerman I, Lazaro LL, Manzanares I, Beijnen JH, Schellens JH: In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Invest New Drugs. 2007 Feb;25(1):9-19.","parent_key":"BE0003533"} {"ref-id":"A3131","pubmed-id":16633717,"citation":"Brandon EF, Sparidans RW, van Ooijen RD, Meijerman I, Lazaro LL, Manzanares I, Beijnen JH, Schellens JH: In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Invest New Drugs. 2007 Feb;25(1):9-19.","parent_key":"BE0000421"} {"ref-id":"A39045","pubmed-id":26424199,"citation":"Yu J, Ritchie TK, Zhou Z, Ragueneau-Majlessi I: Key Findings from Preclinical and Clinical Drug Interaction Studies Presented in New Drug and Biological License Applications Approved by the Food and Drug Administration in 2014. Drug Metab Dispos. 2016 Jan;44(1):83-101. doi: 10.1124/dmd.115.066720. Epub 2015 Sep 30.","parent_key":"BE0002433"} {"ref-id":"A183719","pubmed-id":30629861,"citation":"Kong R, Laskin OL, Kaushik D, Jin F, Ma J, McIntosh J, Souza M, Almstead N: Ataluren Pharmacokinetics in Healthy Japanese and Caucasian Subjects. Clin Pharmacol Drug Dev. 2019 Feb;8(2):172-178. doi: 10.1002/cpdd.645. Epub 2019 Jan 10.","parent_key":"BE0003538"} {"ref-id":"A184220","pubmed-id":19426702,"citation":"Vermeir M, Hemeryck A, Cuyckens F, Francesch A, Bockx M, Van Houdt J, Steemans K, Mannens G, Aviles P, De Coster R: In vitro studies on the metabolism of trabectedin (YONDELIS) in monkey and man, including human CYP reaction phenotyping. Biochem Pharmacol. 2009 May 15;77(10):1642-54. doi: 10.1016/j.bcp.2009.02.020. Epub 2009 Mar 10.","parent_key":"BE0002638"} {"ref-id":"A31363","pubmed-id":25100135,"citation":"Machiels JP, Staddon A, Herremans C, Keung C, Bernard A, Phelps C, Khokhar NZ, Knoblauch R, Parekh TV, Dirix L, Sharma S: Impact of cytochrome P450 3A4 inducer and inhibitor on the pharmacokinetics of trabectedin in patients with advanced malignancies: open-label, multicenter studies. Cancer Chemother Pharmacol. 2014 Oct;74(4):729-37. doi: 10.1007/s00280-014-2554-1. Epub 2014 Aug 7.","parent_key":"BE0002638"} {"ref-id":"A38709","pubmed-id":16162970,"citation":"Brandon EF, Meijerman I, Klijn JS, den Arend D, Sparidans RW, Lazaro LL, Beijnen JH, Schellens JH: In-vitro cytotoxicity of ET-743 (Trabectedin, Yondelis), a marine anti-cancer drug, in the Hep G2 cell line: influence of cytochrome P450 and phase II inhibition, and cytochrome P450 induction. Anticancer Drugs. 2005 Oct;16(9):935-43.","parent_key":"BE0002793"} {"ref-id":"A184226","pubmed-id":18191164,"citation":"Lee JK, Leslie EM, Zamek-Gliszczynski MJ, Brouwer KL: Modulation of trabectedin (ET-743) hepatobiliary disposition by multidrug resistance-associated proteins (Mrps) may prevent hepatotoxicity. Toxicol Appl Pharmacol. 2008 Apr 1;228(1):17-23. doi: 10.1016/j.taap.2007.11.020. Epub 2007 Dec 3.","parent_key":"BE0002793"} {"ref-id":"A184226","pubmed-id":18191164,"citation":"Lee JK, Leslie EM, Zamek-Gliszczynski MJ, Brouwer KL: Modulation of trabectedin (ET-743) hepatobiliary disposition by multidrug resistance-associated proteins (Mrps) may prevent hepatotoxicity. Toxicol Appl Pharmacol. 2008 Apr 1;228(1):17-23. doi: 10.1016/j.taap.2007.11.020. Epub 2007 Dec 3.","parent_key":"BE0002363"} {"ref-id":"A184226","pubmed-id":18191164,"citation":"Lee JK, Leslie EM, Zamek-Gliszczynski MJ, Brouwer KL: Modulation of trabectedin (ET-743) hepatobiliary disposition by multidrug resistance-associated proteins (Mrps) may prevent hepatotoxicity. Toxicol Appl Pharmacol. 2008 Apr 1;228(1):17-23. doi: 10.1016/j.taap.2007.11.020. Epub 2007 Dec 3.","parent_key":"BE0003533"} {"ref-id":"A184226","pubmed-id":18191164,"citation":"Lee JK, Leslie EM, Zamek-Gliszczynski MJ, Brouwer KL: Modulation of trabectedin (ET-743) hepatobiliary disposition by multidrug resistance-associated proteins (Mrps) may prevent hepatotoxicity. Toxicol Appl Pharmacol. 2008 Apr 1;228(1):17-23. doi: 10.1016/j.taap.2007.11.020. Epub 2007 Dec 3.","parent_key":"BE0003536"} {"ref-id":"A35845","pubmed-id":21686136,"citation":"Ahlem CN, Kennedy MR, Page TM, Reading CL, White SK, McKenzie JJ, Cole PI, Stickney DR, Frincke JM: Studies of the pharmacology of 17alpha-ethynyl-androst-5-ene-3beta,7beta,17beta-triol, a synthetic anti-inflammatory androstene. Int J Clin Exp Med. 2011;4(2):119-35. Epub 2011 Apr 23.","parent_key":"BE0002638"} {"ref-id":"A17594","pubmed-id":18827466,"citation":"Fukazawa T, Yajima K, Miyamoto Y: Evaluation of drug-drug interaction potential of beraprost sodium mediated by P450 in vitro. Yakugaku Zasshi. 2008 Oct;128(10):1459-65.","parent_key":"BE0002887"} {"ref-id":"A3300","pubmed-id":26384788,"citation":"Singh A, Ruan Y, Tippett T, Narendran A: Targeted inhibition of MEK1 by cobimetinib leads to differentiation and apoptosis in neuroblastoma cells. J Exp Clin Cancer Res. 2015 Sep 18;34:104. doi: 10.1186/s13046-015-0222-x.","parent_key":"BE0002638"} {"ref-id":"A37907","pubmed-id":7640152,"citation":"Wright JD, Helsby NA, Ward SA: The role of S-mephenytoin hydroxylase (CYP2C19) in the metabolism of the antimalarial biguanides. Br J Clin Pharmacol. 1995 Apr;39(4):441-4.","parent_key":"BE0003536"} {"ref-id":"A2080","pubmed-id":18691132,"citation":"Kvernmo T, Houben J, Sylte I: Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem. 2008;8(12):1049-67.","parent_key":"BE0002363"} {"ref-id":"A38788","pubmed-id":26932927,"citation":"Goh KL, Choi MG, Hsu PI, Chun HJ, Mahachai V, Kachintorn U, Leelakusolvong S, Kim N, Rani AA, Wong BC, Wu J, Chiu CT, Shetty V, Bocobo JC, Chan MM, Lin JT: Pharmacological and Safety Profile of Dexlansoprazole: A New Proton Pump Inhibitor - Implications for Treatment of Gastroesophageal Reflux Disease in the Asia Pacific Region. J Neurogastroenterol Motil. 2016 Jul 30;22(3):355-66. doi: 10.5056/jnm15150.","parent_key":"BE0003536"} {"ref-id":"A40212","pubmed-id":11901092,"citation":"Hanioka N, Ozawa S, Jinno H, Tanaka-Kagawa T, Nishimura T, Ando M, Sawada Ji J: Interaction of irinotecan (CPT-11) and its active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) with human cytochrome P450 enzymes. Drug Metab Dispos. 2002 Apr;30(4):391-6.","parent_key":"BE0002638"} {"ref-id":"A40213","pubmed-id":17108060,"citation":"Mirkov S, Komoroski BJ, Ramirez J, Graber AY, Ratain MJ, Strom SC, Innocenti F: Effects of green tea compounds on irinotecan metabolism. Drug Metab Dispos. 2007 Feb;35(2):228-33. doi: 10.1124/dmd.106.012047. Epub 2006 Nov 15.","parent_key":"BE0002638"} {"ref-id":"A3669","pubmed-id":22180548,"citation":"Kim JJ, Culley CM, Mohammad RA: Telaprevir: an oral protease inhibitor for hepatitis C virus infection. Am J Health Syst Pharm. 2012 Jan 1;69(1):19-33. doi: 10.2146/ajhp110123.","parent_key":"BE0002638"} {"ref-id":"A17929","pubmed-id":23553423,"citation":"Kiang TK, Wilby KJ, Ensom MH: Telaprevir: clinical pharmacokinetics, pharmacodynamics, and drug-drug interactions. Clin Pharmacokinet. 2013 Jul;52(7):487-510. doi: 10.1007/s40262-013-0053-x.","parent_key":"BE0002638"} {"ref-id":"A181436","pubmed-id":31186844,"citation":"Rangnekar AS, Fontana RJ: Managing drug-drug interactions with boceprevir and telaprevir. Clin Liver Dis (Hoboken). 2012 Apr 26;1(2):36-40. doi: 10.1002/cld.10. eCollection 2012 Apr.","parent_key":"BE0002638"} {"ref-id":"A19188","pubmed-id":17908923,"citation":"Sargentini-Maier ML, Espie P, Coquette A, Stockis A: Pharmacokinetics and metabolism of 14C-brivaracetam, a novel SV2A ligand, in healthy subjects. Drug Metab Dispos. 2008 Jan;36(1):36-45. Epub 2007 Oct 1.","parent_key":"BE0002638"} {"ref-id":"A19188","pubmed-id":17908923,"citation":"Sargentini-Maier ML, Espie P, Coquette A, Stockis A: Pharmacokinetics and metabolism of 14C-brivaracetam, a novel SV2A ligand, in healthy subjects. Drug Metab Dispos. 2008 Jan;36(1):36-45. Epub 2007 Oct 1.","parent_key":"BE0003536"} {"ref-id":"A19188","pubmed-id":17908923,"citation":"Sargentini-Maier ML, Espie P, Coquette A, Stockis A: Pharmacokinetics and metabolism of 14C-brivaracetam, a novel SV2A ligand, in healthy subjects. Drug Metab Dispos. 2008 Jan;36(1):36-45. Epub 2007 Oct 1.","parent_key":"BE0003549"} {"ref-id":"A3737","pubmed-id":21859393,"citation":"Hoffmann M, Kumar G, Schafer P, Cedzik D, Capone L, Fong KL, Gu Z, Heller D, Feng H, Surapaneni S, Laskin O, Wu A: Disposition, metabolism and mass balance of [(14)C]apremilast following oral administration. Xenobiotica. 2011 Dec;41(12):1063-75. doi: 10.3109/00498254.2011.604745. Epub 2011 Aug 23.","parent_key":"BE0002638"} {"ref-id":"A181232","pubmed-id":26236137,"citation":"Zerilli T, Ocheretyaner E: Apremilast (Otezla): A New Oral Treatment for Adults With Psoriasis and Psoriatic Arthritis. P T. 2015 Aug;40(8):495-500.","parent_key":"BE0002638"} {"ref-id":"A181226","pubmed-id":27869356,"citation":"Young M, Roebuck HL: Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor: A novel treatment option for nurse practitioners treating patients with psoriatic disease. J Am Assoc Nurse Pract. 2016 Dec;28(12):683-695. doi: 10.1002/2327-6924.12428. Epub 2016 Nov 21.","parent_key":"BE0002638"} {"ref-id":"A181232","pubmed-id":26236137,"citation":"Zerilli T, Ocheretyaner E: Apremilast (Otezla): A New Oral Treatment for Adults With Psoriasis and Psoriatic Arthritis. P T. 2015 Aug;40(8):495-500.","parent_key":"BE0003336"} {"ref-id":"A181232","pubmed-id":26236137,"citation":"Zerilli T, Ocheretyaner E: Apremilast (Otezla): A New Oral Treatment for Adults With Psoriasis and Psoriatic Arthritis. P T. 2015 Aug;40(8):495-500.","parent_key":"BE0002433"} {"ref-id":"A3749","pubmed-id":10456692,"citation":"Azuma R, Komuro M, Korsch BH, Andre JC, Onnagawa O, Black SR, Mathews JM: Metabolism and disposition of GTS-21, a novel drug for Alzheimer's disease. Xenobiotica. 1999 Jul;29(7):747-62.","parent_key":"BE0002433"} {"ref-id":"A3749","pubmed-id":10456692,"citation":"Azuma R, Komuro M, Korsch BH, Andre JC, Onnagawa O, Black SR, Mathews JM: Metabolism and disposition of GTS-21, a novel drug for Alzheimer's disease. Xenobiotica. 1999 Jul;29(7):747-62.","parent_key":"BE0003533"} {"ref-id":"A38850","pubmed-id":25629144,"citation":"Authors unspecified: Trastuzumab emtansine. An inadequately assessed combination of two cytotoxic drugs. Prescrire Int. 2014 Dec;23(155):289.","parent_key":"BE0002362"} {"ref-id":"A17710","pubmed-id":17334880,"citation":"Bacsi K, Kosa JP, Borgulya G, Balla B, Lazary A, Nagy Z, Horvath C, Speer G, Lakatos P: CYP3A7*1C polymorphism, serum dehydroepiandrosterone sulfate level, and bone mineral density in postmenopausal women. Calcif Tissue Int. 2007 Mar;80(3):154-9. Epub 2007 Mar 3.","parent_key":"BE0003612"} {"ref-id":"A17711","pubmed-id":15985487,"citation":"Smit P, van Schaik RH, van der Werf M, van den Beld AW, Koper JW, Lindemans J, Pols HA, Brinkmann AO, de Jong FH, Lamberts SW: A common polymorphism in the CYP3A7 gene is associated with a nearly 50% reduction in serum dehydroepiandrosterone sulfate levels. J Clin Endocrinol Metab. 2005 Sep;90(9):5313-6. Epub 2005 Jun 28.","parent_key":"BE0003612"} {"ref-id":"A17937","pubmed-id":22714819,"citation":"Beckett RD, Rodeffer KM, Snodgrass R: Abiraterone for the treatment of metastatic castrate-resistant prostate cancer. Ann Pharmacother. 2012 Jul-Aug;46(7-8):1016-24. doi: 10.1345/aph.1Q758. Epub 2012 Jun 19.","parent_key":"BE0002638"} {"ref-id":"A17938","pubmed-id":23064959,"citation":"Chi KN, Tolcher A, Lee P, Rosen PJ, Kollmannsberger CK, Papadopoulos KP, Patnaik A, Molina A, Jiao J, Pankras C, Kaiser B, Bernard A, Tran N, Acharya M: Effect of abiraterone acetate plus prednisone on the pharmacokinetics of dextromethorphan and theophylline in patients with metastatic castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2013 Jan;71(1):237-44. doi: 10.1007/s00280-012-2001-0. Epub 2012 Oct 12.","parent_key":"BE0002363"} {"ref-id":"A187235","pubmed-id":27504016,"citation":"Monbaliu J, Gonzalez M, Bernard A, Jiao J, Sensenhauser C, Snoeys J, Stieltjes H, Wynant I, Smit JW, Chien C: In Vitro and In Vivo Drug-Drug Interaction Studies to Assess the Effect of Abiraterone Acetate, Abiraterone, and Metabolites of Abiraterone on CYP2C8 Activity. Drug Metab Dispos. 2016 Oct;44(10):1682-91. doi: 10.1124/dmd.116.070672. Epub 2016 Aug 8.","parent_key":"BE0002887"} {"ref-id":"A33199","pubmed-id":28893623,"citation":"Malikova J, Brixius-Anderko S, Udhane SS, Parween S, Dick B, Bernhardt R, Pandey AV: CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. J Steroid Biochem Mol Biol. 2017 Nov;174:192-200. doi: 10.1016/j.jsbmb.2017.09.007. Epub 2017 Sep 8.","parent_key":"BE0002433"} {"ref-id":"A33200","pubmed-id":27106175,"citation":"Benoist GE, Hendriks RJ, Mulders PF, Gerritsen WR, Somford DM, Schalken JA, van Oort IM, Burger DM, van Erp NP: Pharmacokinetic Aspects of the Two Novel Oral Drugs Used for Metastatic Castration-Resistant Prostate Cancer: Abiraterone Acetate and Enzalutamide. Clin Pharmacokinet. 2016 Nov;55(11):1369-1380. doi: 10.1007/s40262-016-0403-6.","parent_key":"BE0002433"} {"ref-id":"A17937","pubmed-id":22714819,"citation":"Beckett RD, Rodeffer KM, Snodgrass R: Abiraterone for the treatment of metastatic castrate-resistant prostate cancer. Ann Pharmacother. 2012 Jul-Aug;46(7-8):1016-24. doi: 10.1345/aph.1Q758. Epub 2012 Jun 19.","parent_key":"BE0002433"} {"ref-id":"A38606","pubmed-id":23599666,"citation":"Goldberg T, Berrios-Colon E: Abiraterone (zytiga), a novel agent for the management of castration-resistant prostate cancer. P T. 2013 Jan;38(1):23-6.","parent_key":"BE0003536"} {"ref-id":"A17937","pubmed-id":22714819,"citation":"Beckett RD, Rodeffer KM, Snodgrass R: Abiraterone for the treatment of metastatic castrate-resistant prostate cancer. Ann Pharmacother. 2012 Jul-Aug;46(7-8):1016-24. doi: 10.1345/aph.1Q758. Epub 2012 Jun 19.","parent_key":"BE0003536"} {"ref-id":"A17937","pubmed-id":22714819,"citation":"Beckett RD, Rodeffer KM, Snodgrass R: Abiraterone for the treatment of metastatic castrate-resistant prostate cancer. Ann Pharmacother. 2012 Jul-Aug;46(7-8):1016-24. doi: 10.1345/aph.1Q758. Epub 2012 Jun 19.","parent_key":"BE0002793"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0003543"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0002433"} {"ref-id":"A39289","pubmed-id":26149476,"citation":"Das M, Padda SK, Frymoyer A, Zhou L, Riess JW, Neal JW, Wakelee HA: Dovitinib and erlotinib in patients with metastatic non-small cell lung cancer: A drug-drug interaction. Lung Cancer. 2015 Sep;89(3):280-6. doi: 10.1016/j.lungcan.2015.06.011. Epub 2015 Jun 22.","parent_key":"BE0002433"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0003677"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0003679"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0003536"} {"ref-id":"A36696","pubmed-id":25521244,"citation":"Weiss J, Theile D, Dvorak Z, Haefeli WE: Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics. 2014 Dec 16;6(4):632-50. doi: 10.3390/pharmaceutics6040632.","parent_key":"BE0002638"} {"ref-id":"A39124","pubmed-id":28808886,"citation":"Edwards JE, Eliot L, Parkinson A, Karan S, MacConell L: Assessment of Pharmacokinetic Interactions Between Obeticholic Acid and Caffeine, Midazolam, Warfarin, Dextromethorphan, Omeprazole, Rosuvastatin, and Digoxin in Phase 1 Studies in Healthy Subjects. Adv Ther. 2017 Sep;34(9):2120-2138. doi: 10.1007/s12325-017-0601-0. Epub 2017 Aug 14.","parent_key":"BE0002433"} {"ref-id":"A192810","pubmed-id":31472121,"citation":"Ishida C, Sanoh S, Kotake Y: CYP1A2 Downregulation by Obeticholic Acid: Usefulness as a Positive Control for the In Vitro Evaluation of Drug-Drug Interactions. J Pharm Sci. 2019 Dec;108(12):3903-3910. doi: 10.1016/j.xphs.2019.08.021. Epub 2019 Aug 28.","parent_key":"BE0002433"} {"ref-id":"A3940","pubmed-id":23320989,"citation":"Citrome L: Cariprazine: chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin Drug Metab Toxicol. 2013 Feb;9(2):193-206. doi: 10.1517/17425255.2013.759211.","parent_key":"BE0002638"} {"ref-id":"A3940","pubmed-id":23320989,"citation":"Citrome L: Cariprazine: chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin Drug Metab Toxicol. 2013 Feb;9(2):193-206. doi: 10.1517/17425255.2013.759211.","parent_key":"BE0002363"} {"ref-id":"A189093","pubmed-id":31790322,"citation":"Vyas P, Hwang BJ, Brasic JR: An evaluation of lumateperone tosylate for the treatment of schizophrenia. Expert Opin Pharmacother. 2019 Nov 30:1-7. doi: 10.1080/14656566.2019.1695778.","parent_key":"BE0002638"} {"ref-id":"A38741","pubmed-id":10422890,"citation":"Prior TI, Chue PS, Tibbo P, Baker GB: Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol. 1999 Jun;9(4):301-9.","parent_key":"BE0002363"} {"ref-id":"A39214","pubmed-id":17214606,"citation":"Spina E, de Leon J: Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol. 2007 Jan;100(1):4-22. doi: 10.1111/j.1742-7843.2007.00017.x.","parent_key":"BE0002638"} {"ref-id":"A3987","pubmed-id":8764331,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther. 1996 Jul;278(1):21-30.","parent_key":"BE0002363"} {"ref-id":"A39256","pubmed-id":10497148,"citation":"Chow T, Hiroi T, Imaoka S, Chiba K, Funae Y: Isoform-selective metabolism of mianserin by cytochrome P-450 2D. Drug Metab Dispos. 1999 Oct;27(10):1200-4.","parent_key":"BE0002363"} {"ref-id":"A3987","pubmed-id":8764331,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther. 1996 Jul;278(1):21-30.","parent_key":"BE0002638"} {"ref-id":"A3987","pubmed-id":8764331,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther. 1996 Jul;278(1):21-30.","parent_key":"BE0002433"} {"ref-id":"A3987","pubmed-id":8764331,"citation":"Koyama E, Chiba K, Tani M, Ishizaki T: Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther. 1996 Jul;278(1):21-30.","parent_key":"BE0003549"} {"ref-id":"A15226","pubmed-id":19443932,"citation":"Leite CE, Mocelin CA, Petersen GO, Leal MB, Thiesen FV: Rimonabant: an antagonist drug of the endocannabinoid system for the treatment of obesity. Pharmacol Rep. 2009 Mar-Apr;61(2):217-24.","parent_key":"BE0002638"} {"ref-id":"A15227","pubmed-id":21497918,"citation":"Lazary J, Juhasz G, Hunyady L, Bagdy G: Personalized medicine can pave the way for the safe use of CB(1) receptor antagonists. Trends Pharmacol Sci. 2011 May;32(5):270-80. doi: 10.1016/j.tips.2011.02.013. Epub 2011 Apr 16.","parent_key":"BE0002638"} {"ref-id":"A17647","pubmed-id":20233183,"citation":"Fang ZZ, Zhang YY, Ge GB, Huo H, Liang SC, Yang L: Time-dependent inhibition (TDI) of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction. Br J Clin Pharmacol. 2010 Feb;69(2):193-9. doi: 10.1111/j.1365-2125.2009.03572.x.","parent_key":"BE0002793"} {"ref-id":"A17648","pubmed-id":20668444,"citation":"Rosenborg S, Stenberg M, Otto S, Ostervall J, Masquelier M, Yue QY, Bertilsson L, Eliasson E: Clinically significant CYP2C inhibition by noscapine but not by glucosamine. Clin Pharmacol Ther. 2010 Sep;88(3):343-6. doi: 10.1038/clpt.2010.107. Epub 2010 Jul 28.","parent_key":"BE0002793"} {"ref-id":"A17647","pubmed-id":20233183,"citation":"Fang ZZ, Zhang YY, Ge GB, Huo H, Liang SC, Yang L: Time-dependent inhibition (TDI) of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction. Br J Clin Pharmacol. 2010 Feb;69(2):193-9. doi: 10.1111/j.1365-2125.2009.03572.x.","parent_key":"BE0002638"} {"ref-id":"A15696","pubmed-id":21377994,"citation":"Iwamoto FM, Lamborn KR, Kuhn JG, Wen PY, Yung WK, Gilbert MR, Chang SM, Lieberman FS, Prados MD, Fine HA: A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03. Neuro Oncol. 2011 May;13(5):509-16. doi: 10.1093/neuonc/nor017. Epub 2011 Mar 3.","parent_key":"BE0002638"} {"ref-id":"A15697","pubmed-id":15635176,"citation":"Shiraga T, Tozuka Z, Ishimura R, Kawamura A, Kagayama A: Identification of cytochrome P450 enzymes involved in the metabolism of FK228, a potent histone deacetylase inhibitor, in human liver microsomes. Biol Pharm Bull. 2005 Jan;28(1):124-9.","parent_key":"BE0002638"} {"ref-id":"A15698","pubmed-id":19228751,"citation":"Woo S, Gardner ER, Chen X, Ockers SB, Baum CE, Sissung TM, Price DK, Frye R, Piekarz RL, Bates SE, Figg WD: Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res. 2009 Feb 15;15(4):1496-503. doi: 10.1158/1078-0432.CCR-08-1215.","parent_key":"BE0002638"} {"ref-id":"A15697","pubmed-id":15635176,"citation":"Shiraga T, Tozuka Z, Ishimura R, Kawamura A, Kagayama A: Identification of cytochrome P450 enzymes involved in the metabolism of FK228, a potent histone deacetylase inhibitor, in human liver microsomes. Biol Pharm Bull. 2005 Jan;28(1):124-9.","parent_key":"BE0002362"} {"ref-id":"A15698","pubmed-id":19228751,"citation":"Woo S, Gardner ER, Chen X, Ockers SB, Baum CE, Sissung TM, Price DK, Frye R, Piekarz RL, Bates SE, Figg WD: Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res. 2009 Feb 15;15(4):1496-503. doi: 10.1158/1078-0432.CCR-08-1215.","parent_key":"BE0002362"} {"ref-id":"A187976","pubmed-id":18503564,"citation":"Perucca E, Cloyd J, Critchley D, Fuseau E: Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia. 2008 Jul;49(7):1123-41. doi: 10.1111/j.1528-1167.2008.01665.x.","parent_key":"BE0002638"} {"ref-id":"A17906","pubmed-id":19356073,"citation":"Kneip C, Terlinden R, Beier H, Chen G: Investigations into the drug-drug interaction potential of tapentadol in human liver microsomes and fresh human hepatocytes. Drug Metab Lett. 2008 Jan;2(1):67-75.","parent_key":"BE0003538"} {"ref-id":"A17906","pubmed-id":19356073,"citation":"Kneip C, Terlinden R, Beier H, Chen G: Investigations into the drug-drug interaction potential of tapentadol in human liver microsomes and fresh human hepatocytes. Drug Metab Lett. 2008 Jan;2(1):67-75.","parent_key":"BE0003679"} {"ref-id":"A17906","pubmed-id":19356073,"citation":"Kneip C, Terlinden R, Beier H, Chen G: Investigations into the drug-drug interaction potential of tapentadol in human liver microsomes and fresh human hepatocytes. Drug Metab Lett. 2008 Jan;2(1):67-75.","parent_key":"BE0002363"} {"ref-id":"A17906","pubmed-id":19356073,"citation":"Kneip C, Terlinden R, Beier H, Chen G: Investigations into the drug-drug interaction potential of tapentadol in human liver microsomes and fresh human hepatocytes. Drug Metab Lett. 2008 Jan;2(1):67-75.","parent_key":"BE0002793"} {"ref-id":"A17906","pubmed-id":19356073,"citation":"Kneip C, Terlinden R, Beier H, Chen G: Investigations into the drug-drug interaction potential of tapentadol in human liver microsomes and fresh human hepatocytes. Drug Metab Lett. 2008 Jan;2(1):67-75.","parent_key":"BE0003536"} {"ref-id":"A15699","pubmed-id":16518089,"citation":"Matsubara Y, Kanazawa T, Kojima Y, Abe Y, Kobayashi K, Kanbe H, Harada H, Momose Y, Terakado S, Adachi Y, Midgley I: [Pharmacokinetics and disposition of silodosin (KMD-3213)]. Yakugaku Zasshi. 2006 Mar;126 Spec no.:237-45.","parent_key":"BE0002638"} {"ref-id":"A15700","pubmed-id":20071497,"citation":"Cantrell MA, Bream-Rouwenhorst HR, Hemerson P, Magera JS Jr: Silodosin for benign prostatic hyperplasia. Ann Pharmacother. 2010 Feb;44(2):302-10. doi: 10.1345/aph.1M320. Epub 2010 Jan 13.","parent_key":"BE0002638"} {"ref-id":"A4042","pubmed-id":23083110,"citation":"Angiolillo DJ: The evolution of antiplatelet therapy in the treatment of acute coronary syndromes: from aspirin to the present day. Drugs. 2012 Nov 12;72(16):2087-116. doi: 10.2165/11640880-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A4042","pubmed-id":23083110,"citation":"Angiolillo DJ: The evolution of antiplatelet therapy in the treatment of acute coronary syndromes: from aspirin to the present day. Drugs. 2012 Nov 12;72(16):2087-116. doi: 10.2165/11640880-000000000-00000.","parent_key":"BE0003549"} {"ref-id":"A39116","pubmed-id":28520385,"citation":"Dean L: Prasugrel Therapy and CYP Genotype .","parent_key":"BE0003549"} {"ref-id":"A4042","pubmed-id":23083110,"citation":"Angiolillo DJ: The evolution of antiplatelet therapy in the treatment of acute coronary syndromes: from aspirin to the present day. Drugs. 2012 Nov 12;72(16):2087-116. doi: 10.2165/11640880-000000000-00000.","parent_key":"BE0002793"} {"ref-id":"A4042","pubmed-id":23083110,"citation":"Angiolillo DJ: The evolution of antiplatelet therapy in the treatment of acute coronary syndromes: from aspirin to the present day. Drugs. 2012 Nov 12;72(16):2087-116. doi: 10.2165/11640880-000000000-00000.","parent_key":"BE0003536"} {"ref-id":"A35801","pubmed-id":29487060,"citation":"Kim TO, Despotovic J, Lambert MP: Eltrombopag for use in children with immune thrombocytopenia. Blood Adv. 2018 Feb 27;2(4):454-461. doi: 10.1182/bloodadvances.2017010660.","parent_key":"BE0002433"} {"ref-id":"A14317","pubmed-id":20868352,"citation":"Aperis G, Alivanis P: Tolvaptan: a new therapeutic agent. Rev Recent Clin Trials. 2011 May;6(2):177-88.","parent_key":"BE0002638"} {"ref-id":"A14318","pubmed-id":19337422,"citation":"Dixon MB, Lien YH: Tolvaptan and its potential in the treatment of hyponatremia. Ther Clin Risk Manag. 2008 Dec;4(6):1149-55.","parent_key":"BE0002638"} {"ref-id":"A14319","pubmed-id":21655346,"citation":"Citrome L: Role of sublingual asenapine in treatment of schizophrenia. Neuropsychiatr Dis Treat. 2011;7:325-39. doi: 10.2147/NDT.S16077. Epub 2011 May 26.","parent_key":"BE0002433"} {"ref-id":"A38988","pubmed-id":24793403,"citation":"Citrome L: Asenapine review, part I: chemistry, receptor affinity profile, pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol. 2014 Jun;10(6):893-903. doi: 10.1517/17425255.2014.908185. Epub 2014 May 3.","parent_key":"BE0002433"} {"ref-id":"A14319","pubmed-id":21655346,"citation":"Citrome L: Role of sublingual asenapine in treatment of schizophrenia. Neuropsychiatr Dis Treat. 2011;7:325-39. doi: 10.2147/NDT.S16077. Epub 2011 May 26.","parent_key":"BE0002363"} {"ref-id":"A38988","pubmed-id":24793403,"citation":"Citrome L: Asenapine review, part I: chemistry, receptor affinity profile, pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol. 2014 Jun;10(6):893-903. doi: 10.1517/17425255.2014.908185. Epub 2014 May 3.","parent_key":"BE0002363"} {"ref-id":"A4066","pubmed-id":23356509,"citation":"Fagiolini A, Forgione RN, Morana B, Maccari M, Goracci A, Bossini L, Pellegrini F, Cuomo A, Casamassima F: Asenapine for the treatment of manic and mixed episodes associated with bipolar I disorder: from clinical research to clinical practice. Expert Opin Pharmacother. 2013 Mar;14(4):489-504. doi: 10.1517/14656566.2013.765859. Epub 2013 Jan 29.","parent_key":"BE0002638"} {"ref-id":"A18882","pubmed-id":18927241,"citation":"Mao ZL, Wheeler JJ, Clohs L, Beatch GN, Keirns J: Pharmacokinetics of novel atrial-selective antiarrhythmic agent vernakalant hydrochloride injection (RSD1235): influence of CYP2D6 expression and other factors. J Clin Pharmacol. 2009 Jan;49(1):17-29. doi: 10.1177/0091270008325148. Epub 2008 Oct 16.","parent_key":"BE0002363"} {"ref-id":"A37605","pubmed-id":23942540,"citation":"Contin M, Albani F, Riva R, Candela C, Mohamed S, Baruzzi A: Lacosamide therapeutic monitoring in patients with epilepsy: effect of concomitant antiepileptic drugs. Ther Drug Monit. 2013 Dec;35(6):849-52. doi: 10.1097/FTD.0b013e318290eacc.","parent_key":"BE0003536"} {"ref-id":"A38549","pubmed-id":22850102,"citation":"Bentue-Ferrer D, Tribut O, Verdier MC: [Therapeutic drug monitoring of lacosamide]. Therapie. 2012 Mar-Apr;67(2):151-5. doi: 10.2515/therapie/2012012. Epub 2012 Aug 2.","parent_key":"BE0003536"} {"ref-id":"A38665","pubmed-id":21179600,"citation":"Chung SS: New treatment option for partial-onset seizures: efficacy and safety of lacosamide. Ther Adv Neurol Disord. 2010 Mar;3(2):77-83. doi: 10.1177/1756285609355850.","parent_key":"BE0003536"} {"ref-id":"A38559","pubmed-id":19826503,"citation":"Abou-Khalil BW: Lacosamide: what can be expected from the next new antiepileptic drug? Epilepsy Curr. 2009 Sep-Oct;9(5):133-4. doi: 10.1111/j.1535-7511.2009.01317.x.","parent_key":"BE0002793"} {"ref-id":"A38559","pubmed-id":19826503,"citation":"Abou-Khalil BW: Lacosamide: what can be expected from the next new antiepileptic drug? Epilepsy Curr. 2009 Sep-Oct;9(5):133-4. doi: 10.1111/j.1535-7511.2009.01317.x.","parent_key":"BE0002638"} {"ref-id":"A15695","pubmed-id":19185782,"citation":"Mismetti P, Laporte S: [Rivaroxaban: clinical pharmacology]. Ann Fr Anesth Reanim. 2008 Dec;27 Suppl 3:S16-21. doi: 10.1016/S0750-7658(08)75142-6.","parent_key":"BE0002638"} {"ref-id":"A14322","pubmed-id":20135071,"citation":"Ufer M: Comparative efficacy and safety of the novel oral anticoagulants dabigatran, rivaroxaban and apixaban in preclinical and clinical development. Thromb Haemost. 2010 Mar;103(3):572-85. doi: 10.1160/TH09-09-0659. Epub 2010 Feb 2.","parent_key":"BE0002638"} {"ref-id":"A4088","pubmed-id":23645472,"citation":"Cabral KP: Pharmacology of the new target-specific oral anticoagulants. J Thromb Thrombolysis. 2013 Aug;36(2):133-40. doi: 10.1007/s11239-013-0929-5.","parent_key":"BE0002362"} {"ref-id":"A17720","pubmed-id":12201491,"citation":"Zhou S, Kestell P, Baguley BC, Paxton JW: 5,6-dimethylxanthenone-4-acetic acid (DMXAA): a new biological response modifier for cancer therapy. Invest New Drugs. 2002 Aug;20(3):281-95.","parent_key":"BE0003538"} {"ref-id":"A17721","pubmed-id":12487149,"citation":"Zhou S, Kestell P, Paxton JW: Predicting pharmacokinetics and drug interactions in patients from in vitro and in vivo models: the experience with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an anti-cancer drug eliminated mainly by conjugation. Drug Metab Rev. 2002 Nov;34(4):751-90.","parent_key":"BE0003538"} {"ref-id":"A17722","pubmed-id":9000569,"citation":"Miners JO, Valente L, Lillywhite KJ, Mackenzie PI, Burchell B, Baguley BC, Kestell P: Preclinical prediction of factors influencing the elimination of 5,6-dimethylxanthenone-4-acetic acid, a new anticancer drug. Cancer Res. 1997 Jan 15;57(2):284-9.","parent_key":"BE0003538"} {"ref-id":"A17723","pubmed-id":11095582,"citation":"Zhou S, Paxton JW, Tingle MD, Kestell P: Identification of the human liver cytochrome P450 isoenzyme responsible for the 6-methylhydroxylation of the novel anticancer drug 5,6-dimethylxanthenone-4-acetic acid. Drug Metab Dispos. 2000 Dec;28(12):1449-56.","parent_key":"BE0003679"} {"ref-id":"A17724","pubmed-id":12781337,"citation":"Zhou S, Kestell P, Baguley BC, Paxton JW: Preclinical factors affecting the interindividual variability in the clearance of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid. Biochem Pharmacol. 2003 Jun 1;65(11):1853-65.","parent_key":"BE0003679"} {"ref-id":"A17720","pubmed-id":12201491,"citation":"Zhou S, Kestell P, Baguley BC, Paxton JW: 5,6-dimethylxanthenone-4-acetic acid (DMXAA): a new biological response modifier for cancer therapy. Invest New Drugs. 2002 Aug;20(3):281-95.","parent_key":"BE0003679"} {"ref-id":"A17721","pubmed-id":12487149,"citation":"Zhou S, Kestell P, Paxton JW: Predicting pharmacokinetics and drug interactions in patients from in vitro and in vivo models: the experience with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an anti-cancer drug eliminated mainly by conjugation. Drug Metab Rev. 2002 Nov;34(4):751-90.","parent_key":"BE0003679"} {"ref-id":"A17722","pubmed-id":9000569,"citation":"Miners JO, Valente L, Lillywhite KJ, Mackenzie PI, Burchell B, Baguley BC, Kestell P: Preclinical prediction of factors influencing the elimination of 5,6-dimethylxanthenone-4-acetic acid, a new anticancer drug. Cancer Res. 1997 Jan 15;57(2):284-9.","parent_key":"BE0003679"} {"ref-id":"A17723","pubmed-id":11095582,"citation":"Zhou S, Paxton JW, Tingle MD, Kestell P: Identification of the human liver cytochrome P450 isoenzyme responsible for the 6-methylhydroxylation of the novel anticancer drug 5,6-dimethylxanthenone-4-acetic acid. Drug Metab Dispos. 2000 Dec;28(12):1449-56.","parent_key":"BE0002433"} {"ref-id":"A17724","pubmed-id":12781337,"citation":"Zhou S, Kestell P, Baguley BC, Paxton JW: Preclinical factors affecting the interindividual variability in the clearance of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid. Biochem Pharmacol. 2003 Jun 1;65(11):1853-65.","parent_key":"BE0002433"} {"ref-id":"A17720","pubmed-id":12201491,"citation":"Zhou S, Kestell P, Baguley BC, Paxton JW: 5,6-dimethylxanthenone-4-acetic acid (DMXAA): a new biological response modifier for cancer therapy. Invest New Drugs. 2002 Aug;20(3):281-95.","parent_key":"BE0002433"} {"ref-id":"A17721","pubmed-id":12487149,"citation":"Zhou S, Kestell P, Paxton JW: Predicting pharmacokinetics and drug interactions in patients from in vitro and in vivo models: the experience with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an anti-cancer drug eliminated mainly by conjugation. Drug Metab Rev. 2002 Nov;34(4):751-90.","parent_key":"BE0002433"} {"ref-id":"A4104","pubmed-id":23675780,"citation":"Bruzziches R, Francomano D, Gareri P, Lenzi A, Aversa A: An update on pharmacological treatment of erectile dysfunction with phosphodiesterase type 5 inhibitors. Expert Opin Pharmacother. 2013 Jul;14(10):1333-44. doi: 10.1517/14656566.2013.799665. Epub 2013 May 16.","parent_key":"BE0002638"} {"ref-id":"A39024","pubmed-id":12695352,"citation":"Dalmadi B, Leibinger J, Szeberenyi S, Borbas T, Farkas S, Szombathelyi Z, Tihanyi K: Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes. Drug Metab Dispos. 2003 May;31(5):631-6.","parent_key":"BE0002433"} {"ref-id":"A15230","pubmed-id":15801542,"citation":"Ji HY, Lee HW, Kim HH, Kim DS, Yoo M, Kim WB, Lee HS: Role of human cytochrome P450 3A4 in the metabolism of DA-8159, a new erectogenic. Xenobiotica. 2004 Nov-Dec;34(11-12):973-82.","parent_key":"BE0002638"} {"ref-id":"A15676","pubmed-id":19335742,"citation":"Pulido T, Sandoval J, Roquet I, Gutierrez R, Rueda T, Pena H, Santos E, Miranda MT, Lupi E: Interaction of acenocoumarol and sitaxentan in pulmonary arterial hypertension. Eur J Clin Invest. 2009 Jun;39 Suppl 2:14-8. doi: 10.1111/j.1365-2362.2009.02116.x.","parent_key":"BE0002793"} {"ref-id":"A15677","pubmed-id":18562303,"citation":"Opitz CF, Ewert R, Kirch W, Pittrow D: Inhibition of endothelin receptors in the treatment of pulmonary arterial hypertension: does selectivity matter? Eur Heart J. 2008 Aug;29(16):1936-48. doi: 10.1093/eurheartj/ehn234. Epub 2008 Jun 17.","parent_key":"BE0002793"} {"ref-id":"A15667","pubmed-id":12065350,"citation":"Barst RJ, Rich S, Widlitz A, Horn EM, McLaughlin V, McFarlin J: Clinical efficacy of sitaxsentan, an endothelin-A receptor antagonist, in patients with pulmonary arterial hypertension: open-label pilot study. Chest. 2002 Jun;121(6):1860-8.","parent_key":"BE0002793"} {"ref-id":"A15713","pubmed-id":20078609,"citation":"Stavros F, Kramer WG, Wilkins MR: The effects of sitaxentan on sildenafil pharmacokinetics and pharmacodynamics in healthy subjects. Br J Clin Pharmacol. 2010 Jan;69(1):23-6. doi: 10.1111/j.1365-2125.2009.03541.x.","parent_key":"BE0002638"} {"ref-id":"A15667","pubmed-id":12065350,"citation":"Barst RJ, Rich S, Widlitz A, Horn EM, McLaughlin V, McFarlin J: Clinical efficacy of sitaxsentan, an endothelin-A receptor antagonist, in patients with pulmonary arterial hypertension: open-label pilot study. Chest. 2002 Jun;121(6):1860-8.","parent_key":"BE0002638"} {"ref-id":"A15667","pubmed-id":12065350,"citation":"Barst RJ, Rich S, Widlitz A, Horn EM, McLaughlin V, McFarlin J: Clinical efficacy of sitaxsentan, an endothelin-A receptor antagonist, in patients with pulmonary arterial hypertension: open-label pilot study. Chest. 2002 Jun;121(6):1860-8.","parent_key":"BE0003536"} {"ref-id":"A38756","pubmed-id":20406243,"citation":"Raja SG: Endothelin receptor antagonists for pulmonary arterial hypertension: an overview. Cardiovasc Ther. 2010 Oct;28(5):e65-71. doi: 10.1111/j.1755-5922.2010.00158.x.","parent_key":"BE0003536"} {"ref-id":"A181253","pubmed-id":27621203,"citation":"Long TJ, Cosgrove PA, Dunn RT 2nd, Stolz DB, Hamadeh H, Afshari C, McBride H, Griffith LG: Modeling Therapeutic Antibody-Small Molecule Drug-Drug Interactions Using a Three-Dimensional Perfusable Human Liver Coculture Platform. Drug Metab Dispos. 2016 Dec;44(12):1940-1948. doi: 10.1124/dmd.116.071456. Epub 2016 Sep 12.","parent_key":"BE0002638"} {"ref-id":"A173545","pubmed-id":26200709,"citation":"Hill L: Hepatitis C Virus Direct-Acting Antiviral Drug Interactions and Use in Renal and Hepatic Impairment. Top Antivir Med. 2015 May-Jun;23(2):92-6.","parent_key":"BE0002638"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0003543"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0002433"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0003336"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0002793"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0002363"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0002638"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0003538"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0003681"} {"ref-id":"A6758","pubmed-id":24105299,"citation":"Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW: Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014 Jan;53(1):17-27. doi: 10.1007/s40262-013-0104-3.","parent_key":"BE0003679"} {"ref-id":"A15709","pubmed-id":21651615,"citation":"Upreti VV, Boulton DW, Li L, Ching A, Su H, Lacreta FP, Patel CG: Effect of rifampicin on the pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor, in healthy subjects. Br J Clin Pharmacol. 2011 Jul;72(1):92-102. doi: 10.1111/j.1365-2125.2011.03937.x.","parent_key":"BE0002638"} {"ref-id":"A15710","pubmed-id":21332626,"citation":"Patel CG, Kornhauser D, Vachharajani N, Komoroski B, Brenner E, Handschuh del Corral M, Li L, Boulton DW: Saxagliptin, a potent, selective inhibitor of DPP-4, does not alter the pharmacokinetics of three oral antidiabetic drugs (metformin, glyburide or pioglitazone) in healthy subjects. Diabetes Obes Metab. 2011 Jul;13(7):604-14. doi: 10.1111/j.1463-1326.2011.01381.x.","parent_key":"BE0002638"} {"ref-id":"A15711","pubmed-id":20690781,"citation":"Scheen AJ: Dipeptidylpeptidase-4 inhibitors (gliptins): focus on drug-drug interactions. Clin Pharmacokinet. 2010 Sep;49(9):573-88. doi: 10.2165/11532980-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A15709","pubmed-id":21651615,"citation":"Upreti VV, Boulton DW, Li L, Ching A, Su H, Lacreta FP, Patel CG: Effect of rifampicin on the pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor, in healthy subjects. Br J Clin Pharmacol. 2011 Jul;72(1):92-102. doi: 10.1111/j.1365-2125.2011.03937.x.","parent_key":"BE0002362"} {"ref-id":"A15710","pubmed-id":21332626,"citation":"Patel CG, Kornhauser D, Vachharajani N, Komoroski B, Brenner E, Handschuh del Corral M, Li L, Boulton DW: Saxagliptin, a potent, selective inhibitor of DPP-4, does not alter the pharmacokinetics of three oral antidiabetic drugs (metformin, glyburide or pioglitazone) in healthy subjects. Diabetes Obes Metab. 2011 Jul;13(7):604-14. doi: 10.1111/j.1463-1326.2011.01381.x.","parent_key":"BE0002362"} {"ref-id":"A15711","pubmed-id":20690781,"citation":"Scheen AJ: Dipeptidylpeptidase-4 inhibitors (gliptins): focus on drug-drug interactions. Clin Pharmacokinet. 2010 Sep;49(9):573-88. doi: 10.2165/11532980-000000000-00000.","parent_key":"BE0002362"} {"ref-id":"A17735","pubmed-id":17851564,"citation":"Zandvliet AS, Siegel-Lakhai WS, Beijnen JH, Copalu W, Etienne-Grimaldi MC, Milano G, Schellens JH, Huitema AD: PK/PD model of indisulam and capecitabine: interaction causes excessive myelosuppression. Clin Pharmacol Ther. 2008 Jun;83(6):829-39. Epub 2007 Sep 12.","parent_key":"BE0002793"} {"ref-id":"A17736","pubmed-id":16232205,"citation":"Yamada Y, Yamamoto N, Shimoyama T, Horiike A, Fujisaka Y, Takayama K, Sakamoto T, Nishioka Y, Yasuda S, Tamura T: Phase I pharmacokinetic and pharmacogenomic study of E7070 administered once every 21 days. Cancer Sci. 2005 Oct;96(10):721-8.","parent_key":"BE0002793"} {"ref-id":"A17737","pubmed-id":17504998,"citation":"Zandvliet AS, Huitema AD, Copalu W, Yamada Y, Tamura T, Beijnen JH, Schellens JH: CYP2C9 and CYP2C19 polymorphic forms are related to increased indisulam exposure and higher risk of severe hematologic toxicity. Clin Cancer Res. 2007 May 15;13(10):2970-6.","parent_key":"BE0002793"} {"ref-id":"A14326","pubmed-id":20811346,"citation":"Spence R, Mandagere A, Richards DB, Magee MH, Dufton C, Boinpally R: Potential for pharmacokinetic interactions between ambrisentan and cyclosporine. Clin Pharmacol Ther. 2010 Oct;88(4):513-20. doi: 10.1038/clpt.2010.120. Epub 2010 Sep 1.","parent_key":"BE0002638"} {"ref-id":"A14327","pubmed-id":19389876,"citation":"Richards DB, Walker GA, Mandagere A, Magee MH, Henderson LS: Effect of ketoconazole on the pharmacokinetic profile of ambrisentan. J Clin Pharmacol. 2009 Jun;49(6):719-24. doi: 10.1177/0091270009335870. Epub 2009 Apr 23.","parent_key":"BE0002638"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0002638"} {"ref-id":"A6821","pubmed-id":21299444,"citation":"Buckley MS, Wicks LM, Staib RL, Kirejczyk AK, Varker AS, Gibson JJ, Feldman JP: Pharmacokinetic evaluation of ambrisentan. Expert Opin Drug Metab Toxicol. 2011 Mar;7(3):371-80. doi: 10.1517/17425255.2011.557181. Epub 2011 Feb 8.","parent_key":"BE0003536"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0003536"} {"ref-id":"A6821","pubmed-id":21299444,"citation":"Buckley MS, Wicks LM, Staib RL, Kirejczyk AK, Varker AS, Gibson JJ, Feldman JP: Pharmacokinetic evaluation of ambrisentan. Expert Opin Drug Metab Toxicol. 2011 Mar;7(3):371-80. doi: 10.1517/17425255.2011.557181. Epub 2011 Feb 8.","parent_key":"BE0003538"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0003538"} {"ref-id":"A6821","pubmed-id":21299444,"citation":"Buckley MS, Wicks LM, Staib RL, Kirejczyk AK, Varker AS, Gibson JJ, Feldman JP: Pharmacokinetic evaluation of ambrisentan. Expert Opin Drug Metab Toxicol. 2011 Mar;7(3):371-80. doi: 10.1517/17425255.2011.557181. Epub 2011 Feb 8.","parent_key":"BE0003679"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0003679"} {"ref-id":"A6821","pubmed-id":21299444,"citation":"Buckley MS, Wicks LM, Staib RL, Kirejczyk AK, Varker AS, Gibson JJ, Feldman JP: Pharmacokinetic evaluation of ambrisentan. Expert Opin Drug Metab Toxicol. 2011 Mar;7(3):371-80. doi: 10.1517/17425255.2011.557181. Epub 2011 Feb 8.","parent_key":"BE0003677"} {"ref-id":"A6817","pubmed-id":22205719,"citation":"Venitz J, Zack J, Gillies H, Allard M, Regnault J, Dufton C: Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012 Dec;52(12):1784-805. doi: 10.1177/0091270011423662. Epub 2011 Dec 28.","parent_key":"BE0003677"} {"ref-id":"A6826","pubmed-id":11440282,"citation":"Pavlatos AM, Fultz O, Monberg MJ, Vootkur A, Pharmd: Review of oxymetholone: a 17alpha-alkylated anabolic-androgenic steroid. Clin Ther. 2001 Jun;23(6):789-801; discussion 771.","parent_key":"BE0002363"} {"ref-id":"A20383","citation":"Thacker DL, Wainer IW, Lerch C, Fried K, Flockhart DA: Metabolism of An Anabolic Androgenic Steroid Oxymetholone by Human Cytochrome P450s Clinical Pharmacology&Therapeutics. 1999 Feb 1;65(2):136-137.","parent_key":"BE0002638"} {"ref-id":"A20383","citation":"Thacker DL, Wainer IW, Lerch C, Fried K, Flockhart DA: Metabolism of An Anabolic Androgenic Steroid Oxymetholone by Human Cytochrome P450s Clinical Pharmacology&Therapeutics. 1999 Feb 1;65(2):136-137.","parent_key":"BE0002362"} {"ref-id":"A20383","citation":"Thacker DL, Wainer IW, Lerch C, Fried K, Flockhart DA: Metabolism of An Anabolic Androgenic Steroid Oxymetholone by Human Cytochrome P450s Clinical Pharmacology&Therapeutics. 1999 Feb 1;65(2):136-137.","parent_key":"BE0003612"} {"ref-id":"A20383","citation":"Thacker DL, Wainer IW, Lerch C, Fried K, Flockhart DA: Metabolism of An Anabolic Androgenic Steroid Oxymetholone by Human Cytochrome P450s Clinical Pharmacology&Therapeutics. 1999 Feb 1;65(2):136-137.","parent_key":"BE0003550"} {"ref-id":"A15666","pubmed-id":18076219,"citation":"Darwish M, Kirby M, Robertson P Jr, Hellriegel ET: Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet. 2008;47(1):61-74.","parent_key":"BE0003536"} {"ref-id":"A15666","pubmed-id":18076219,"citation":"Darwish M, Kirby M, Robertson P Jr, Hellriegel ET: Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet. 2008;47(1):61-74.","parent_key":"BE0002638"} {"ref-id":"A14889","pubmed-id":12537513,"citation":"Robertson P Jr, Hellriegel ET: Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet. 2003;42(2):123-37.","parent_key":"BE0002362"} {"ref-id":"A15665","pubmed-id":10820139,"citation":"Robertson P, DeCory HH, Madan A, Parkinson A: In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos. 2000 Jun;28(6):664-71.","parent_key":"BE0002433"} {"ref-id":"A14889","pubmed-id":12537513,"citation":"Robertson P Jr, Hellriegel ET: Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet. 2003;42(2):123-37.","parent_key":"BE0002793"} {"ref-id":"A15662","pubmed-id":20116625,"citation":"Perez VE, Sanchez-Parra C, Serrano Villar S: [Etravirine drug interactions]. Enferm Infecc Microbiol Clin. 2009 Dec;27 Suppl 2:27-31. doi: 10.1016/S0213-005X(09)73216-1.","parent_key":"BE0002638"} {"ref-id":"A15663","pubmed-id":21142266,"citation":"Kakuda TN, Scholler-Gyure M, Hoetelmans RM: Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet. 2011 Jan;50(1):25-39. doi: 10.2165/11534740-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A15664","pubmed-id":19725591,"citation":"Scholler-Gyure M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM: Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet. 2009;48(9):561-74. doi: 10.2165/10895940-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A15662","pubmed-id":20116625,"citation":"Perez VE, Sanchez-Parra C, Serrano Villar S: [Etravirine drug interactions]. Enferm Infecc Microbiol Clin. 2009 Dec;27 Suppl 2:27-31. doi: 10.1016/S0213-005X(09)73216-1.","parent_key":"BE0002793"} {"ref-id":"A15663","pubmed-id":21142266,"citation":"Kakuda TN, Scholler-Gyure M, Hoetelmans RM: Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet. 2011 Jan;50(1):25-39. doi: 10.2165/11534740-000000000-00000.","parent_key":"BE0002793"} {"ref-id":"A15664","pubmed-id":19725591,"citation":"Scholler-Gyure M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM: Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet. 2009;48(9):561-74. doi: 10.2165/10895940-000000000-00000.","parent_key":"BE0002793"} {"ref-id":"A39452","pubmed-id":18492125,"citation":"Scholler-Gyure M, Kakuda TN, De Smedt G, Vanaken H, Bouche MP, Peeters M, Woodfall B, Hoetelmans RM: A pharmacokinetic study of etravirine (TMC125) co-administered with ranitidine and omeprazole in HIV-negative volunteers. Br J Clin Pharmacol. 2008 Oct;66(4):508-16. doi: 10.1111/j.1365-2125.2008.03214.x. Epub 2008 Apr 25.","parent_key":"BE0002793"} {"ref-id":"A15662","pubmed-id":20116625,"citation":"Perez VE, Sanchez-Parra C, Serrano Villar S: [Etravirine drug interactions]. Enferm Infecc Microbiol Clin. 2009 Dec;27 Suppl 2:27-31. doi: 10.1016/S0213-005X(09)73216-1.","parent_key":"BE0003536"} {"ref-id":"A15663","pubmed-id":21142266,"citation":"Kakuda TN, Scholler-Gyure M, Hoetelmans RM: Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet. 2011 Jan;50(1):25-39. doi: 10.2165/11534740-000000000-00000.","parent_key":"BE0003536"} {"ref-id":"A15664","pubmed-id":19725591,"citation":"Scholler-Gyure M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM: Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet. 2009;48(9):561-74. doi: 10.2165/10895940-000000000-00000.","parent_key":"BE0003536"} {"ref-id":"A38630","pubmed-id":22269145,"citation":"Yanakakis LJ, Bumpus NN: Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos. 2012 Apr;40(4):803-14. doi: 10.1124/dmd.111.044404. Epub 2012 Jan 23.","parent_key":"BE0003536"} {"ref-id":"A38838","pubmed-id":22096392,"citation":"Viani RM: Role of etravirine in the management of treatment-experienced patients with human immunodeficiency virus type 1. HIV AIDS (Auckl). 2010;2:141-9. Epub 2010 Jun 28.","parent_key":"BE0003536"} {"ref-id":"A203369","pubmed-id":23463743,"citation":"Mansour H, Chahine EB, Karaoui LR, El-Lababidi RM: Cethromycin: a new ketolide antibiotic. Ann Pharmacother. 2013 Mar;47(3):368-79. doi: 10.1345/aph.1R435. Epub 2013 Mar 5.","parent_key":"BE0002638"} {"ref-id":"A203486","pubmed-id":25327846,"citation":"Liang JH: Introduction of a nitrogen-containing side chain appended on C-10 of cethromycin leads to reduced CYP3A4 inhibition (WO2014049356A1). Expert Opin Ther Pat. 2015 Jan;25(1):119-23. doi: 10.1517/13543776.2014.971754. Epub 2014 Oct 18.","parent_key":"BE0002638"} {"ref-id":"A17659","pubmed-id":15179406,"citation":"Katz DA, Grimm DR, Cassar SC, Gentile MC, Ye X, Rieser MJ, Gordon EF, Polzin JE, Gustavson LE, Driscoll RM, O'dea RF, Williams LA, Bukofzer S: CYP3A5 genotype has a dose-dependent effect on ABT-773 plasma levels. Clin Pharmacol Ther. 2004 Jun;75(6):516-28.","parent_key":"BE0002362"} {"ref-id":"A15231","pubmed-id":12766253,"citation":"Sahi J, Milad MA, Zheng X, Rose KA, Wang H, Stilgenbauer L, Gilbert D, Jolley S, Stern RH, LeCluyse EL: Avasimibe induces CYP3A4 and multiple drug resistance protein 1 gene expression through activation of the pregnane X receptor. J Pharmacol Exp Ther. 2003 Sep;306(3):1027-34. Epub 2003 May 23.","parent_key":"BE0002638"} {"ref-id":"A6856","pubmed-id":15333513,"citation":"Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL: Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos. 2004 Dec;32(12):1370-6. Epub 2004 Aug 27.","parent_key":"BE0002793"} {"ref-id":"A6856","pubmed-id":15333513,"citation":"Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL: Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos. 2004 Dec;32(12):1370-6. Epub 2004 Aug 27.","parent_key":"BE0002433"} {"ref-id":"A6856","pubmed-id":15333513,"citation":"Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL: Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos. 2004 Dec;32(12):1370-6. Epub 2004 Aug 27.","parent_key":"BE0003536"} {"ref-id":"A17801","pubmed-id":3412325,"citation":"Pan SS, Iracki T: Metabolites and DNA adduct formation from flavoenzyme-activated porfiromycin. Mol Pharmacol. 1988 Aug;34(2):223-8.","parent_key":"BE0002204"} {"ref-id":"A17592","pubmed-id":16547395,"citation":"Tanigawa T, Heinig R, Kuroki Y, Higuchi S: Evaluation of interethnic differences in repinotan pharmacokinetics by using population approach. Drug Metab Pharmacokinet. 2006 Feb;21(1):61-9.","parent_key":"BE0002363"} {"ref-id":"A17598","pubmed-id":17062778,"citation":"Zhang D, Wang L, Chandrasena G, Ma L, Zhu M, Zhang H, Davis CD, Humphreys WG: Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Drug Metab Dispos. 2007 Jan;35(1):139-49. Epub 2006 Oct 24.","parent_key":"BE0002433"} {"ref-id":"A17599","pubmed-id":17898154,"citation":"Zhang D, Zhang D, Cui D, Gambardella J, Ma L, Barros A, Wang L, Fu Y, Rahematpura S, Nielsen J, Donegan M, Zhang H, Humphreys WG: Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. Drug Metab Dispos. 2007 Dec;35(12):2270-80. Epub 2007 Sep 26.","parent_key":"BE0003677"} {"ref-id":"A17598","pubmed-id":17062778,"citation":"Zhang D, Wang L, Chandrasena G, Ma L, Zhu M, Zhang H, Davis CD, Humphreys WG: Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Drug Metab Dispos. 2007 Jan;35(1):139-49. Epub 2006 Oct 24.","parent_key":"BE0002887"} {"ref-id":"A18710","pubmed-id":14730412,"citation":"Laine K, De Bruyn S, Bjorklund H, Rouru J, Hanninen J, Scheinin H, Anttila M: Effect of the novel anxiolytic drug deramciclane on cytochrome P(450) 2D6 activity as measured by desipramine pharmacokinetics. Eur J Clin Pharmacol. 2004 Feb;59(12):893-8. Epub 2004 Jan 17.","parent_key":"BE0002363"} {"ref-id":"A15692","pubmed-id":21395357,"citation":"Keisner SV, Shah SR: Pazopanib: the newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs. 2011 Mar 5;71(4):443-54. doi: 10.2165/11588960-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A15693","pubmed-id":20881954,"citation":"Goh BC, Reddy NJ, Dandamudi UB, Laubscher KH, Peckham T, Hodge JP, Suttle AB, Arumugham T, Xu Y, Xu CF, Lager J, Dar MM, Lewis LD: An evaluation of the drug interaction potential of pazopanib, an oral vascular endothelial growth factor receptor tyrosine kinase inhibitor, using a modified Cooperstown 5+1 cocktail in patients with advanced solid tumors. Clin Pharmacol Ther. 2010 Nov;88(5):652-9. doi: 10.1038/clpt.2010.158. Epub 2010 Sep 29.","parent_key":"BE0002638"} {"ref-id":"A6883","pubmed-id":23488774,"citation":"Verweij J, Sleijfer S: Pazopanib, a new therapy for metastatic soft tissue sarcoma. Expert Opin Pharmacother. 2013 May;14(7):929-35. doi: 10.1517/14656566.2013.780030. Epub 2013 Mar 14.","parent_key":"BE0002638"} {"ref-id":"A15692","pubmed-id":21395357,"citation":"Keisner SV, Shah SR: Pazopanib: the newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs. 2011 Mar 5;71(4):443-54. doi: 10.2165/11588960-000000000-00000.","parent_key":"BE0002363"} {"ref-id":"A15693","pubmed-id":20881954,"citation":"Goh BC, Reddy NJ, Dandamudi UB, Laubscher KH, Peckham T, Hodge JP, Suttle AB, Arumugham T, Xu Y, Xu CF, Lager J, Dar MM, Lewis LD: An evaluation of the drug interaction potential of pazopanib, an oral vascular endothelial growth factor receptor tyrosine kinase inhibitor, using a modified Cooperstown 5+1 cocktail in patients with advanced solid tumors. Clin Pharmacol Ther. 2010 Nov;88(5):652-9. doi: 10.1038/clpt.2010.158. Epub 2010 Sep 29.","parent_key":"BE0002363"} {"ref-id":"A15692","pubmed-id":21395357,"citation":"Keisner SV, Shah SR: Pazopanib: the newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs. 2011 Mar 5;71(4):443-54. doi: 10.2165/11588960-000000000-00000.","parent_key":"BE0002887"} {"ref-id":"A6883","pubmed-id":23488774,"citation":"Verweij J, Sleijfer S: Pazopanib, a new therapy for metastatic soft tissue sarcoma. Expert Opin Pharmacother. 2013 May;14(7):929-35. doi: 10.1517/14656566.2013.780030. Epub 2013 Mar 14.","parent_key":"BE0002887"} {"ref-id":"A6883","pubmed-id":23488774,"citation":"Verweij J, Sleijfer S: Pazopanib, a new therapy for metastatic soft tissue sarcoma. Expert Opin Pharmacother. 2013 May;14(7):929-35. doi: 10.1517/14656566.2013.780030. Epub 2013 Mar 14.","parent_key":"BE0002433"} {"ref-id":"A39122","pubmed-id":30034221,"citation":"Yasar U: Does celecoxib inhibit agomelatine metabolism via CYP2C9 or CYP1A2? Drug Des Devel Ther. 2018 Jul 11;12:2169-2172. doi: 10.2147/DDDT.S169358. eCollection 2018.","parent_key":"BE0002433"} {"ref-id":"A39123","pubmed-id":21350627,"citation":"Manikandan S: Agomelatine: A novel melatonergic antidepressant. J Pharmacol Pharmacother. 2010 Jul;1(2):122-3. doi: 10.4103/0976-500X.72369.","parent_key":"BE0002433"} {"ref-id":"A17561","pubmed-id":19033480,"citation":"Dolder CR, Nelson M, Snider M: Agomelatine treatment of major depressive disorder. Ann Pharmacother. 2008 Dec;42(12):1822-31. doi: 10.1345/aph.1L296. Epub 2008 Nov 25.","parent_key":"BE0002793"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0004866"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0002433"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0003549"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0002887"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0002793"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0003536"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0002363"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0003533"} {"ref-id":"A19111","pubmed-id":28270565,"citation":"He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7.","parent_key":"BE0002638"} {"ref-id":"A18400","pubmed-id":26503877,"citation":"Richardson PG, Harvey RD, Laubach JP, Moreau P, Lonial S, San-Miguel JF: Panobinostat for the treatment of relapsed or relapsed/refractory multiple myeloma: pharmacology and clinical outcomes. Expert Rev Clin Pharmacol. 2016;9(1):35-48. doi: 10.1586/17512433.2016.1096773. Epub 2015 Oct 26.","parent_key":"BE0002638"} {"ref-id":"A18400","pubmed-id":26503877,"citation":"Richardson PG, Harvey RD, Laubach JP, Moreau P, Lonial S, San-Miguel JF: Panobinostat for the treatment of relapsed or relapsed/refractory multiple myeloma: pharmacology and clinical outcomes. Expert Rev Clin Pharmacol. 2016;9(1):35-48. doi: 10.1586/17512433.2016.1096773. Epub 2015 Oct 26.","parent_key":"BE0002363"} {"ref-id":"A18401","pubmed-id":26504410,"citation":"Bailey H, Stenehjem DD, Sharma S: Panobinostat for the treatment of multiple myeloma: the evidence to date. J Blood Med. 2015 Oct 8;6:269-76. doi: 10.2147/JBM.S69140. eCollection 2015.","parent_key":"BE0002363"} {"ref-id":"A17848","pubmed-id":19940026,"citation":"Wang L, Zhang D, Raghavan N, Yao M, Ma L, Frost CE, Maxwell BD, Chen SY, He K, Goosen TC, Humphreys WG, Grossman SJ: In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos. 2010 Mar;38(3):448-58. doi: 10.1124/dmd.109.029694. Epub 2009 Nov 25.","parent_key":"BE0002638"} {"ref-id":"A38656","pubmed-id":24421512,"citation":"Cada DJ, Levien TL, Baker DE: Apixaban. Hosp Pharm. 2013 Jun;48(6):494-509. doi: 10.1310/hpj4806-494.","parent_key":"BE0002433"} {"ref-id":"A38656","pubmed-id":24421512,"citation":"Cada DJ, Levien TL, Baker DE: Apixaban. Hosp Pharm. 2013 Jun;48(6):494-509. doi: 10.1310/hpj4806-494.","parent_key":"BE0003536"} {"ref-id":"A38657","pubmed-id":23785225,"citation":"Budovich A, Zargarova O, Nogid A: Role of apixaban (eliquis) in the treatment and prevention of thromboembolic disease. P T. 2013 Apr;38(4):206-31.","parent_key":"BE0003536"} {"ref-id":"A187301","pubmed-id":23016247,"citation":"Authors unspecified: Apixaban. After hip or knee replacement: LMWH remains the standard treatment. Prescrire Int. 2012 Sep;21(130):201-2, 204.","parent_key":"BE0002362"} {"ref-id":"A35677","pubmed-id":27528800,"citation":"Ebstie YA, Abay SM, Tadesse WT, Ejigu DA: Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: the evidence to date. Drug Des Devel Ther. 2016 Jul 26;10:2387-99. doi: 10.2147/DDDT.S61443. eCollection 2016.","parent_key":"BE0002363"} {"ref-id":"A36633","pubmed-id":24713129,"citation":"Filppula AM, Neuvonen PJ, Backman JT: In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors. Drug Metab Dispos. 2014 Jul;42(7):1202-9. doi: 10.1124/dmd.114.057695. Epub 2014 Apr 8.","parent_key":"BE0002887"} {"ref-id":"A17945","pubmed-id":22170007,"citation":"Brennan M, Williams JA, Chen Y, Tortorici M, Pithavala Y, Liu YC: Meta-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol. 2012 May;68(5):645-55. doi: 10.1007/s00228-011-1171-8. Epub 2011 Dec 15.","parent_key":"BE0002638"} {"ref-id":"A17946","pubmed-id":23677771,"citation":"Chen Y, Tortorici MA, Garrett M, Hee B, Klamerus KJ, Pithavala YK: Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013 Sep;52(9):713-25. doi: 10.1007/s40262-013-0068-3.","parent_key":"BE0002638"} {"ref-id":"A17945","pubmed-id":22170007,"citation":"Brennan M, Williams JA, Chen Y, Tortorici M, Pithavala Y, Liu YC: Meta-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol. 2012 May;68(5):645-55. doi: 10.1007/s00228-011-1171-8. Epub 2011 Dec 15.","parent_key":"BE0002362"} {"ref-id":"A17946","pubmed-id":23677771,"citation":"Chen Y, Tortorici MA, Garrett M, Hee B, Klamerus KJ, Pithavala YK: Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013 Sep;52(9):713-25. doi: 10.1007/s40262-013-0068-3.","parent_key":"BE0002362"} {"ref-id":"A17945","pubmed-id":22170007,"citation":"Brennan M, Williams JA, Chen Y, Tortorici M, Pithavala Y, Liu YC: Meta-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol. 2012 May;68(5):645-55. doi: 10.1007/s00228-011-1171-8. Epub 2011 Dec 15.","parent_key":"BE0002433"} {"ref-id":"A17946","pubmed-id":23677771,"citation":"Chen Y, Tortorici MA, Garrett M, Hee B, Klamerus KJ, Pithavala YK: Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013 Sep;52(9):713-25. doi: 10.1007/s40262-013-0068-3.","parent_key":"BE0002433"} {"ref-id":"A17945","pubmed-id":22170007,"citation":"Brennan M, Williams JA, Chen Y, Tortorici M, Pithavala Y, Liu YC: Meta-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol. 2012 May;68(5):645-55. doi: 10.1007/s00228-011-1171-8. Epub 2011 Dec 15.","parent_key":"BE0003536"} {"ref-id":"A17946","pubmed-id":23677771,"citation":"Chen Y, Tortorici MA, Garrett M, Hee B, Klamerus KJ, Pithavala YK: Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013 Sep;52(9):713-25. doi: 10.1007/s40262-013-0068-3.","parent_key":"BE0003536"} {"ref-id":"A6913","pubmed-id":26598096,"citation":"Rybak JM, Marx KR, Nishimoto AT, Rogers PD: Isavuconazole: Pharmacology, Pharmacodynamics, and Current Clinical Experience with a New Triazole Antifungal Agent. Pharmacotherapy. 2015 Nov;35(11):1037-51. doi: 10.1002/phar.1652. Epub 2015 Nov 2.","parent_key":"BE0002638"} {"ref-id":"A6916","pubmed-id":22764324,"citation":"Pikoulas TE, Fuller MA: Dalfampridine: a medication to improve walking in patients with multiple sclerosis. Ann Pharmacother. 2012 Jul-Aug;46(7-8):1010-5. doi: 10.1345/aph.1Q714. Epub 2012 Jul 3.","parent_key":"BE0003533"} {"ref-id":"A18863","pubmed-id":24136086,"citation":"Leuratti C, Sardina M, Ventura P, Assandri A, Muller M, Brunner M: Disposition and metabolism of safinamide, a novel drug for Parkinson's disease, in healthy male volunteers. Pharmacology. 2013;92(3-4):207-16. doi: 10.1159/000354805. Epub 2013 Oct 11.","parent_key":"BE0002638"} {"ref-id":"A6929","pubmed-id":15082032,"citation":"Marzo A, Dal Bo L, Monti NC, Crivelli F, Ismaili S, Caccia C, Cattaneo C, Fariello RG: Pharmacokinetics and pharmacodynamics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacol Res. 2004 Jul;50(1):77-85.","parent_key":"BE0003536"} {"ref-id":"A38792","pubmed-id":27186120,"citation":"Malek NM, Grosset DG: Investigational agents in the treatment of Parkinson's disease: focus on safinamide. J Exp Pharmacol. 2012 Aug 14;4:85-90. doi: 10.2147/JEP.S34343. eCollection 2012.","parent_key":"BE0003536"} {"ref-id":"A19392","pubmed-id":24553380,"citation":"Kassahun K, McIntosh I, Koeplinger K, Sun L, Talaty JE, Miller DL, Dixon R, Zajic S, Stoch SA: Disposition and metabolism of the cathepsin K inhibitor odanacatib in humans. Drug Metab Dispos. 2014 May;42(5):818-27. doi: 10.1124/dmd.113.056580. Epub 2014 Feb 19.","parent_key":"BE0002638"} {"ref-id":"A38920","pubmed-id":24895078,"citation":"Marcantonio EE, Ballard J, Gibson CR, Kassahun K, Palamanda J, Tang C, Evers R, Liu C, Zajic S, Mahon C, Mostoller K, Hreniuk D, Mehta A, Morris D, Wagner JA, Stoch SA: Prednisone has no effect on the pharmacokinetics of CYP3A4 metabolized drugs - midazolam and odanacatib. J Clin Pharmacol. 2014 Nov;54(11):1280-9. doi: 10.1002/jcph.338. Epub 2014 Jun 25.","parent_key":"BE0002638"} {"ref-id":"A19392","pubmed-id":24553380,"citation":"Kassahun K, McIntosh I, Koeplinger K, Sun L, Talaty JE, Miller DL, Dixon R, Zajic S, Stoch SA: Disposition and metabolism of the cathepsin K inhibitor odanacatib in humans. Drug Metab Dispos. 2014 May;42(5):818-27. doi: 10.1124/dmd.113.056580. Epub 2014 Feb 19.","parent_key":"BE0002887"} {"ref-id":"A18393","pubmed-id":21246188,"citation":"Ramaekers JG, Conen S, de Kam PJ, Braat S, Peeters P, Theunissen EL, Ivgy-May N: Residual effects of esmirtazapine on actual driving performance: overall findings and an exploratory analysis into the role of CYP2D6 phenotype. Psychopharmacology (Berl). 2011 May;215(2):321-32. doi: 10.1007/s00213-010-2149-4. Epub 2011 Jan 19.","parent_key":"BE0002363"} {"ref-id":"A38477","pubmed-id":22346333,"citation":"Cruz MP: Vilazodone HCl (Viibryd): A Serotonin Partial Agonist and Reuptake Inhibitor For the Treatment of Major Depressive Disorder. P T. 2012 Jan;37(1):28-31.","parent_key":"BE0002638"} {"ref-id":"A38477","pubmed-id":22346333,"citation":"Cruz MP: Vilazodone HCl (Viibryd): A Serotonin Partial Agonist and Reuptake Inhibitor For the Treatment of Major Depressive Disorder. P T. 2012 Jan;37(1):28-31.","parent_key":"BE0002363"} {"ref-id":"A38477","pubmed-id":22346333,"citation":"Cruz MP: Vilazodone HCl (Viibryd): A Serotonin Partial Agonist and Reuptake Inhibitor For the Treatment of Major Depressive Disorder. P T. 2012 Jan;37(1):28-31.","parent_key":"BE0003536"} {"ref-id":"A6949","pubmed-id":15764719,"citation":"Tuvesson H, Hallin I, Persson R, Sparre B, Gunnarsson PO, Seidegard J: Cytochrome P450 3A4 is the major enzyme responsible for the metabolism of laquinimod, a novel immunomodulator. Drug Metab Dispos. 2005 Jun;33(6):866-72. Epub 2005 Mar 11.","parent_key":"BE0002638"} {"ref-id":"A15232","pubmed-id":21163185,"citation":"Fernandez O: Oral laquinimod treatment in multiple sclerosis. Neurologia. 2011 Mar;26(2):111-7. doi: 10.1016/j.nrl.2010.07.027.","parent_key":"BE0002638"} {"ref-id":"A4842","pubmed-id":7853212,"citation":"Hiroi T, Ohishi N, Imaoka S, Yabusaki Y, Fukui H, Funae Y: Mepyramine, a histamine H1 receptor antagonist, inhibits the metabolic activity of rat and human P450 2D forms. J Pharmacol Exp Ther. 1995 Feb;272(2):939-44.","parent_key":"BE0002363"} {"ref-id":"A184589","pubmed-id":11903961,"citation":"Kortunay S, Bozkurt A, Basci NE, Brosen K, Kayaalp SO: Dose-dependent inhibition of the CYP2D6 catalyzed oxidation of sparteine by mepyramine in healthy volunteers. Pharmacol Toxicol. 2001 Dec;89(6):331-4.","parent_key":"BE0002363"} {"ref-id":"A17924","pubmed-id":20551237,"citation":"Ebner T, Wagner K, Wienen W: Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity. Drug Metab Dispos. 2010 Sep;38(9):1567-75. doi: 10.1124/dmd.110.033696. Epub 2010 Jun 15.","parent_key":"BE0003538"} {"ref-id":"A17924","pubmed-id":20551237,"citation":"Ebner T, Wagner K, Wienen W: Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity. Drug Metab Dispos. 2010 Sep;38(9):1567-75. doi: 10.1124/dmd.110.033696. Epub 2010 Jun 15.","parent_key":"BE0003679"} {"ref-id":"A182678","pubmed-id":10546925,"citation":"van Agtmael MA, Gupta V, van der Graaf CA, van Boxtel CJ: The effect of grapefruit juice on the time-dependent decline of artemether plasma levels in healthy subjects. Clin Pharmacol Ther. 1999 Oct;66(4):408-14. doi: 10.1053/cp.1999.v66.a101946.","parent_key":"BE0002638"} {"ref-id":"A182681","pubmed-id":10456492,"citation":"van Agtmael MA, Gupta V, van der Wosten TH, Rutten JP, van Boxtel CJ: Grapefruit juice increases the bioavailability of artemether. Eur J Clin Pharmacol. 1999 Jul;55(5):405-10. doi: 10.1007/s002280050648.","parent_key":"BE0002638"} {"ref-id":"A38843","pubmed-id":28673292,"citation":"Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Asghar M, Homann MV, Farnert A, Aklillu E: Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malar J. 2017 Jul 3;16(1):267. doi: 10.1186/s12936-017-1914-9.","parent_key":"BE0002362"} {"ref-id":"A16806","pubmed-id":18350255,"citation":"Elsherbiny DA, Asimus SA, Karlsson MO, Ashton M, Simonsson US: A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens. J Pharmacokinet Pharmacodyn. 2008 Apr;35(2):203-17. doi: 10.1007/s10928-008-9084-6. Epub 2008 Mar 19.","parent_key":"BE0003549"} {"ref-id":"A39464","pubmed-id":23441978,"citation":"Kakuda TN, DeMasi R, van Delft Y, Mohammed P: Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med. 2013 Aug;14(7):421-9. doi: 10.1111/hiv.12019. Epub 2013 Feb 26.","parent_key":"BE0002793"} {"ref-id":"A16806","pubmed-id":18350255,"citation":"Elsherbiny DA, Asimus SA, Karlsson MO, Ashton M, Simonsson US: A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens. J Pharmacokinet Pharmacodyn. 2008 Apr;35(2):203-17. doi: 10.1007/s10928-008-9084-6. Epub 2008 Mar 19.","parent_key":"BE0003536"} {"ref-id":"A34606","pubmed-id":11432537,"citation":"Giao PT, de Vries PJ: Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet. 2001;40(5):343-73. doi: 10.2165/00003088-200140050-00003.","parent_key":"BE0003536"} {"ref-id":"A6997","pubmed-id":22098230,"citation":"Pae CU: Desvenlafaxine in the treatment of major depressive disorder. Expert Opin Pharmacother. 2011 Dec;12(18):2923-8. doi: 10.1517/14656566.2011.636033.","parent_key":"BE0002638"} {"ref-id":"A15684","pubmed-id":19000553,"citation":"Malhotra B, Guan Z, Wood N, Gandelman K: Pharmacokinetic profile of fesoterodine. Int J Clin Pharmacol Ther. 2008 Nov;46(11):556-63.","parent_key":"BE0002638"} {"ref-id":"A6999","pubmed-id":21545485,"citation":"Malhotra B, Dickins M, Alvey C, Jumadilova Z, Li X, Duczynski G, Gandelman K: Effects of the moderate CYP3A4 inhibitor, fluconazole, on the pharmacokinetics of fesoterodine in healthy subjects. Br J Clin Pharmacol. 2011 Aug;72(2):263-9. doi: 10.1111/j.1365-2125.2011.04007.x.","parent_key":"BE0002638"} {"ref-id":"A15685","pubmed-id":19347334,"citation":"Malhotra B, Sachse R, Wood N: Evaluation of drug-drug interactions with fesoterodine. Eur J Clin Pharmacol. 2009 Jun;65(6):551-60. doi: 10.1007/s00228-009-0648-1. Epub 2009 Apr 4.","parent_key":"BE0002638"} {"ref-id":"A15686","pubmed-id":19761716,"citation":"Malhotra BK, Wood N, Sachse R: Influence of age, gender, and race on pharmacokinetics, pharmacodynamics, and safety of fesoterodine. Int J Clin Pharmacol Ther. 2009 Sep;47(9):570-8.","parent_key":"BE0002638"} {"ref-id":"A15684","pubmed-id":19000553,"citation":"Malhotra B, Guan Z, Wood N, Gandelman K: Pharmacokinetic profile of fesoterodine. Int J Clin Pharmacol Ther. 2008 Nov;46(11):556-63.","parent_key":"BE0002363"} {"ref-id":"A6999","pubmed-id":21545485,"citation":"Malhotra B, Dickins M, Alvey C, Jumadilova Z, Li X, Duczynski G, Gandelman K: Effects of the moderate CYP3A4 inhibitor, fluconazole, on the pharmacokinetics of fesoterodine in healthy subjects. Br J Clin Pharmacol. 2011 Aug;72(2):263-9. doi: 10.1111/j.1365-2125.2011.04007.x.","parent_key":"BE0002363"} {"ref-id":"A15685","pubmed-id":19347334,"citation":"Malhotra B, Sachse R, Wood N: Evaluation of drug-drug interactions with fesoterodine. Eur J Clin Pharmacol. 2009 Jun;65(6):551-60. doi: 10.1007/s00228-009-0648-1. Epub 2009 Apr 4.","parent_key":"BE0002363"} {"ref-id":"A15686","pubmed-id":19761716,"citation":"Malhotra BK, Wood N, Sachse R: Influence of age, gender, and race on pharmacokinetics, pharmacodynamics, and safety of fesoterodine. Int J Clin Pharmacol Ther. 2009 Sep;47(9):570-8.","parent_key":"BE0002363"} {"ref-id":"A182675","pubmed-id":10630892,"citation":"Rendic S, Nolteernsting E, Schanzer W: Metabolism of anabolic steroids by recombinant human cytochrome P450 enzymes. Gas chromatographic-mass spectrometric determination of metabolites. J Chromatogr B Biomed Sci Appl. 1999 Nov 26;735(1):73-83.","parent_key":"BE0002638"} {"ref-id":"A37909","pubmed-id":14993813,"citation":"Niwa T, Shiraga T, Hashimoto T, Kagayama A: Effect of nilvadipine, a dihydropyridine calcium antagonist, on cytochrome P450 activities in human hepatic microsomes. Biol Pharm Bull. 2004 Mar;27(3):415-7.","parent_key":"BE0002638"} {"ref-id":"A37909","pubmed-id":14993813,"citation":"Niwa T, Shiraga T, Hashimoto T, Kagayama A: Effect of nilvadipine, a dihydropyridine calcium antagonist, on cytochrome P450 activities in human hepatic microsomes. Biol Pharm Bull. 2004 Mar;27(3):415-7.","parent_key":"BE0003336"} {"ref-id":"A37909","pubmed-id":14993813,"citation":"Niwa T, Shiraga T, Hashimoto T, Kagayama A: Effect of nilvadipine, a dihydropyridine calcium antagonist, on cytochrome P450 activities in human hepatic microsomes. Biol Pharm Bull. 2004 Mar;27(3):415-7.","parent_key":"BE0003536"} {"ref-id":"A37909","pubmed-id":14993813,"citation":"Niwa T, Shiraga T, Hashimoto T, Kagayama A: Effect of nilvadipine, a dihydropyridine calcium antagonist, on cytochrome P450 activities in human hepatic microsomes. Biol Pharm Bull. 2004 Mar;27(3):415-7.","parent_key":"BE0002887"} {"ref-id":"A37909","pubmed-id":14993813,"citation":"Niwa T, Shiraga T, Hashimoto T, Kagayama A: Effect of nilvadipine, a dihydropyridine calcium antagonist, on cytochrome P450 activities in human hepatic microsomes. Biol Pharm Bull. 2004 Mar;27(3):415-7.","parent_key":"BE0003533"} {"ref-id":"A39368","pubmed-id":26921085,"citation":"Dushenkov A, Kalabalik J, Carbone A, Jungsuwadee P: Drug interactions with aprepitant or fosaprepitant: Review of literature and implications for clinical practice. J Oncol Pharm Pract. 2017 Jun;23(4):296-308. doi: 10.1177/1078155216631408. Epub 2016 Feb 25.","parent_key":"BE0002793"} {"ref-id":"A15643","pubmed-id":17022718,"citation":"Martinez C, Blanco G, Garcia-Martin E, Agundez JA: [Clinical pharmacogenomics for CYP2C8 and CYP2C9: general concepts and application to the use of NSAIDs]. Farm Hosp. 2006 Jul-Aug;30(4):240-8.","parent_key":"BE0002793"} {"ref-id":"A15644","pubmed-id":15606435,"citation":"Zhang Y, Zhong D, Si D, Guo Y, Chen X, Zhou H: Lornoxicam pharmacokinetics in relation to cytochrome P450 2C9 genotype. Br J Clin Pharmacol. 2005 Jan;59(1):14-7.","parent_key":"BE0002793"} {"ref-id":"A15645","pubmed-id":10640513,"citation":"Kohl C, Steinkellner M: Prediction of pharmacokinetic drug/drug interactions from In vitro data: interactions of the nonsteroidal anti-inflammatory drug lornoxicam with oral anticoagulants. Drug Metab Dispos. 2000 Feb;28(2):161-8.","parent_key":"BE0002793"} {"ref-id":"A7029","pubmed-id":8857077,"citation":"Bonnabry P, Leemann T, Dayer P: Role of human liver microsomal CYP2C9 in the biotransformation of lornoxicam. Eur J Clin Pharmacol. 1996;49(4):305-8.","parent_key":"BE0002793"} {"ref-id":"A39257","pubmed-id":16025294,"citation":"Halling J, Petersen MS, Damkier P, Nielsen F, Grandjean P, Weihe P, Lundgren S, Lundblad MS, Brosen K: Polymorphism of CYP2D6, CYP2C19, CYP2C9 and CYP2C8 in the Faroese population. Eur J Clin Pharmacol. 2005 Aug;61(7):491-7. doi: 10.1007/s00228-005-0938-1. Epub 2005 Jul 16.","parent_key":"BE0002363"} {"ref-id":"A39258","pubmed-id":10594487,"citation":"Damkier P, Hansen LL, Brosen K: Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. Br J Clin Pharmacol. 1999 Dec;48(6):829-38.","parent_key":"BE0002363"} {"ref-id":"A39450","pubmed-id":16945988,"citation":"Kiang TK, Ho PC, Anari MR, Tong V, Abbott FS, Chang TK: Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci. 2006 Dec;94(2):261-71. doi: 10.1093/toxsci/kfl096. Epub 2006 Aug 31.","parent_key":"BE0002793"} {"ref-id":"A39451","pubmed-id":16415119,"citation":"Rehmel JL, Eckstein JA, Farid NA, Heim JB, Kasper SC, Kurihara A, Wrighton SA, Ring BJ: Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450. Drug Metab Dispos. 2006 Apr;34(4):600-7. doi: 10.1124/dmd.105.007989. Epub 2006 Jan 13.","parent_key":"BE0002793"} {"ref-id":"A14841","pubmed-id":7640150,"citation":"Yoshimoto K, Echizen H, Chiba K, Tani M, Ishizaki T: Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers--N-desisopropylation is mediated mainly by CYP1A2. Br J Clin Pharmacol. 1995 Apr;39(4):421-31.","parent_key":"BE0002887"} {"ref-id":"A37823","pubmed-id":8886607,"citation":"Spracklin DK, Thummel KE, Kharasch ED: Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Drug Metab Dispos. 1996 Sep;24(9):976-83.","parent_key":"BE0002363"} {"ref-id":"A15160","pubmed-id":10821163,"citation":"Sai Y, Dai R, Yang TJ, Krausz KW, Gonzalez FJ, Gelboin HV, Shou M: Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica. 2000 Apr;30(4):327-43.","parent_key":"BE0002363"} {"ref-id":"A35837","pubmed-id":11012556,"citation":"Palovaara S, Kivisto KT, Tapanainen P, Manninen P, Neuvonen PJ, Laine K: Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1'-hydroxylation. Br J Clin Pharmacol. 2000 Oct;50(4):333-7.","parent_key":"BE0002638"} {"ref-id":"A39467","pubmed-id":12899669,"citation":"Laine K, Yasar U, Widen J, Tybring G: A screening study on the liability of eight different female sex steroids to inhibit CYP2C9, 2C19 and 3A4 activities in human liver microsomes. Pharmacol Toxicol. 2003 Aug;93(2):77-81.","parent_key":"BE0003536"} {"ref-id":"A38873","pubmed-id":23785064,"citation":"Lutz JD, VandenBrink BM, Babu KN, Nelson WL, Kunze KL, Isoherranen N: Stereoselective inhibition of CYP2C19 and CYP3A4 by fluoxetine and its metabolite: implications for risk assessment of multiple time-dependent inhibitor systems. Drug Metab Dispos. 2013 Dec;41(12):2056-65. doi: 10.1124/dmd.113.052639. Epub 2013 Jun 19.","parent_key":"BE0003536"} {"ref-id":"A38217","pubmed-id":11876575,"citation":"Hemeryck A, Belpaire FM: Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab. 2002 Feb;3(1):13-37.","parent_key":"BE0002638"} {"ref-id":"A17739","pubmed-id":18445989,"citation":"Ghobadi C, Gregory A, Crewe HK, Rostami-Hodjegan A, Lennard MS: CYP2D6 is primarily responsible for the metabolism of clomiphene. Drug Metab Pharmacokinet. 2008;23(2):101-5.","parent_key":"BE0002363"} {"ref-id":"A39468","pubmed-id":12236850,"citation":"Furuta S, Akagawa N, Kamada E, Hiyama A, Kawabata Y, Kowata N, Inaba A, Matthews A, Hall M, Kurimoto T: Involvement of CYP2C9 and UGT2B7 in the metabolism of zaltoprofen, a nonsteroidal anti-inflammatory drug, and its lack of clinically significant CYP inhibition potential. Br J Clin Pharmacol. 2002 Sep;54(3):295-303.","parent_key":"BE0002793"} {"ref-id":"A38673","pubmed-id":16278191,"citation":"Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A: Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein. Xenobiotica. 2005 Aug;35(8):785-96. doi: 10.1080/00498250500183181 .","parent_key":"BE0002793"} {"ref-id":"A38673","pubmed-id":16278191,"citation":"Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A: Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein. Xenobiotica. 2005 Aug;35(8):785-96. doi: 10.1080/00498250500183181 .","parent_key":"BE0002638"} {"ref-id":"A38673","pubmed-id":16278191,"citation":"Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A: Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein. Xenobiotica. 2005 Aug;35(8):785-96. doi: 10.1080/00498250500183181 .","parent_key":"BE0003549"} {"ref-id":"A38673","pubmed-id":16278191,"citation":"Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A: Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein. Xenobiotica. 2005 Aug;35(8):785-96. doi: 10.1080/00498250500183181 .","parent_key":"BE0003536"} {"ref-id":"A38673","pubmed-id":16278191,"citation":"Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A: Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein. Xenobiotica. 2005 Aug;35(8):785-96. doi: 10.1080/00498250500183181 .","parent_key":"BE0002887"} {"ref-id":"A38758","pubmed-id":9010637,"citation":"Kumar GN, Dubberke E, Rodrigues AD, Roberts E, Dennisen JF: Identification of cytochromes P450 involved in the human liver microsomal metabolism of the thromboxane A2 inhibitor seratrodast (ABT-001). Drug Metab Dispos. 1997 Jan;25(1):110-5.","parent_key":"BE0002793"} {"ref-id":"A38758","pubmed-id":9010637,"citation":"Kumar GN, Dubberke E, Rodrigues AD, Roberts E, Dennisen JF: Identification of cytochromes P450 involved in the human liver microsomal metabolism of the thromboxane A2 inhibitor seratrodast (ABT-001). Drug Metab Dispos. 1997 Jan;25(1):110-5.","parent_key":"BE0002638"} {"ref-id":"A38758","pubmed-id":9010637,"citation":"Kumar GN, Dubberke E, Rodrigues AD, Roberts E, Dennisen JF: Identification of cytochromes P450 involved in the human liver microsomal metabolism of the thromboxane A2 inhibitor seratrodast (ABT-001). Drug Metab Dispos. 1997 Jan;25(1):110-5.","parent_key":"BE0002887"} {"ref-id":"A38758","pubmed-id":9010637,"citation":"Kumar GN, Dubberke E, Rodrigues AD, Roberts E, Dennisen JF: Identification of cytochromes P450 involved in the human liver microsomal metabolism of the thromboxane A2 inhibitor seratrodast (ABT-001). Drug Metab Dispos. 1997 Jan;25(1):110-5.","parent_key":"BE0003536"} {"ref-id":"A184895","pubmed-id":10659952,"citation":"Ishiguro N, Senda C, Kishimoto W, Sakai K, Funae Y, Igarashi T: Identification of CYP3A4 as the predominant isoform responsible for the metabolism of ambroxol in human liver microsomes. Xenobiotica. 2000 Jan;30(1):71-80.","parent_key":"BE0002638"} {"ref-id":"A17790","pubmed-id":11851418,"citation":"Zhang Z, Li Y, Stearns RA, Ortiz De Montellano PR, Baillie TA, Tang W: Cytochrome P450 3A4-mediated oxidative conversion of a cyano to an amide group in the metabolism of pinacidil. Biochemistry. 2002 Feb 26;41(8):2712-8.","parent_key":"BE0002638"} {"ref-id":"A18461","pubmed-id":16957931,"citation":"Teichert J, Baumann F, Chao Q, Franklin C, Bailey B, Hennig L, Caca K, Schoppmeyer K, Patzak U, Preiss R: Characterization of two phase I metabolites of bendamustine in human liver microsomes and in cancer patients treated with bendamustine hydrochloride. Cancer Chemother Pharmacol. 2007 May;59(6):759-70. Epub 2006 Sep 7.","parent_key":"BE0002433"} {"ref-id":"A17605","pubmed-id":9065730,"citation":"Nakajima T, Wang RS, Elovaara E, Gonzalez FJ, Gelboin HV, Raunio H, Pelkonen O, Vainio H, Aoyama T: Toluene metabolism by cDNA-expressed human hepatic cytochrome P450. Biochem Pharmacol. 1997 Feb 7;53(3):271-7.","parent_key":"BE0002887"} {"ref-id":"A17606","pubmed-id":9253143,"citation":"Kim H, Wang RS, Elovaara E, Raunio H, Pelkonen O, Aoyama T, Vainio H, Nakajima T: Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica. 1997 Jul;27(7):657-65.","parent_key":"BE0002887"} {"ref-id":"A17607","pubmed-id":9726784,"citation":"Furman GM, Silverman DM, Schatz RA: Inhibition of rat lung mixed-function oxidase activity following repeated low-level toluene inhalation: possible role of toluene metabolites. J Toxicol Environ Health A. 1998 Aug 21;54(8):633-45.","parent_key":"BE0003543"} {"ref-id":"A17605","pubmed-id":9065730,"citation":"Nakajima T, Wang RS, Elovaara E, Gonzalez FJ, Gelboin HV, Raunio H, Pelkonen O, Vainio H, Aoyama T: Toluene metabolism by cDNA-expressed human hepatic cytochrome P450. Biochem Pharmacol. 1997 Feb 7;53(3):271-7.","parent_key":"BE0003543"} {"ref-id":"A17605","pubmed-id":9065730,"citation":"Nakajima T, Wang RS, Elovaara E, Gonzalez FJ, Gelboin HV, Raunio H, Pelkonen O, Vainio H, Aoyama T: Toluene metabolism by cDNA-expressed human hepatic cytochrome P450. Biochem Pharmacol. 1997 Feb 7;53(3):271-7.","parent_key":"BE0002433"} {"ref-id":"A17606","pubmed-id":9253143,"citation":"Kim H, Wang RS, Elovaara E, Raunio H, Pelkonen O, Aoyama T, Vainio H, Nakajima T: Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica. 1997 Jul;27(7):657-65.","parent_key":"BE0002433"} {"ref-id":"A17605","pubmed-id":9065730,"citation":"Nakajima T, Wang RS, Elovaara E, Gonzalez FJ, Gelboin HV, Raunio H, Pelkonen O, Vainio H, Aoyama T: Toluene metabolism by cDNA-expressed human hepatic cytochrome P450. Biochem Pharmacol. 1997 Feb 7;53(3):271-7.","parent_key":"BE0003533"} {"ref-id":"A17609","pubmed-id":15129551,"citation":"Lipscomb JC, Barton HA, Tornero-Velez R, Evans MV, Alcasey S, Snawder JE, Laskey J: The metabolic rate constants and specific activity of human and rat hepatic cytochrome P-450 2E1 toward toluene and chloroform. J Toxicol Environ Health A. 2004 Apr 9;67(7):537-53.","parent_key":"BE0003533"} {"ref-id":"A17606","pubmed-id":9253143,"citation":"Kim H, Wang RS, Elovaara E, Raunio H, Pelkonen O, Aoyama T, Vainio H, Nakajima T: Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica. 1997 Jul;27(7):657-65.","parent_key":"BE0003533"} {"ref-id":"A17610","pubmed-id":8347164,"citation":"Wang RS, Nakajima T, Park SS, Gelboin HV, Murayama N: Monoclonal antibody-directed assessment of toluene induction of rat hepatic cytochrome P450 isozymes. Biochem Pharmacol. 1993 Aug 3;46(3):413-9.","parent_key":"BE0003533"} {"ref-id":"A17611","pubmed-id":11717179,"citation":"Obach RS: Mechanism of cytochrome P4503A4- and 2D6-catalyzed dehydrogenation of ezlopitant as probed with isotope effects using five deuterated analogs. Drug Metab Dispos. 2001 Dec;29(12):1599-607.","parent_key":"BE0002363"} {"ref-id":"A17624","pubmed-id":20388821,"citation":"Takanohashi T, Isaka M, Ubukata K, Mihara R, Bernard BK: Studies of the toxicological potential of capsinoids, XIII: inhibitory effects of capsaicin and capsinoids on cytochrome P450 3A4 in human liver microsomes. Int J Toxicol. 2010 Mar;29(2 Suppl):22S-6S. doi: 10.1177/1091581809360282.","parent_key":"BE0002638"} {"ref-id":"A17628","pubmed-id":20863199,"citation":"Babbar S, Chanda S, Bley K: Inhibition and induction of human cytochrome P450 enzymes in vitro by capsaicin. Xenobiotica. 2010 Dec;40(12):807-16. doi: 10.3109/00498254.2010.520044. Epub 2010 Sep 23.","parent_key":"BE0002433"} {"ref-id":"A39083","pubmed-id":12641434,"citation":"Reilly CA, Ehlhardt WJ, Jackson DA, Kulanthaivel P, Mutlib AE, Espina RJ, Moody DE, Crouch DJ, Yost GS: Metabolism of capsaicin by cytochrome P450 produces novel dehydrogenated metabolites and decreases cytotoxicity to lung and liver cells. Chem Res Toxicol. 2003 Mar;16(3):336-49. doi: 10.1021/tx025599q.","parent_key":"BE0002433"} {"ref-id":"A17629","pubmed-id":7746093,"citation":"Surh YJ, Lee SS: Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci. 1995;56(22):1845-55.","parent_key":"BE0003533"} {"ref-id":"A17667","pubmed-id":18583509,"citation":"Deo AK, Bandiera SM: Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid. Drug Metab Dispos. 2008 Oct;36(10):1983-91. doi: 10.1124/dmd.108.022194. Epub 2008 Jun 26.","parent_key":"BE0002638"} {"ref-id":"A17668","pubmed-id":15454728,"citation":"Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA: Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics. 2004 Oct;14(10):635-45.","parent_key":"BE0002638"} {"ref-id":"A17669","pubmed-id":15821044,"citation":"Lu Y, Heydel JM, Li X, Bratton S, Lindblom T, Radominska-Pandya A: Lithocholic acid decreases expression of UGT2B7 in Caco-2 cells: a potential role for a negative farnesoid X receptor response element. Drug Metab Dispos. 2005 Jul;33(7):937-46. Epub 2005 Apr 8.","parent_key":"BE0003679"} {"ref-id":"A35773","pubmed-id":27084892,"citation":"Cerny MA: Prevalence of Non-Cytochrome P450-Mediated Metabolism in Food and Drug Administration-Approved Oral and Intravenous Drugs: 2006-2015. Drug Metab Dispos. 2016 Aug;44(8):1246-52. doi: 10.1124/dmd.116.070763. Epub 2016 Apr 15.","parent_key":"BE0002638"} {"ref-id":"A7091","pubmed-id":25256193,"citation":"Feghali M, Venkataramanan R, Caritis S: Prevention of preterm delivery with 17-hydroxyprogesterone caproate: pharmacologic considerations. Semin Perinatol. 2014 Dec;38(8):516-22. doi: 10.1053/j.semperi.2014.08.013. Epub 2014 Sep 23.","parent_key":"BE0002638"} {"ref-id":"A7091","pubmed-id":25256193,"citation":"Feghali M, Venkataramanan R, Caritis S: Prevention of preterm delivery with 17-hydroxyprogesterone caproate: pharmacologic considerations. Semin Perinatol. 2014 Dec;38(8):516-22. doi: 10.1053/j.semperi.2014.08.013. Epub 2014 Sep 23.","parent_key":"BE0002362"} {"ref-id":"A38859","pubmed-id":24681287,"citation":"Zhao Y, Alshabi AM, Caritis S, Venkataramanan R: Impact of 17-alpha-hydroxyprogesterone caproate on cytochrome P450s in primary cultures of human hepatocytes. Am J Obstet Gynecol. 2014 Oct;211(4):412.e1-6. doi: 10.1016/j.ajog.2014.03.048. Epub 2014 Mar 26.","parent_key":"BE0003536"} {"ref-id":"A17756","pubmed-id":11124226,"citation":"Bapiro TE, Egnell AC, Hasler JA, Masimirembwa CM: Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos. 2001 Jan;29(1):30-5.","parent_key":"BE0002793"} {"ref-id":"A17830","pubmed-id":11854151,"citation":"Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM: Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002 Mar;30(3):314-8.","parent_key":"BE0002433"} {"ref-id":"A39514","pubmed-id":17220234,"citation":"Katoh M, Matsui T, Yokoi T: Glucuronidation of antiallergic drug, Tranilast: identification of human UDP-glucuronosyltransferase isoforms and effect of its phase I metabolite. Drug Metab Dispos. 2007 Apr;35(4):583-9. doi: 10.1124/dmd.106.013706. Epub 2007 Jan 12.","parent_key":"BE0002793"} {"ref-id":"A14745","pubmed-id":9014207,"citation":"Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4.","parent_key":"BE0002887"} {"ref-id":"A14745","pubmed-id":9014207,"citation":"Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4.","parent_key":"BE0002793"} {"ref-id":"A14745","pubmed-id":9014207,"citation":"Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4.","parent_key":"BE0003536"} {"ref-id":"A36601","pubmed-id":23331088,"citation":"Kim SY, Kang JY, Hartman JH, Park SH, Jones DR, Yun CH, Boysen G, Miller GP: Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins. Drug Metab Lett. 2012 Sep 1;6(3):157-64.","parent_key":"BE0003536"} {"ref-id":"A14745","pubmed-id":9014207,"citation":"Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4.","parent_key":"BE0002433"} {"ref-id":"A36601","pubmed-id":23331088,"citation":"Kim SY, Kang JY, Hartman JH, Park SH, Jones DR, Yun CH, Boysen G, Miller GP: Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins. Drug Metab Lett. 2012 Sep 1;6(3):157-64.","parent_key":"BE0002433"} {"ref-id":"A7166","pubmed-id":21692828,"citation":"Lane S, Al-Zubiedi S, Hatch E, Matthews I, Jorgensen AL, Deloukas P, Daly AK, Park BK, Aarons L, Ogungbenro K, Kamali F, Hughes D, Pirmohamed M: The population pharmacokinetics of R- and S-warfarin: effect of genetic and clinical factors. Br J Clin Pharmacol. 2012 Jan;73(1):66-76. doi: 10.1111/j.1365-2125.2011.04051.x.","parent_key":"BE0002433"} {"ref-id":"A14745","pubmed-id":9014207,"citation":"Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4.","parent_key":"BE0003543"} {"ref-id":"A14745","pubmed-id":9014207,"citation":"Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4.","parent_key":"BE0002638"} {"ref-id":"A6857","pubmed-id":16914510,"citation":"Bu HZ, Zhao P, Kang P, Pool WF, Wu EY: Identification of enzymes responsible for primary and sequential oxygenation reactions of capravirine in human liver microsomes. Drug Metab Dispos. 2006 Nov;34(11):1798-802. Epub 2006 Aug 16.","parent_key":"BE0002638"} {"ref-id":"A6857","pubmed-id":16914510,"citation":"Bu HZ, Zhao P, Kang P, Pool WF, Wu EY: Identification of enzymes responsible for primary and sequential oxygenation reactions of capravirine in human liver microsomes. Drug Metab Dispos. 2006 Nov;34(11):1798-802. Epub 2006 Aug 16.","parent_key":"BE0002887"} {"ref-id":"A6857","pubmed-id":16914510,"citation":"Bu HZ, Zhao P, Kang P, Pool WF, Wu EY: Identification of enzymes responsible for primary and sequential oxygenation reactions of capravirine in human liver microsomes. Drug Metab Dispos. 2006 Nov;34(11):1798-802. Epub 2006 Aug 16.","parent_key":"BE0002793"} {"ref-id":"A6857","pubmed-id":16914510,"citation":"Bu HZ, Zhao P, Kang P, Pool WF, Wu EY: Identification of enzymes responsible for primary and sequential oxygenation reactions of capravirine in human liver microsomes. Drug Metab Dispos. 2006 Nov;34(11):1798-802. Epub 2006 Aug 16.","parent_key":"BE0003536"} {"ref-id":"A16766","pubmed-id":9293615,"citation":"Zweers-Zeilmaker WM, Horbach GJ, Witkamp RF: Differential inhibitory effects of phenytoin, diclofenac, phenylbutazone and a series of sulfonamides on hepatic cytochrome P4502C activity in vitro, and correlation with some molecular descriptors in the dwarf goat (Caprus hircus aegagrus). Xenobiotica. 1997 Aug;27(8):769-80.","parent_key":"BE0002793"} {"ref-id":"A17172","pubmed-id":16711396,"citation":"Toth M, Bajnogel J, Egyed A, Drabant S, Tomlo J, Klebovich I: [Effect of tofisopam on CYP3A4 enzyme activity on human recombinant 3A4 supersome]. Acta Pharm Hung. 2005;75(4):195-8.","parent_key":"BE0002638"} {"ref-id":"A7346","pubmed-id":23545936,"citation":"George M, Amrutheshwar R, Rajkumar RP, Kattimani S, Dkhar SA: Newer antipsychotics and upcoming molecules for schizophrenia. Eur J Clin Pharmacol. 2013 Aug;69(8):1497-509. doi: 10.1007/s00228-013-1498-4. Epub 2013 Apr 2.","parent_key":"BE0002638"} {"ref-id":"A17595","pubmed-id":20551239,"citation":"Teng R, Oliver S, Hayes MA, Butler K: Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos. 2010 Sep;38(9):1514-21. doi: 10.1124/dmd.110.032250. Epub 2010 Jun 15.","parent_key":"BE0002638"} {"ref-id":"A39472","pubmed-id":21177984,"citation":"Zhou D, Andersson TB, Grimm SW: In vitro evaluation of potential drug-drug interactions with ticagrelor: cytochrome P450 reaction phenotyping, inhibition, induction, and differential kinetics. Drug Metab Dispos. 2011 Apr;39(4):703-10. doi: 10.1124/dmd.110.037143. Epub 2010 Dec 22.","parent_key":"BE0002793"} {"ref-id":"A39473","pubmed-id":26063049,"citation":"Teng R: Ticagrelor: Pharmacokinetic, Pharmacodynamic and Pharmacogenetic Profile: An Update. Clin Pharmacokinet. 2015 Nov;54(11):1125-38. doi: 10.1007/s40262-015-0290-2.","parent_key":"BE0002793"} {"ref-id":"A179746","pubmed-id":25103957,"citation":"Robertson SM, Luo X, Dubey N, Li C, Chavan AB, Gilmartin GS, Higgins M, Mahnke L: Clinical drug-drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P-glycoprotein. J Clin Pharmacol. 2015 Jan;55(1):56-62. doi: 10.1002/jcph.377. Epub 2014 Aug 27.","parent_key":"BE0002638"} {"ref-id":"A179752","pubmed-id":29488691,"citation":"Guimbellot JS, Acosta EP, Rowe SM: Sensitivity of ivacaftor to drug-drug interactions with rifampin, a cytochrome P450 3A4 inducer. Pediatr Pulmonol. 2018 May;53(5):E6-E8. doi: 10.1002/ppul.23971. Epub 2018 Feb 28.","parent_key":"BE0002638"} {"ref-id":"A179746","pubmed-id":25103957,"citation":"Robertson SM, Luo X, Dubey N, Li C, Chavan AB, Gilmartin GS, Higgins M, Mahnke L: Clinical drug-drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P-glycoprotein. J Clin Pharmacol. 2015 Jan;55(1):56-62. doi: 10.1002/jcph.377. Epub 2014 Aug 27.","parent_key":"BE0002362"} {"ref-id":"A179752","pubmed-id":29488691,"citation":"Guimbellot JS, Acosta EP, Rowe SM: Sensitivity of ivacaftor to drug-drug interactions with rifampin, a cytochrome P450 3A4 inducer. Pediatr Pulmonol. 2018 May;53(5):E6-E8. doi: 10.1002/ppul.23971. Epub 2018 Feb 28.","parent_key":"BE0002362"} {"ref-id":"A7370","pubmed-id":23662017,"citation":"Sandhiya S, Melvin G, Kumar SS, Dkhar SA: The dawn of hedgehog inhibitors: Vismodegib. J Pharmacol Pharmacother. 2013 Jan;4(1):4-7. doi: 10.4103/0976-500X.107628.","parent_key":"BE0002793"} {"ref-id":"A7370","pubmed-id":23662017,"citation":"Sandhiya S, Melvin G, Kumar SS, Dkhar SA: The dawn of hedgehog inhibitors: Vismodegib. J Pharmacol Pharmacother. 2013 Jan;4(1):4-7. doi: 10.4103/0976-500X.107628.","parent_key":"BE0002638"} {"ref-id":"A38787","pubmed-id":23319845,"citation":"Fellner C: Vismodegib (erivedge) for advanced Basal cell carcinoma. P T. 2012 Dec;37(12):670-82.","parent_key":"BE0003536"} {"ref-id":"A17989","pubmed-id":10216279,"citation":"Araya Z, Wikvall K: 6alpha-hydroxylation of taurochenodeoxycholic acid and lithocholic acid by CYP3A4 in human liver microsomes. Biochim Biophys Acta. 1999 Apr 19;1438(1):47-54.","parent_key":"BE0002638"} {"ref-id":"A18117","pubmed-id":15720138,"citation":"Dick RA, Kanne DB, Casida JE: Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Chem Res Toxicol. 2005 Feb;18(2):317-23.","parent_key":"BE0003539"} {"ref-id":"A18039","pubmed-id":19469472,"citation":"Gonzalez-Sarrias A, Azorin-Ortuno M, Yanez-Gascon MJ, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC: Dissimilar in vitro and in vivo effects of ellagic acid and its microbiota-derived metabolites, urolithins, on the cytochrome P450 1A1. J Agric Food Chem. 2009 Jun 24;57(12):5623-32. doi: 10.1021/jf900725e.","parent_key":"BE0003543"} {"ref-id":"A18040","pubmed-id":8024593,"citation":"Barch DH, Rundhaugen LM, Thomas PE, Kardos P, Pillay NS: Dietary ellagic acid inhibits the enzymatic activity of CYP1A1 without altering hepatic concentrations of CYP1A1 or CYP1A1 mRNA. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1477-82.","parent_key":"BE0003543"} {"ref-id":"A18041","pubmed-id":8625497,"citation":"Ahn D, Putt D, Kresty L, Stoner GD, Fromm D, Hollenberg PF: The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase II enzymes. Carcinogenesis. 1996 Apr;17(4):821-8.","parent_key":"BE0003533"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0003679"} {"ref-id":"A182015","pubmed-id":28130659,"citation":"Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8.","parent_key":"BE0003679"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0003677"} {"ref-id":"A182015","pubmed-id":28130659,"citation":"Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8.","parent_key":"BE0003677"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0002793"} {"ref-id":"A182015","pubmed-id":28130659,"citation":"Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8.","parent_key":"BE0002793"} {"ref-id":"A7412","pubmed-id":22472908,"citation":"Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0.","parent_key":"BE0002887"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0002638"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0003536"} {"ref-id":"A38861","pubmed-id":27799217,"citation":"Aouri M, Barcelo C, Guidi M, Rotger M, Cavassini M, Hizrel C, Buclin T, Decosterd LA, Csajka C: Population Pharmacokinetics and Pharmacogenetics Analysis of Rilpivirine in HIV-1-Infected Individuals. Antimicrob Agents Chemother. 2016 Dec 27;61(1). pii: AAC.00899-16. doi: 10.1128/AAC.00899-16. Print 2017 Jan.","parent_key":"BE0003536"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0003549"} {"ref-id":"A7416","pubmed-id":23428312,"citation":"Weiss J, Haefeli WE: Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013 May;41(5):484-7. doi: 10.1016/j.ijantimicag.2013.01.004. Epub 2013 Feb 18.","parent_key":"BE0002363"} {"ref-id":"A7418","pubmed-id":23686600,"citation":"Timm A, Kolesar JM: Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7. doi: 10.2146/ajhp120261.","parent_key":"BE0002638"} {"ref-id":"A7418","pubmed-id":23686600,"citation":"Timm A, Kolesar JM: Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7. doi: 10.2146/ajhp120261.","parent_key":"BE0002362"} {"ref-id":"A36633","pubmed-id":24713129,"citation":"Filppula AM, Neuvonen PJ, Backman JT: In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors. Drug Metab Dispos. 2014 Jul;42(7):1202-9. doi: 10.1124/dmd.114.057695. Epub 2014 Apr 8.","parent_key":"BE0004866"} {"ref-id":"A7426","pubmed-id":23437846,"citation":"Gemzell-Danielsson K, Rabe T, Cheng L: Emergency contraception. Gynecol Endocrinol. 2013 Mar;29 Suppl 1:1-14. doi: 10.3109/09513590.2013.774591.","parent_key":"BE0002638"} {"ref-id":"A7427","pubmed-id":22770536,"citation":"Martinez AM, Thomas MA: Ulipristal acetate as an emergency contraceptive agent. Expert Opin Pharmacother. 2012 Sep;13(13):1937-42. doi: 10.1517/14656566.2012.705832. Epub 2012 Jul 7.","parent_key":"BE0002433"} {"ref-id":"A33750","pubmed-id":25228633,"citation":"Pohl O, Zobrist RH, Gotteland JP: The clinical pharmacology and pharmacokinetics of ulipristal acetate for the treatment of uterine fibroids. Reprod Sci. 2015 Apr;22(4):476-83. doi: 10.1177/1933719114549850. Epub 2014 Sep 16.","parent_key":"BE0002433"} {"ref-id":"A39026","pubmed-id":24102384,"citation":"Pohl O, Osterloh I, Gotteland JP: Effects of erythromycin at steady-state concentrations on the pharmacokinetics of ulipristal acetate. J Clin Pharm Ther. 2013 Dec;38(6):512-7. doi: 10.1111/jcpt.12098. Epub 2013 Sep 16.","parent_key":"BE0002433"} {"ref-id":"A192864","pubmed-id":20959468,"citation":"Pchejetski D, Bohler T, Brizuela L, Sauer L, Doumerc N, Golzio M, Salunkhe V, Teissie J, Malavaud B, Waxman J, Cuvillier O: FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res. 2010 Nov 1;70(21):8651-61. doi: 10.1158/0008-5472.CAN-10-1388. Epub 2010 Oct 19.","parent_key":"BE0004728"} {"ref-id":"A192867","pubmed-id":14596938,"citation":"Paugh SW, Payne SG, Barbour SE, Milstien S, Spiegel S: The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett. 2003 Nov 6;554(1-2):189-93. doi: 10.1016/s0014-5793(03)01168-2.","parent_key":"BE0004728"} {"ref-id":"A192870","pubmed-id":22251137,"citation":"Spijkers LJ, Alewijnse AE, Peters SL: FTY720 (fingolimod) increases vascular tone and blood pressure in spontaneously hypertensive rats via inhibition of sphingosine kinase. Br J Pharmacol. 2012 Jun;166(4):1411-8. doi: 10.1111/j.1476-5381.2012.01865.x.","parent_key":"BE0004728"} {"ref-id":"A39725","pubmed-id":21045201,"citation":"Jin Y, Zollinger M, Borell H, Zimmerlin A, Patten CJ: CYP4F enzymes are responsible for the elimination of fingolimod (FTY720), a novel treatment of relapsing multiple sclerosis. Drug Metab Dispos. 2011 Feb;39(2):191-8. doi: 10.1124/dmd.110.035378. Epub 2010 Nov 2.","parent_key":"BE0003533"} {"ref-id":"A192873","pubmed-id":24579791,"citation":"Tanasescu R, Constantinescu CS: Pharmacokinetic evaluation of fingolimod for the treatment of multiple sclerosis. Expert Opin Drug Metab Toxicol. 2014 Apr;10(4):621-30. doi: 10.1517/17425255.2014.894019. Epub 2014 Mar 1.","parent_key":"BE0004727"} {"ref-id":"A7441","pubmed-id":23140245,"citation":"Kiser JJ, Flexner C: Direct-acting antiviral agents for hepatitis C virus infection. Annu Rev Pharmacol Toxicol. 2013;53:427-49. doi: 10.1146/annurev-pharmtox-011112-140254. Epub 2012 Nov 5.","parent_key":"BE0002638"} {"ref-id":"A34926","pubmed-id":22345334,"citation":"Wilby KJ, Greanya ED, Ford JA, Yoshida EM, Partovi N: A review of drug interactions with boceprevir and telaprevir: implications for HIV and transplant patients. Ann Hepatol. 2012 Mar-Apr;11(2):179-85.","parent_key":"BE0002638"} {"ref-id":"A31660","pubmed-id":23529734,"citation":"Hulskotte EG, Feng HP, Xuan F, Gupta S, van Zutven MG, O'Mara E, Wagner JA, Butterton JR: Pharmacokinetic evaluation of the interaction between hepatitis C virus protease inhibitor boceprevir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and pravastatin. Antimicrob Agents Chemother. 2013 Jun;57(6):2582-8. doi: 10.1128/AAC.02347-12. Epub 2013 Mar 25.","parent_key":"BE0002638"} {"ref-id":"A7441","pubmed-id":23140245,"citation":"Kiser JJ, Flexner C: Direct-acting antiviral agents for hepatitis C virus infection. Annu Rev Pharmacol Toxicol. 2013;53:427-49. doi: 10.1146/annurev-pharmtox-011112-140254. Epub 2012 Nov 5.","parent_key":"BE0002362"} {"ref-id":"A33518","pubmed-id":22576324,"citation":"Hulskotte E, Gupta S, Xuan F, van Zutven M, O'Mara E, Feng HP, Wagner J, Butterton J: Pharmacokinetic interaction between the hepatitis C virus protease inhibitor boceprevir and cyclosporine and tacrolimus in healthy volunteers. Hepatology. 2012 Nov;56(5):1622-30. doi: 10.1002/hep.25831. Epub 2012 Oct 14.","parent_key":"BE0002362"} {"ref-id":"A38408","pubmed-id":25854986,"citation":"Nguyen L, Holland J, Miles D, Engel C, Benrimoh N, O'Reilly T, Lacy S: Pharmacokinetic (PK) drug interaction studies of cabozantinib: Effect of CYP3A inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol. 2015 Sep;55(9):1012-23. doi: 10.1002/jcph.510. Epub 2015 Jun 2.","parent_key":"BE0002638"} {"ref-id":"A38409","pubmed-id":29089775,"citation":"Gerendash BS, Creel PA: Practical management of adverse events associated with cabozantinib treatment in patients with renal-cell carcinoma. Onco Targets Ther. 2017 Oct 19;10:5053-5064. doi: 10.2147/OTT.S145295. eCollection 2017.","parent_key":"BE0002638"} {"ref-id":"A38610","pubmed-id":27835047,"citation":"Escudier B, Lougheed JC, Albiges L: Cabozantinib for the treatment of renal cell carcinoma. Expert Opin Pharmacother. 2016 Dec;17(18):2499-2504. doi: 10.1080/14656566.2016.1258059. Epub 2016 Nov 22.","parent_key":"BE0002887"} {"ref-id":"A7450","pubmed-id":23061804,"citation":"Yang LP, Keating GM: Ruxolitinib: in the treatment of myelofibrosis. Drugs. 2012 Nov 12;72(16):2117-27. doi: 10.2165/11209340-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A39084","pubmed-id":26758290,"citation":"Chan A, de Seze J, Comabella M: Teriflunomide in Patients with Relapsing-Remitting Forms of Multiple Sclerosis. CNS Drugs. 2016 Jan;30(1):41-51. doi: 10.1007/s40263-015-0299-y.","parent_key":"BE0002433"} {"ref-id":"A7458","pubmed-id":23094782,"citation":"Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24.","parent_key":"BE0002433"} {"ref-id":"A7458","pubmed-id":23094782,"citation":"Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24.","parent_key":"BE0002363"} {"ref-id":"A7458","pubmed-id":23094782,"citation":"Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24.","parent_key":"BE0002638"} {"ref-id":"A176948","pubmed-id":20086031,"citation":"Blech S, Ludwig-Schwellinger E, Grafe-Mody EU, Withopf B, Wagner K: The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos. 2010 Apr;38(4):667-78. doi: 10.1124/dmd.109.031476. Epub 2010 Jan 19.","parent_key":"BE0002638"} {"ref-id":"A38443","pubmed-id":25495693,"citation":"Patsalos PN: The clinical pharmacology profile of the new antiepileptic drug perampanel: A novel noncompetitive AMPA receptor antagonist. Epilepsia. 2015 Jan;56(1):12-27. doi: 10.1111/epi.12865. Epub 2014 Dec 13.","parent_key":"BE0002638"} {"ref-id":"A39056","pubmed-id":27904300,"citation":"Greenwood J, Valdes J: Perampanel (Fycompa): A Review of Clinical Efficacy and Safety in Epilepsy. P T. 2016 Nov;41(11):683-698.","parent_key":"BE0002433"} {"ref-id":"A17948","pubmed-id":23625188,"citation":"Lee J, Moy S, Meijer J, Krauwinkel W, Sawamoto T, Kerbusch V, Kowalski D, Roy M, Marion A, Takusagawa S, van Gelderen M, Keirns J: Role of cytochrome p450 isoenzymes 3A and 2D6 in the in vivo metabolism of mirabegron, a beta3-adrenoceptor agonist. Clin Drug Investig. 2013 Jun;33(6):429-40. doi: 10.1007/s40261-013-0084-y.","parent_key":"BE0002638"} {"ref-id":"A17949","pubmed-id":22509825,"citation":"Takusagawa S, Yajima K, Miyashita A, Uehara S, Iwatsubo T, Usui T: Identification of human cytochrome P450 isoforms and esterases involved in the metabolism of mirabegron, a potent and selective beta3-adrenoceptor agonist. Xenobiotica. 2012 Oct;42(10):957-67. doi: 10.3109/00498254.2012.675095. Epub 2012 Apr 18.","parent_key":"BE0002638"} {"ref-id":"A17948","pubmed-id":23625188,"citation":"Lee J, Moy S, Meijer J, Krauwinkel W, Sawamoto T, Kerbusch V, Kowalski D, Roy M, Marion A, Takusagawa S, van Gelderen M, Keirns J: Role of cytochrome p450 isoenzymes 3A and 2D6 in the in vivo metabolism of mirabegron, a beta3-adrenoceptor agonist. Clin Drug Investig. 2013 Jun;33(6):429-40. doi: 10.1007/s40261-013-0084-y.","parent_key":"BE0002363"} {"ref-id":"A17949","pubmed-id":22509825,"citation":"Takusagawa S, Yajima K, Miyashita A, Uehara S, Iwatsubo T, Usui T: Identification of human cytochrome P450 isoforms and esterases involved in the metabolism of mirabegron, a potent and selective beta3-adrenoceptor agonist. Xenobiotica. 2012 Oct;42(10):957-67. doi: 10.3109/00498254.2012.675095. Epub 2012 Apr 18.","parent_key":"BE0002363"} {"ref-id":"A33429","pubmed-id":25929560,"citation":"Gibbons JA, de Vries M, Krauwinkel W, Ohtsu Y, Noukens J, van der Walt JS, Mol R, Mordenti J, Ouatas T: Pharmacokinetic Drug Interaction Studies with Enzalutamide. Clin Pharmacokinet. 2015 Oct;54(10):1057-69. doi: 10.1007/s40262-015-0283-1.","parent_key":"BE0002638"} {"ref-id":"A39359","pubmed-id":23589709,"citation":"Golshayan AR, Antonarakis ES: Enzalutamide: an evidence-based review of its use in the treatment of prostate cancer. Core Evid. 2013;8:27-35. doi: 10.2147/CE.S34747. Epub 2013 Apr 4.","parent_key":"BE0002793"} {"ref-id":"A33429","pubmed-id":25929560,"citation":"Gibbons JA, de Vries M, Krauwinkel W, Ohtsu Y, Noukens J, van der Walt JS, Mol R, Mordenti J, Ouatas T: Pharmacokinetic Drug Interaction Studies with Enzalutamide. Clin Pharmacokinet. 2015 Oct;54(10):1057-69. doi: 10.1007/s40262-015-0283-1.","parent_key":"BE0003536"} {"ref-id":"A39316","pubmed-id":28882992,"citation":"Lin, Kostov R, Huang JT, Henderson CJ, Wolf CR: Novel Pathways of Ponatinib Disposition Catalyzed By CYP1A1 Involving Generation of Potentially Toxic Metabolites. J Pharmacol Exp Ther. 2017 Oct;363(1):12-19. doi: 10.1124/jpet.117.243246.","parent_key":"BE0002363"} {"ref-id":"A38851","pubmed-id":23986642,"citation":"Price KE, Saleem N, Lee G, Steinberg M: Potential of ponatinib to treat chronic myeloid leukemia and acute lymphoblastic leukemia. Onco Targets Ther. 2013 Aug 20;6:1111-8. doi: 10.2147/OTT.S36980. eCollection 2013.","parent_key":"BE0002362"} {"ref-id":"A38266","pubmed-id":24391386,"citation":"Sarnoski-Brocavich S, Hilas O: Canagliflozin (invokana), a novel oral agent for type-2 diabetes. P T. 2013 Nov;38(11):656-66.","parent_key":"BE0003538"} {"ref-id":"A34458","pubmed-id":25407255,"citation":"Devineni D, Vaccaro N, Murphy J, Curtin C, Mamidi RN, Weiner S, Wang SS, Ariyawansa J, Stieltjes H, Wajs E, Di Prospero NA, Rothenberg P: Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Int J Clin Pharmacol Ther. 2015 Feb;53(2):115-28. doi: 10.5414/CP202158.","parent_key":"BE0003538"} {"ref-id":"A38266","pubmed-id":24391386,"citation":"Sarnoski-Brocavich S, Hilas O: Canagliflozin (invokana), a novel oral agent for type-2 diabetes. P T. 2013 Nov;38(11):656-66.","parent_key":"BE0003681"} {"ref-id":"A34458","pubmed-id":25407255,"citation":"Devineni D, Vaccaro N, Murphy J, Curtin C, Mamidi RN, Weiner S, Wang SS, Ariyawansa J, Stieltjes H, Wajs E, Di Prospero NA, Rothenberg P: Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Int J Clin Pharmacol Ther. 2015 Feb;53(2):115-28. doi: 10.5414/CP202158.","parent_key":"BE0003681"} {"ref-id":"A177005","pubmed-id":26185406,"citation":"Mosley JF 2nd, Smith L, Everton E, Fellner C: Sodium-Glucose Linked Transporter 2 (SGLT2) Inhibitors in the Management Of Type-2 Diabetes: A Drug Class Overview. P T. 2015 Jul;40(7):451-62.","parent_key":"BE0002638"} {"ref-id":"A39027","pubmed-id":25556560,"citation":"Li Y, Xu Y, Liu L, Wang X, Palmisano M, Zhou S: Population pharmacokinetics of pomalidomide. J Clin Pharmacol. 2015 May;55(5):563-72. doi: 10.1002/jcph.455. Epub 2015 Feb 4.","parent_key":"BE0002433"} {"ref-id":"A187973","pubmed-id":29574693,"citation":"Rowland A, van Dyk M, Hopkins AM, Mounzer R, Polasek TM, Rostami-Hodjegan A, Sorich MJ: Physiologically Based Pharmacokinetic Modeling to Identify Physiological and Molecular Characteristics Driving Variability in Drug Exposure. Clin Pharmacol Ther. 2018 Dec;104(6):1219-1228. doi: 10.1002/cpt.1076. Epub 2018 Apr 19.","parent_key":"BE0002638"} {"ref-id":"A39175","pubmed-id":24748562,"citation":"Lawrence SK, Nguyen D, Bowen C, Richards-Peterson L, Skordos KW: The metabolic drug-drug interaction profile of Dabrafenib: in vitro investigations and quantitative extrapolation of the P450-mediated DDI risk. Drug Metab Dispos. 2014 Jul;42(7):1180-90. doi: 10.1124/dmd.114.057778. Epub 2014 Apr 18.","parent_key":"BE0003549"} {"ref-id":"A39457","pubmed-id":25449654,"citation":"Suttle AB, Grossmann KF, Ouellet D, Richards-Peterson LE, Aktan G, Gordon MS, LoRusso PM, Infante JR, Sharma S, Kendra K, Patel M, Pant S, Arkenau HT, Middleton MR, Blackman SC, Botbyl J, Carson SW: Assessment of the drug interaction potential and single- and repeat-dose pharmacokinetics of the BRAF inhibitor dabrafenib. J Clin Pharmacol. 2015 Apr;55(4):392-400. doi: 10.1002/jcph.437. Epub 2014 Dec 30.","parent_key":"BE0002793"} {"ref-id":"A38560","pubmed-id":26572745,"citation":"Bruno A, Morabito P, Spina E, Muscatello MR: The Role of Levomilnacipran in the Management of Major Depressive Disorder: A Comprehensive Review. Curr Neuropharmacol. 2016;14(2):191-9.","parent_key":"BE0002887"} {"ref-id":"A19676","pubmed-id":15257064,"citation":"Yasui-Furukori N, Furukori H, Nakagami T, Saito M, Inoue Y, Kaneko S, Tateishi T: Steady-state pharmacokinetics of a new antipsychotic agent perospirone and its active metabolite, and its relationship with prolactin response. Ther Drug Monit. 2004 Aug;26(4):361-5.","parent_key":"BE0002638"} {"ref-id":"A19676","pubmed-id":15257064,"citation":"Yasui-Furukori N, Furukori H, Nakagami T, Saito M, Inoue Y, Kaneko S, Tateishi T: Steady-state pharmacokinetics of a new antipsychotic agent perospirone and its active metabolite, and its relationship with prolactin response. Ther Drug Monit. 2004 Aug;26(4):361-5.","parent_key":"BE0002363"} {"ref-id":"A19676","pubmed-id":15257064,"citation":"Yasui-Furukori N, Furukori H, Nakagami T, Saito M, Inoue Y, Kaneko S, Tateishi T: Steady-state pharmacokinetics of a new antipsychotic agent perospirone and its active metabolite, and its relationship with prolactin response. Ther Drug Monit. 2004 Aug;26(4):361-5.","parent_key":"BE0002887"} {"ref-id":"A19676","pubmed-id":15257064,"citation":"Yasui-Furukori N, Furukori H, Nakagami T, Saito M, Inoue Y, Kaneko S, Tateishi T: Steady-state pharmacokinetics of a new antipsychotic agent perospirone and its active metabolite, and its relationship with prolactin response. Ther Drug Monit. 2004 Aug;26(4):361-5.","parent_key":"BE0003543"} {"ref-id":"A7528","pubmed-id":25395817,"citation":"Khaybullina D, Patel A, Zerilli T: Riociguat (adempas): a novel agent for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. P T. 2014 Nov;39(11):749-58.","parent_key":"BE0003543"} {"ref-id":"A7528","pubmed-id":25395817,"citation":"Khaybullina D, Patel A, Zerilli T: Riociguat (adempas): a novel agent for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. P T. 2014 Nov;39(11):749-58.","parent_key":"BE0002638"} {"ref-id":"A7528","pubmed-id":25395817,"citation":"Khaybullina D, Patel A, Zerilli T: Riociguat (adempas): a novel agent for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. P T. 2014 Nov;39(11):749-58.","parent_key":"BE0002887"} {"ref-id":"A39285","pubmed-id":18466106,"citation":"Gunes A, Dahl ML: Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics. 2008 May;9(5):625-37. doi: 10.2217/14622416.9.5.625.","parent_key":"BE0002433"} {"ref-id":"A7581","pubmed-id":18611061,"citation":"Vaidyanathan S, Jarugula V, Dieterich HA, Howard D, Dole WP: Clinical pharmacokinetics and pharmacodynamics of aliskiren. Clin Pharmacokinet. 2008;47(8):515-31.","parent_key":"BE0002638"} {"ref-id":"A204305","pubmed-id":19066408,"citation":"Buczko W, Hermanowicz JM: Pharmacokinetics and pharmacodynamics of aliskiren, an oral direct renin inhibitor. Pharmacol Rep. 2008 Sep-Oct;60(5):623-31.","parent_key":"BE0002638"} {"ref-id":"A38479","pubmed-id":28781465,"citation":"Nair AS: Vorapaxar: The missing link in antiplatelet therapy! J Anaesthesiol Clin Pharmacol. 2017 Apr-Jun;33(2):269-270. doi: 10.4103/joacp.JOACP_363_16.","parent_key":"BE0002638"} {"ref-id":"A38480","pubmed-id":28063023,"citation":"Gryka RJ, Buckley LF, Anderson SM: Vorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease. Drugs R D. 2017 Mar;17(1):65-72. doi: 10.1007/s40268-016-0158-4.","parent_key":"BE0002638"} {"ref-id":"A38470","pubmed-id":26955275,"citation":"Lee-Iannotti JK, Parish JM: Suvorexant: a promising, novel treatment for insomnia. Neuropsychiatr Dis Treat. 2016 Feb 25;12:491-5. doi: 10.2147/NDT.S31495. eCollection 2016.","parent_key":"BE0002638"} {"ref-id":"A38471","pubmed-id":26478806,"citation":"Rhyne DN, Anderson SL: Suvorexant in insomnia: efficacy, safety and place in therapy. Ther Adv Drug Saf. 2015 Oct;6(5):189-95. doi: 10.1177/2042098615595359.","parent_key":"BE0002638"} {"ref-id":"A7634","pubmed-id":25239269,"citation":"Poole RM: Eliglustat: first global approval. Drugs. 2014 Oct;74(15):1829-36. doi: 10.1007/s40265-014-0296-3.","parent_key":"BE0002363"} {"ref-id":"A7634","pubmed-id":25239269,"citation":"Poole RM: Eliglustat: first global approval. Drugs. 2014 Oct;74(15):1829-36. doi: 10.1007/s40265-014-0296-3.","parent_key":"BE0002638"} {"ref-id":"A18333","pubmed-id":23748441,"citation":"Calcagnile S, Lanzarotti C, Rossi G, Henriksson A, Kammerer KP, Timmer W: Effect of netupitant, a highly selective NK(1) receptor antagonist, on the pharmacokinetics of palonosetron and impact of the fixed dose combination of netupitant and palonosetron when coadministered with ketoconazole, rifampicin, and oral contraceptives. Support Care Cancer. 2013 Oct;21(10):2879-87. doi: 10.1007/s00520-013-1857-9. Epub 2013 Jun 11.","parent_key":"BE0003550"} {"ref-id":"A18333","pubmed-id":23748441,"citation":"Calcagnile S, Lanzarotti C, Rossi G, Henriksson A, Kammerer KP, Timmer W: Effect of netupitant, a highly selective NK(1) receptor antagonist, on the pharmacokinetics of palonosetron and impact of the fixed dose combination of netupitant and palonosetron when coadministered with ketoconazole, rifampicin, and oral contraceptives. Support Care Cancer. 2013 Oct;21(10):2879-87. doi: 10.1007/s00520-013-1857-9. Epub 2013 Jun 11.","parent_key":"BE0002793"} {"ref-id":"A18333","pubmed-id":23748441,"citation":"Calcagnile S, Lanzarotti C, Rossi G, Henriksson A, Kammerer KP, Timmer W: Effect of netupitant, a highly selective NK(1) receptor antagonist, on the pharmacokinetics of palonosetron and impact of the fixed dose combination of netupitant and palonosetron when coadministered with ketoconazole, rifampicin, and oral contraceptives. Support Care Cancer. 2013 Oct;21(10):2879-87. doi: 10.1007/s00520-013-1857-9. Epub 2013 Jun 11.","parent_key":"BE0002363"} {"ref-id":"A38450","pubmed-id":23729226,"citation":"Lanzarotti C, Rossi G: Effect of netupitant, a highly selective NK(1) receptor antagonist, on the pharmacokinetics of midazolam, erythromycin, and dexamethasone. Support Care Cancer. 2013 Oct;21(10):2783-91. doi: 10.1007/s00520-013-1855-y. Epub 2013 Jun 1.","parent_key":"BE0002638"} {"ref-id":"A7653","pubmed-id":25471070,"citation":"Leonard J, Baker DE: Naloxegol: treatment for opioid-induced constipation in chronic non-cancer pain. Ann Pharmacother. 2015 Mar;49(3):360-5. doi: 10.1177/1060028014560191. Epub 2014 Dec 3.","parent_key":"BE0002638"} {"ref-id":"A7653","pubmed-id":25471070,"citation":"Leonard J, Baker DE: Naloxegol: treatment for opioid-induced constipation in chronic non-cancer pain. Ann Pharmacother. 2015 Mar;49(3):360-5. doi: 10.1177/1060028014560191. Epub 2014 Dec 3.","parent_key":"BE0002363"} {"ref-id":"A7653","pubmed-id":25471070,"citation":"Leonard J, Baker DE: Naloxegol: treatment for opioid-induced constipation in chronic non-cancer pain. Ann Pharmacother. 2015 Mar;49(3):360-5. doi: 10.1177/1060028014560191. Epub 2014 Dec 3.","parent_key":"BE0003536"} {"ref-id":"A7663","pubmed-id":25488930,"citation":"Scheers E, Leclercq L, de Jong J, Bode N, Bockx M, Laenen A, Cuyckens F, Skee D, Murphy J, Sukbuntherng J, Mannens G: Absorption, metabolism, and excretion of oral (1)(4)C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015 Feb;43(2):289-97. doi: 10.1124/dmd.114.060061. Epub 2014 Dec 8.","parent_key":"BE0002638"} {"ref-id":"A7663","pubmed-id":25488930,"citation":"Scheers E, Leclercq L, de Jong J, Bode N, Bockx M, Laenen A, Cuyckens F, Skee D, Murphy J, Sukbuntherng J, Mannens G: Absorption, metabolism, and excretion of oral (1)(4)C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015 Feb;43(2):289-97. doi: 10.1124/dmd.114.060061. Epub 2014 Dec 8.","parent_key":"BE0002362"} {"ref-id":"A7663","pubmed-id":25488930,"citation":"Scheers E, Leclercq L, de Jong J, Bode N, Bockx M, Laenen A, Cuyckens F, Skee D, Murphy J, Sukbuntherng J, Mannens G: Absorption, metabolism, and excretion of oral (1)(4)C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015 Feb;43(2):289-97. doi: 10.1124/dmd.114.060061. Epub 2014 Dec 8.","parent_key":"BE0002363"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0002793"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0003536"} {"ref-id":"A185354","pubmed-id":24160757,"citation":"Stout SM, Cimino NM: Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014 Feb;46(1):86-95. doi: 10.3109/03602532.2013.849268. Epub 2013 Oct 25.","parent_key":"BE0002363"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0002638"} {"ref-id":"A185354","pubmed-id":24160757,"citation":"Stout SM, Cimino NM: Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014 Feb;46(1):86-95. doi: 10.3109/03602532.2013.849268. Epub 2013 Oct 25.","parent_key":"BE0002362"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0003543"} {"ref-id":"A33351","pubmed-id":23811569,"citation":"Yamaori S, Okushima Y, Masuda K, Kushihara M, Katsu T, Narimatsu S, Yamamoto I, Watanabe K: Structural requirements for potent direct inhibition of human cytochrome P450 1A1 by cannabidiol: role of pentylresorcinol moiety. Biol Pharm Bull. 2013;36(7):1197-203.","parent_key":"BE0003543"} {"ref-id":"A7681","pubmed-id":20043009,"citation":"Mathias AA, German P, Murray BP, Wei L, Jain A, West S, Warren D, Hui J, Kearney BP: Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2010 Mar;87(3):322-9. doi: 10.1038/clpt.2009.228. Epub 2009 Dec 30.","parent_key":"BE0002363"} {"ref-id":"A7681","pubmed-id":20043009,"citation":"Mathias AA, German P, Murray BP, Wei L, Jain A, West S, Warren D, Hui J, Kearney BP: Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2010 Mar;87(3):322-9. doi: 10.1038/clpt.2009.228. Epub 2009 Dec 30.","parent_key":"BE0002638"} {"ref-id":"A37162","pubmed-id":28060009,"citation":"Nanda K, Stuart GS, Robinson J, Gray AL, Tepper NK, Gaffield ME: Drug interactions between hormonal contraceptives and antiretrovirals. AIDS. 2017 Apr 24;31(7):917-952. doi: 10.1097/QAD.0000000000001392.","parent_key":"BE0002638"} {"ref-id":"A34775","pubmed-id":26935921,"citation":"Wang P, Shehu AI, Liu K, Lu J, Ma X: Biotransformation of Cobicistat: Metabolic Pathways and Enzymes. Drug Metab Lett. 2016;10(2):111-23.","parent_key":"BE0002638"} {"ref-id":"A7681","pubmed-id":20043009,"citation":"Mathias AA, German P, Murray BP, Wei L, Jain A, West S, Warren D, Hui J, Kearney BP: Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2010 Mar;87(3):322-9. doi: 10.1038/clpt.2009.228. Epub 2009 Dec 30.","parent_key":"BE0002362"} {"ref-id":"A7681","pubmed-id":20043009,"citation":"Mathias AA, German P, Murray BP, Wei L, Jain A, West S, Warren D, Hui J, Kearney BP: Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2010 Mar;87(3):322-9. doi: 10.1038/clpt.2009.228. Epub 2009 Dec 30.","parent_key":"BE0003612"} {"ref-id":"A7681","pubmed-id":20043009,"citation":"Mathias AA, German P, Murray BP, Wei L, Jain A, West S, Warren D, Hui J, Kearney BP: Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2010 Mar;87(3):322-9. doi: 10.1038/clpt.2009.228. Epub 2009 Dec 30.","parent_key":"BE0003550"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0002363"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0002638"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0002362"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0003536"} {"ref-id":"A38653","pubmed-id":29189941,"citation":"Chen G, Hojer AM, Areberg J, Nomikos G: Vortioxetine: Clinical Pharmacokinetics and Drug Interactions. Clin Pharmacokinet. 2018 Jun;57(6):673-686. doi: 10.1007/s40262-017-0612-7.","parent_key":"BE0003536"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0002793"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0003336"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0002887"} {"ref-id":"A7687","pubmed-id":22496396,"citation":"Hvenegaard MG, Bang-Andersen B, Pedersen H, Jorgensen M, Puschl A, Dalgaard L: Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610. Epub 2012 Apr 11.","parent_key":"BE0003549"} {"ref-id":"A38473","pubmed-id":25851638,"citation":"Ogilvie BW, Torres R, Dressman MA, Kramer WG, Baroldi P: Clinical assessment of drug-drug interactions of tasimelteon, a novel dual melatonin receptor agonist. J Clin Pharmacol. 2015 Sep;55(9):1004-11. doi: 10.1002/jcph.507. Epub 2015 May 7.","parent_key":"BE0002638"} {"ref-id":"A38473","pubmed-id":25851638,"citation":"Ogilvie BW, Torres R, Dressman MA, Kramer WG, Baroldi P: Clinical assessment of drug-drug interactions of tasimelteon, a novel dual melatonin receptor agonist. J Clin Pharmacol. 2015 Sep;55(9):1004-11. doi: 10.1002/jcph.507. Epub 2015 May 7.","parent_key":"BE0002433"} {"ref-id":"A176798","pubmed-id":28203301,"citation":"Rocca A, Schirone A, Maltoni R, Bravaccini S, Cecconetto L, Farolfi A, Bronte G, Andreis D: Progress with palbociclib in breast cancer: latest evidence and clinical considerations. Ther Adv Med Oncol. 2017 Feb;9(2):83-105. doi: 10.1177/1758834016677961. Epub 2016 Nov 21.","parent_key":"BE0002638"} {"ref-id":"A18363","pubmed-id":25981132,"citation":"Verhagen CV, de Haan R, Hageman F, Oostendorp TP, Carli AL, O'Connor MJ, Jonkers J, Verheij M, van den Brekel MW, Vens C: Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother Oncol. 2015 Sep;116(3):358-65. doi: 10.1016/j.radonc.2015.03.028. Epub 2015 May 13.","parent_key":"BE0002638"} {"ref-id":"A18363","pubmed-id":25981132,"citation":"Verhagen CV, de Haan R, Hageman F, Oostendorp TP, Carli AL, O'Connor MJ, Jonkers J, Verheij M, van den Brekel MW, Vens C: Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother Oncol. 2015 Sep;116(3):358-65. doi: 10.1016/j.radonc.2015.03.028. Epub 2015 May 13.","parent_key":"BE0003549"} {"ref-id":"A7713","pubmed-id":24004659,"citation":"Feldman GJ, Edin A: The combination of umeclidinium bromide and vilanterol in the management of chronic obstructive pulmonary disease: current evidence and future prospects. Ther Adv Respir Dis. 2013 Dec;7(6):311-9. doi: 10.1177/1753465813499789. Epub 2013 Sep 3.","parent_key":"BE0002363"} {"ref-id":"A185123","pubmed-id":31016670,"citation":"Wind S, Schmid U, Freiwald M, Marzin K, Lotz R, Ebner T, Stopfer P, Dallinger C: Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin Pharmacokinet. 2019 Sep;58(9):1131-1147. doi: 10.1007/s40262-019-00766-0.","parent_key":"BE0002638"} {"ref-id":"A7743","pubmed-id":24377458,"citation":"Rosa GM, Ferrero S, Ghione P, Valbusa A, Brunelli C: An evaluation of the pharmacokinetics and pharmacodynamics of ivabradine for the treatment of heart failure. Expert Opin Drug Metab Toxicol. 2014 Feb;10(2):279-91. doi: 10.1517/17425255.2014.876005. Epub 2013 Dec 31.","parent_key":"BE0002638"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0002362"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0002638"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0003550"} {"ref-id":"A18397","pubmed-id":26486762,"citation":"Smith MA, Regal RE, Mohammad RA: Daclatasvir: A NS5A Replication Complex Inhibitor for Hepatitis C Infection. Ann Pharmacother. 2016 Jan;50(1):39-46. doi: 10.1177/1060028015610342. Epub 2015 Oct 20.","parent_key":"BE0003612"} {"ref-id":"A33765","pubmed-id":9390105,"citation":"Tran A, Rey E, Pons G, Rousseau M, d'Athis P, Olive G, Mather GG, Bishop FE, Wurden CJ, Labroo R, Trager WF, Kunze KL, Thummel KE, Vincent JC, Gillardin JM, Lepage F, Levy RH: Influence of stiripentol on cytochrome P450-mediated metabolic pathways in humans: in vitro and in vivo comparison and calculation of in vivo inhibition constants. Clin Pharmacol Ther. 1997 Nov;62(5):490-504. doi: 10.1016/S0009-9236(97)90044-8.","parent_key":"BE0002433"} {"ref-id":"A39033","pubmed-id":16022579,"citation":"Chiron C: Stiripentol. Expert Opin Investig Drugs. 2005 Jul;14(7):905-11. doi: 10.1517/13543784.14.7.905 .","parent_key":"BE0002433"} {"ref-id":"A19740","pubmed-id":15886413,"citation":"Trojnar MK, Wojtal K, Trojnar MP, Czuczwar SJ: Stiripentol. A novel antiepileptic drug. Pharmacol Rep. 2005 Mar-Apr;57(2):154-60.","parent_key":"BE0002793"} {"ref-id":"A7772","pubmed-id":22612290,"citation":"Bialer M, Soares-da-Silva P: Pharmacokinetics and drug interactions of eslicarbazepine acetate. Epilepsia. 2012 Jun;53(6):935-46. doi: 10.1111/j.1528-1167.2012.03519.x. Epub 2012 May 21.","parent_key":"BE0003536"} {"ref-id":"A7771","pubmed-id":20043029,"citation":"Bialer M, White HS: Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010 Jan;9(1):68-82. doi: 10.1038/nrd2997.","parent_key":"BE0003536"} {"ref-id":"A38601","pubmed-id":28741150,"citation":"Galiana GL, Gauthier AC, Mattson RH: Eslicarbazepine Acetate: A New Improvement on a Classic Drug Family for the Treatment of Partial-Onset Seizures. Drugs R D. 2017 Sep;17(3):329-339. doi: 10.1007/s40268-017-0197-5.","parent_key":"BE0003536"} {"ref-id":"A7772","pubmed-id":22612290,"citation":"Bialer M, Soares-da-Silva P: Pharmacokinetics and drug interactions of eslicarbazepine acetate. Epilepsia. 2012 Jun;53(6):935-46. doi: 10.1111/j.1528-1167.2012.03519.x. Epub 2012 May 21.","parent_key":"BE0002638"} {"ref-id":"A7771","pubmed-id":20043029,"citation":"Bialer M, White HS: Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010 Jan;9(1):68-82. doi: 10.1038/nrd2997.","parent_key":"BE0002638"} {"ref-id":"A7782","pubmed-id":26310190,"citation":"Greig SL: Brexpiprazole: First Global Approval. Drugs. 2015 Sep;75(14):1687-97. doi: 10.1007/s40265-015-0462-2.","parent_key":"BE0002363"} {"ref-id":"A7782","pubmed-id":26310190,"citation":"Greig SL: Brexpiprazole: First Global Approval. Drugs. 2015 Sep;75(14):1687-97. doi: 10.1007/s40265-015-0462-2.","parent_key":"BE0002638"} {"ref-id":"A7786","pubmed-id":26323341,"citation":"Burness CB: Sonidegib: First Global Approval. Drugs. 2015 Sep;75(13):1559-66. doi: 10.1007/s40265-015-0458-y.","parent_key":"BE0002638"} {"ref-id":"A19777","pubmed-id":15232663,"citation":"Araki K, Yasui-Furukori N, Fukasawa T, Aoshima T, Suzuki A, Inoue Y, Tateishi T, Otani K: Inhibition of the metabolism of etizolam by itraconazole in humans: evidence for the involvement of CYP3A4 in etizolam metabolism. Eur J Clin Pharmacol. 2004 Aug;60(6):427-30. Epub 2004 Jul 1.","parent_key":"BE0002638"} {"ref-id":"A19778","pubmed-id":16261363,"citation":"Fukasawa T, Yasui-Furukori N, Suzuki A, Inoue Y, Tateishi T, Otani K: Pharmacokinetics and pharmacodynamics of etizolam are influenced by polymorphic CYP2C19 activity. Eur J Clin Pharmacol. 2005 Dec;61(11):791-5. Epub 2005 Nov 1.","parent_key":"BE0003536"} {"ref-id":"A40189","pubmed-id":28679023,"citation":"Yamamoto T, Furihata K, Hisaka A, Moritoyo T, Ogoe K, Kusayama S, Motohashi K, Mori A, Iwatsubo T, Suzuki H: Notable Drug-Drug Interaction Between Etizolam and Itraconazole in Poor Metabolizers of Cytochrome P450 2C19. J Clin Pharmacol. 2017 Nov;57(11):1491-1499. doi: 10.1002/jcph.956. Epub 2017 Jul 5.","parent_key":"BE0003536"} {"ref-id":"A6584","pubmed-id":17471183,"citation":"Gillman PK: Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007 Jul;151(6):737-48. Epub 2007 Apr 30.","parent_key":"BE0002363"} {"ref-id":"A6584","pubmed-id":17471183,"citation":"Gillman PK: Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007 Jul;151(6):737-48. Epub 2007 Apr 30.","parent_key":"BE0002433"} {"ref-id":"A6584","pubmed-id":17471183,"citation":"Gillman PK: Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007 Jul;151(6):737-48. Epub 2007 Apr 30.","parent_key":"BE0003536"} {"ref-id":"A6584","pubmed-id":17471183,"citation":"Gillman PK: Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007 Jul;151(6):737-48. Epub 2007 Apr 30.","parent_key":"BE0002793"} {"ref-id":"A182054","pubmed-id":30930421,"citation":"Kanamori T, Iwata YT, Segawa H, Yamamuro T, Kuwayama K, Tsujikawa K, Inoue H: Metabolism of Butyrylfentanyl in Fresh Human Hepatocytes: Chemical Synthesis of Authentic Metabolite Standards for Definitive Identification. Biol Pharm Bull. 2019;42(4):623-630. doi: 10.1248/bpb.b18-00765.","parent_key":"BE0002638"} {"ref-id":"A182054","pubmed-id":30930421,"citation":"Kanamori T, Iwata YT, Segawa H, Yamamuro T, Kuwayama K, Tsujikawa K, Inoue H: Metabolism of Butyrylfentanyl in Fresh Human Hepatocytes: Chemical Synthesis of Authentic Metabolite Standards for Definitive Identification. Biol Pharm Bull. 2019;42(4):623-630. doi: 10.1248/bpb.b18-00765.","parent_key":"BE0002363"} {"ref-id":"A18447","pubmed-id":27179126,"citation":"Shen J, Serby M, Reed A, Lee AJ, Menon R, Zhang X, Marsh K, Wan X, Kavetskaia O, Fischer V: Metabolism and Disposition of Hepatitis C Polymerase Inhibitor Dasabuvir in Humans. Drug Metab Dispos. 2016 Aug;44(8):1139-47. doi: 10.1124/dmd.115.067512. Epub 2016 May 13.","parent_key":"BE0002887"} {"ref-id":"A18447","pubmed-id":27179126,"citation":"Shen J, Serby M, Reed A, Lee AJ, Menon R, Zhang X, Marsh K, Wan X, Kavetskaia O, Fischer V: Metabolism and Disposition of Hepatitis C Polymerase Inhibitor Dasabuvir in Humans. Drug Metab Dispos. 2016 Aug;44(8):1139-47. doi: 10.1124/dmd.115.067512. Epub 2016 May 13.","parent_key":"BE0002638"} {"ref-id":"A18447","pubmed-id":27179126,"citation":"Shen J, Serby M, Reed A, Lee AJ, Menon R, Zhang X, Marsh K, Wan X, Kavetskaia O, Fischer V: Metabolism and Disposition of Hepatitis C Polymerase Inhibitor Dasabuvir in Humans. Drug Metab Dispos. 2016 Aug;44(8):1139-47. doi: 10.1124/dmd.115.067512. Epub 2016 May 13.","parent_key":"BE0002363"} {"ref-id":"A31635","pubmed-id":22232986,"citation":"Jarema M, Dudek D, Landowski J, Heitzman J, Rabe-Jablonska J, Rybakowski J: [Trazodon--the antidepressant: mechanism of action and its position in the treatment of depression]. Psychiatr Pol. 2011 Jul-Aug;45(4):611-25.","parent_key":"BE0002363"} {"ref-id":"A31635","pubmed-id":22232986,"citation":"Jarema M, Dudek D, Landowski J, Heitzman J, Rabe-Jablonska J, Rybakowski J: [Trazodon--the antidepressant: mechanism of action and its position in the treatment of depression]. Psychiatr Pol. 2011 Jul-Aug;45(4):611-25.","parent_key":"BE0002638"} {"ref-id":"A19749","pubmed-id":25648999,"citation":"Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3.","parent_key":"BE0002433"} {"ref-id":"A33283","pubmed-id":25767371,"citation":"Jung JA, Lee SY, Kim TE, Kim JR, Kim C, Huh W, Ko JW: Lack of the effect of lobeglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on the pharmacokinetics and pharmacodynamics of warfarin. Drug Des Devel Ther. 2015 Mar 2;9:737-43. doi: 10.2147/DDDT.S76591. eCollection 2015.","parent_key":"BE0002433"} {"ref-id":"A19749","pubmed-id":25648999,"citation":"Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3.","parent_key":"BE0002793"} {"ref-id":"A19749","pubmed-id":25648999,"citation":"Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3.","parent_key":"BE0003536"} {"ref-id":"A36627","pubmed-id":15900286,"citation":"Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ: Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther. 2005 May;77(5):404-14. doi: 10.1016/j.clpt.2004.12.266.","parent_key":"BE0002887"} {"ref-id":"A187931","pubmed-id":30072626,"citation":"Shrestha R, Cho PJ, Paudel S, Shrestha A, Kang MJ, Jeong TC, Lee ES, Lee S: Exploring the Metabolism of Loxoprofen in Liver Microsomes: The Role of Cytochrome P450 and UDP-Glucuronosyltransferase in Its Biotransformation. Pharmaceutics. 2018 Aug 2;10(3). pii: pharmaceutics10030112. doi: 10.3390/pharmaceutics10030112.","parent_key":"BE0004866"} {"ref-id":"A187931","pubmed-id":30072626,"citation":"Shrestha R, Cho PJ, Paudel S, Shrestha A, Kang MJ, Jeong TC, Lee ES, Lee S: Exploring the Metabolism of Loxoprofen in Liver Microsomes: The Role of Cytochrome P450 and UDP-Glucuronosyltransferase in Its Biotransformation. Pharmaceutics. 2018 Aug 2;10(3). pii: pharmaceutics10030112. doi: 10.3390/pharmaceutics10030112.","parent_key":"BE0003679"} {"ref-id":"A184898","pubmed-id":15289789,"citation":"Garcia-Martin E, Martinez C, Tabares B, Frias J, Agundez JA: Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther. 2004 Aug;76(2):119-27. doi: 10.1016/j.clpt.2004.04.006.","parent_key":"BE0002887"} {"ref-id":"A184352","pubmed-id":18787056,"citation":"Chang SY, Li W, Traeger SC, Wang B, Cui D, Zhang H, Wen B, Rodrigues AD: Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro. Drug Metab Dispos. 2008 Dec;36(12):2513-22. doi: 10.1124/dmd.108.022970. Epub 2008 Sep 11.","parent_key":"BE0003536"} {"ref-id":"A185558","pubmed-id":23376124,"citation":"Lloyd MD, Yevglevskis M, Lee GL, Wood PJ, Threadgill MD, Woodman TJ: alpha-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S. Prog Lipid Res. 2013 Apr;52(2):220-30. doi: 10.1016/j.plipres.2013.01.001. Epub 2013 Jan 29.","parent_key":"BE0009569"} {"ref-id":"A31487","pubmed-id":20030420,"citation":"Deeks ED, Keating GM: Blonanserin: a review of its use in the management of schizophrenia. CNS Drugs. 2010 Jan;24(1):65-84. doi: 10.2165/11202620-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A39282","pubmed-id":12649767,"citation":"Grozinger M, Dragicevic A, Hiemke C, Shams M, Muller MJ, Hartter S: Melperone is an inhibitor of the CYP2D6 catalyzed O-demethylation of venlafaxine. Pharmacopsychiatry. 2003 Jan;36(1):3-6. doi: 10.1055/s-2003-38084.","parent_key":"BE0002363"} {"ref-id":"A39043","pubmed-id":10219963,"citation":"Shiraga T, Kaneko H, Iwasaki K, Tozuka Z, Suzuki A, Hata T: Identification of cytochrome P450 enzymes involved in the metabolism of zotepine, an antipsychotic drug, in human liver microsomes. Xenobiotica. 1999 Mar;29(3):217-29. doi: 10.1080/004982599238623 .","parent_key":"BE0002433"} {"ref-id":"A36269","pubmed-id":15853594,"citation":"Liau CS: Barnidipine: a new calcium channel blocker for hypertension treatment. Expert Rev Cardiovasc Ther. 2005 Mar;3(2):207-13. doi: 10.1586/14779072.3.2.207.","parent_key":"BE0002638"} {"ref-id":"A31950","pubmed-id":16565579,"citation":"Yao K, Nagashima K, Miki H: Pharmacological, pharmacokinetic, and clinical properties of benidipine hydrochloride, a novel, long-acting calcium channel blocker. J Pharmacol Sci. 2006 Apr;100(4):243-61. Epub 2006 Mar 25.","parent_key":"BE0002638"} {"ref-id":"A31959","pubmed-id":17537876,"citation":"Yoon YJ, Kim KB, Kim H, Seo KA, Kim HS, Cha IJ, Kim EY, Liu KH, Shin JG: Characterization of benidipine and its enantiomers' metabolism by human liver cytochrome P450 enzymes. Drug Metab Dispos. 2007 Sep;35(9):1518-24. doi: 10.1124/dmd.106.013607. Epub 2007 May 30.","parent_key":"BE0002638"} {"ref-id":"A31950","pubmed-id":16565579,"citation":"Yao K, Nagashima K, Miki H: Pharmacological, pharmacokinetic, and clinical properties of benidipine hydrochloride, a novel, long-acting calcium channel blocker. J Pharmacol Sci. 2006 Apr;100(4):243-61. Epub 2006 Mar 25.","parent_key":"BE0002362"} {"ref-id":"A31959","pubmed-id":17537876,"citation":"Yoon YJ, Kim KB, Kim H, Seo KA, Kim HS, Cha IJ, Kim EY, Liu KH, Shin JG: Characterization of benidipine and its enantiomers' metabolism by human liver cytochrome P450 enzymes. Drug Metab Dispos. 2007 Sep;35(9):1518-24. doi: 10.1124/dmd.106.013607. Epub 2007 May 30.","parent_key":"BE0002362"} {"ref-id":"A37888","pubmed-id":12617777,"citation":"Liu XQ, Zhao Y, Li D, Qian ZY, Wang GJ: Metabolism and metabolic inhibition of cilnidipine in human liver microsomes. Acta Pharmacol Sin. 2003 Mar;24(3):263-8.","parent_key":"BE0002638"} {"ref-id":"A37898","pubmed-id":11259986,"citation":"Ziviani L, Da Ros L, Squassante L, Milleri S, Cugola M, Iavarone LE: The effects of lacidipine on the steady/state plasma concentrations of simvastatin in healthy subjects. Br J Clin Pharmacol. 2001 Feb;51(2):147-52.","parent_key":"BE0002638"} {"ref-id":"A20295","pubmed-id":15329044,"citation":"McKeage K, Scott LJ: Manidipine: a review of its use in the management of hypertension. Drugs. 2004;64(17):1923-40.","parent_key":"BE0002793"} {"ref-id":"A20295","pubmed-id":15329044,"citation":"McKeage K, Scott LJ: Manidipine: a review of its use in the management of hypertension. Drugs. 2004;64(17):1923-40.","parent_key":"BE0002363"} {"ref-id":"A20295","pubmed-id":15329044,"citation":"McKeage K, Scott LJ: Manidipine: a review of its use in the management of hypertension. Drugs. 2004;64(17):1923-40.","parent_key":"BE0003543"} {"ref-id":"A20295","pubmed-id":15329044,"citation":"McKeage K, Scott LJ: Manidipine: a review of its use in the management of hypertension. Drugs. 2004;64(17):1923-40.","parent_key":"BE0003549"} {"ref-id":"A20295","pubmed-id":15329044,"citation":"McKeage K, Scott LJ: Manidipine: a review of its use in the management of hypertension. Drugs. 2004;64(17):1923-40.","parent_key":"BE0003536"} {"ref-id":"A20295","pubmed-id":15329044,"citation":"McKeage K, Scott LJ: Manidipine: a review of its use in the management of hypertension. Drugs. 2004;64(17):1923-40.","parent_key":"BE0002638"} {"ref-id":"A31514","pubmed-id":11106261,"citation":"Ikeda K, Yoshisue K, Matsushima E, Nagayama S, Kobayashi K, Tyson CA, Chiba K, Kawaguchi Y: Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin Cancer Res. 2000 Nov;6(11):4409-15.","parent_key":"BE0003336"} {"ref-id":"A37953","pubmed-id":11095583,"citation":"Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T: Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.","parent_key":"BE0003336"} {"ref-id":"A37954","pubmed-id":12042667,"citation":"Daigo S, Takahashi Y, Fujieda M, Ariyoshi N, Yamazaki H, Koizumi W, Tanabe S, Saigenji K, Nagayama S, Ikeda K, Nishioka Y, Kamataki T: A novel mutant allele of the CYP2A6 gene (CYP2A6*11 ) found in a cancer patient who showed poor metabolic phenotype towards tegafur. Pharmacogenetics. 2002 Jun;12(4):299-306.","parent_key":"BE0003336"} {"ref-id":"A37953","pubmed-id":11095583,"citation":"Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T: Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.","parent_key":"BE0003533"} {"ref-id":"A37953","pubmed-id":11095583,"citation":"Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T: Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.","parent_key":"BE0002362"} {"ref-id":"A19796","pubmed-id":19122340,"citation":"Ohno T, Nakade S, Nakayama K, Kitagawa J, Miyabe H, Konomi T, Miyata Y: Population pharmacokinetic analysis of a novel muscarinic receptor antagonist, imidafenacin, in healthy volunteers and overactive bladder patients. Drug Metab Pharmacokinet. 2008;23(6):456-63.","parent_key":"BE0002638"} {"ref-id":"A203894","pubmed-id":12167566,"citation":"Ilett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ, Thu le TA, Hung NC, Pirmohamed M, Park BK, Edwards G: Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2002 Sep;30(9):1005-12. doi: 10.1124/dmd.30.9.1005.","parent_key":"BE0003679"} {"ref-id":"A203894","pubmed-id":12167566,"citation":"Ilett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ, Thu le TA, Hung NC, Pirmohamed M, Park BK, Edwards G: Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2002 Sep;30(9):1005-12. doi: 10.1124/dmd.30.9.1005.","parent_key":"BE0003538"} {"ref-id":"A39356","pubmed-id":24891466,"citation":"Phompradit P, Muhamad P, Cheoymang A, Na-Bangchang K: Preliminary investigation of the contribution of CYP2A6, CYP2B6, and UGT1A9 polymorphisms on artesunate-mefloquine treatment response in Burmese patients with Plasmodium falciparum malaria. Am J Trop Med Hyg. 2014 Aug;91(2):361-6. doi: 10.4269/ajtmh.13-0531. Epub 2014 Jun 2.","parent_key":"BE0003336"} {"ref-id":"A18693","pubmed-id":27662106,"citation":"Jordan CL, Noah TL, Henry MM: Therapeutic challenges posed by critical drug-drug interactions in cystic fibrosis. Pediatr Pulmonol. 2016 Oct;51(S44):S61-S70. doi: 10.1002/ppul.23505.","parent_key":"BE0002638"} {"ref-id":"A18395","pubmed-id":26416827,"citation":"Kuk K, Taylor-Cousar JL: Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects. Ther Adv Respir Dis. 2015 Dec;9(6):313-26. doi: 10.1177/1753465815601934. Epub 2015 Sep 28.","parent_key":"BE0003549"} {"ref-id":"A18395","pubmed-id":26416827,"citation":"Kuk K, Taylor-Cousar JL: Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects. Ther Adv Respir Dis. 2015 Dec;9(6):313-26. doi: 10.1177/1753465815601934. Epub 2015 Sep 28.","parent_key":"BE0002887"} {"ref-id":"A18395","pubmed-id":26416827,"citation":"Kuk K, Taylor-Cousar JL: Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects. Ther Adv Respir Dis. 2015 Dec;9(6):313-26. doi: 10.1177/1753465815601934. Epub 2015 Sep 28.","parent_key":"BE0002793"} {"ref-id":"A18395","pubmed-id":26416827,"citation":"Kuk K, Taylor-Cousar JL: Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects. Ther Adv Respir Dis. 2015 Dec;9(6):313-26. doi: 10.1177/1753465815601934. Epub 2015 Sep 28.","parent_key":"BE0003536"} {"ref-id":"A17587","pubmed-id":16278927,"citation":"Mano Y, Usui T, Kamimura H: In vitro inhibitory effects of non-steroidal anti-inflammatory drugs on 4-methylumbelliferone glucuronidation in recombinant human UDP-glucuronosyltransferase 1A9--potent inhibition by niflumic acid. Biopharm Drug Dispos. 2006 Jan;27(1):1-6. doi: 10.1002/bdd.475.","parent_key":"BE0003538"} {"ref-id":"A183713","pubmed-id":25522350,"citation":"Joo J, Kim YW, Wu Z, Shin JH, Lee B, Shon JC, Lee EY, Phuc NM, Liu KH: Screening of non-steroidal anti-inflammatory drugs for inhibitory effects on the activities of six UDP-glucuronosyltransferases (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7) using LC-MS/MS. Biopharm Drug Dispos. 2015 May;36(4):258-64. doi: 10.1002/bdd.1933. Epub 2015 Jan 27.","parent_key":"BE0003538"} {"ref-id":"A14760","pubmed-id":2729995,"citation":"Raucy JL, Lasker JM, Lieber CS, Black M: Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys. 1989 Jun;271(2):270-83.","parent_key":"BE0003533"} {"ref-id":"A18000","pubmed-id":8494539,"citation":"Bock KW, Forster A, Gschaidmeier H, Bruck M, Munzel P, Schareck W, Fournel-Gigleux S, Burchell B: Paracetamol glucuronidation by recombinant rat and human phenol UDP-glucuronosyltransferases. Biochem Pharmacol. 1993 May 5;45(9):1809-14.","parent_key":"BE0003538"} {"ref-id":"A33795","pubmed-id":15361747,"citation":"Preskorn SH: Tianeptine: a facilitator of the reuptake of serotonin and norepinephrine as an antidepressant? J Psychiatr Pract. 2004 Sep;10(5):323-30.","parent_key":"BE0002638"} {"ref-id":"A39040","pubmed-id":24393804,"citation":"Grover M, Camilleri M: Ramosetron in irritable bowel syndrome with diarrhea: new hope or the same old story? Clin Gastroenterol Hepatol. 2014 Jun;12(6):960-2. doi: 10.1016/j.cgh.2013.12.025. Epub 2014 Jan 3.","parent_key":"BE0002433"} {"ref-id":"A39041","pubmed-id":25885385,"citation":"Swaika S, Pal A, Chatterjee S, Saha D, Dawar N: Ondansetron, ramosetron, or palonosetron: Which is a better choice of antiemetic to prevent postoperative nausea and vomiting in patients undergoing laparoscopic cholecystectomy? Anesth Essays Res. 2011 Jul-Dec;5(2):182-6. doi: 10.4103/0259-1162.94761.","parent_key":"BE0002433"} {"ref-id":"A39042","pubmed-id":18438654,"citation":"Kadokura T, den Adel M, Krauwinkel WJ, Takeshige T, Nishida A: The effect of fluvoxamine on the pharmacokinetics, safety, and tolerability of ramosetron in healthy subjects. Eur J Clin Pharmacol. 2008 Jul;64(7):691-5. doi: 10.1007/s00228-008-0466-x. Epub 2008 Apr 26.","parent_key":"BE0002433"} {"ref-id":"A18452","pubmed-id":27179128,"citation":"Shen J, Serby M, Surber B, Lee AJ, Ma J, Badri P, Menon R, Kavetskaia O, de Morais SM, Sydor J, Fischer V: Metabolism and Disposition of Pan-Genotypic Inhibitor of Hepatitis C Virus NS5A Ombitasvir in Humans. Drug Metab Dispos. 2016 Aug;44(8):1148-57. doi: 10.1124/dmd.115.067496. Epub 2016 May 13.","parent_key":"BE0002887"} {"ref-id":"A18450","pubmed-id":27179127,"citation":"Shen J, Serby M, Reed A, Lee AJ, Zhang X, Marsh K, Khatri A, Menon R, Kavetskaia O, Fischer V: Metabolism and Disposition of the Hepatitis C Protease Inhibitor Paritaprevir in Humans. Drug Metab Dispos. 2016 Aug;44(8):1164-73. doi: 10.1124/dmd.115.067488. Epub 2016 May 13.","parent_key":"BE0002638"} {"ref-id":"A18450","pubmed-id":27179127,"citation":"Shen J, Serby M, Reed A, Lee AJ, Zhang X, Marsh K, Khatri A, Menon R, Kavetskaia O, Fischer V: Metabolism and Disposition of the Hepatitis C Protease Inhibitor Paritaprevir in Humans. Drug Metab Dispos. 2016 Aug;44(8):1164-73. doi: 10.1124/dmd.115.067488. Epub 2016 May 13.","parent_key":"BE0002362"} {"ref-id":"A35882","pubmed-id":25843765,"citation":"Reimers A, Brodtkorb E, Sabers A: Interactions between hormonal contraception and antiepileptic drugs: Clinical and mechanistic considerations. Seizure. 2015 May;28:66-70. doi: 10.1016/j.seizure.2015.03.006. Epub 2015 Mar 20.","parent_key":"BE0002638"} {"ref-id":"A38993","pubmed-id":9113273,"citation":"Yang MX, Cederbaum AI: Glycerol increases content and activity of human cytochrome P-4502E1 in a transduced HepG2 cell line by protein stabilization. Alcohol Clin Exp Res. 1997 Apr;21(2):340-7.","parent_key":"BE0003533"} {"ref-id":"A39029","pubmed-id":28290121,"citation":"Gupta N, Diderichsen PM, Hanley MJ, Berg D, van de Velde H, Harvey RD, Venkatakrishnan K: Population Pharmacokinetic Analysis of Ixazomib, an Oral Proteasome Inhibitor, Including Data from the Phase III TOURMALINE-MM1 Study to Inform Labelling. Clin Pharmacokinet. 2017 Nov;56(11):1355-1368. doi: 10.1007/s40262-017-0526-4.","parent_key":"BE0002433"} {"ref-id":"A39030","pubmed-id":30061664,"citation":"Kumar SK, Buadi FK, LaPlant B, Halvorson A, Leung N, Kapoor P, Dingli D, Gertz MA, Go RS, Bergsagel PL, Lin Y, Dispenzieri A, Hwa YL, Fonder A, Hobbs M, Fonseca R, Hayman SR, Stewart AK, Lust JA, Mikhael J, Gonsalves W, Reeder C, Skacel T, Rajkumar SV, Lacy MQ: Phase 1/2 trial of ixazomib, cyclophosphamide and dexamethasone in patients with previously untreated symptomatic multiple myeloma. Blood Cancer J. 2018 Jul 30;8(8):70. doi: 10.1038/s41408-018-0106-3.","parent_key":"BE0002433"} {"ref-id":"A32204","pubmed-id":19567876,"citation":"Gesell A, Rolf M, Ziegler J, Diaz Chavez ML, Huang FC, Kutchan TM: CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem. 2009 Sep 4;284(36):24432-42. doi: 10.1074/jbc.M109.033373. Epub 2009 Jun 30.","parent_key":"BE0002638"} {"ref-id":"A33061","pubmed-id":12235445,"citation":"Dresser GK, Wacher V, Wong S, Wong HT, Bailey DG: Evaluation of peppermint oil and ascorbyl palmitate as inhibitors of cytochrome P4503A4 activity in vitro and in vivo. Clin Pharmacol Ther. 2002 Sep;72(3):247-55. doi: 10.1067/mcp.2002.126409.","parent_key":"BE0002638"} {"ref-id":"A32451","pubmed-id":26981194,"citation":"Schmolz L, Birringer M, Lorkowski S, Wallert M: Complexity of vitamin E metabolism. World J Biol Chem. 2016 Feb 26;7(1):14-43. doi: 10.4331/wjbc.v7.i1.14.","parent_key":"BE0004727"} {"ref-id":"A32451","pubmed-id":26981194,"citation":"Schmolz L, Birringer M, Lorkowski S, Wallert M: Complexity of vitamin E metabolism. World J Biol Chem. 2016 Feb 26;7(1):14-43. doi: 10.4331/wjbc.v7.i1.14.","parent_key":"BE0002638"} {"ref-id":"A33001","pubmed-id":11503008,"citation":"de Mey C, Althaus M, Ezan E, Retzow A: Erythromycin increases plasma concentrations of alpha-dihydroergocryptine in humans. Clin Pharmacol Ther. 2001 Aug;70(2):142-8. doi: 10.1067/mcp.2001.117286.","parent_key":"BE0002638"} {"ref-id":"A181277","pubmed-id":26257936,"citation":"Sasaki K, Shimoda M: Possible drug-drug interaction in dogs and cats resulted from alteration in drug metabolism: A mini review. J Adv Res. 2015 May;6(3):383-92. doi: 10.1016/j.jare.2015.02.003. Epub 2015 Feb 24.","parent_key":"BE0002433"} {"ref-id":"A39054","pubmed-id":10611143,"citation":"Kuriya Si, Ohmori S, Hino M, Ishii I, Nakamura H, Senda C, Igarashi T, Kiuchi M, Kitada M: Identification of cytochrome P-450 isoform(s) responsible for the metabolism of pimobendan in human liver microsomes. Drug Metab Dispos. 2000 Jan;28(1):73-8.","parent_key":"BE0002433"} {"ref-id":"A38447","pubmed-id":22370628,"citation":"Teo YL, Saetaew M, Chanthawong S, Yap YS, Chan EC, Ho HK, Chan A: Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence. Breast Cancer Res Treat. 2012 Jun;133(2):703-11. doi: 10.1007/s10549-012-1995-7. Epub 2012 Feb 28.","parent_key":"BE0002638"} {"ref-id":"A184931","pubmed-id":11737189,"citation":"Pascussi JM, Drocourt L, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ: Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur J Biochem. 2001 Dec;268(24):6346-58. doi: 10.1046/j.0014-2956.2001.02540.x.","parent_key":"BE0002638"} {"ref-id":"A184937","pubmed-id":30552114,"citation":"Munro AW: Cytochrome P450 1A1 opens up to new substrates. J Biol Chem. 2018 Dec 14;293(50):19211-19212. doi: 10.1074/jbc.H118.006715. Epub 2018 Dec 14.","parent_key":"BE0003543"} {"ref-id":"A187628","pubmed-id":28067999,"citation":"Gillen M, Yang C, Wilson D, Valdez S, Lee C, Kerr B, Shen Z: Evaluation of Pharmacokinetic Interactions Between Lesinurad, a New Selective Urate Reabsorption Inhibitor, and CYP Enzyme Substrates Sildenafil, Amlodipine, Tolbutamide, and Repaglinide. Clin Pharmacol Drug Dev. 2017 Jul;6(4):363-376. doi: 10.1002/cpdd.324. Epub 2017 Jan 9.","parent_key":"BE0002638"} {"ref-id":"A18568","pubmed-id":26953185,"citation":"Agarwal SK, Hu B, Chien D, Wong SL, Salem AH: Evaluation of Rifampin's Transporter Inhibitory and CYP3A Inductive Effects on the Pharmacokinetics of Venetoclax, a Bcl-2 Inhibitor: Results of a Single- and Multiple-dose Study. J Clin Pharmacol. 2016 Mar 7. doi: 10.1002/jcph.730.","parent_key":"BE0002638"} {"ref-id":"A40023","pubmed-id":26927160,"citation":"Weiss J, Gajek T, Kohler BC, Haefeli WE: Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions. Pharmaceutics. 2016 Feb 24;8(1). pii: pharmaceutics8010005. doi: 10.3390/pharmaceutics8010005.","parent_key":"BE0002638"} {"ref-id":"A40024","pubmed-id":29302721,"citation":"Freise KJ, Hu B, Salem AH: Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics. Eur J Clin Pharmacol. 2018 Apr;74(4):413-421. doi: 10.1007/s00228-017-2403-3. Epub 2018 Jan 4.","parent_key":"BE0002638"} {"ref-id":"A35952","pubmed-id":26177803,"citation":"Eley T, Garimella T, Li W, Bertz RJ: Asunaprevir: A Review of Preclinical and Clinical Pharmacokinetics and Drug-Drug Interactions. Clin Pharmacokinet. 2015 Dec;54(12):1205-22. doi: 10.1007/s40262-015-0299-6.","parent_key":"BE0002363"} {"ref-id":"A13902","pubmed-id":16880233,"citation":"Meijerman I, Beijnen JH, Schellens JH: Herb-drug interactions in oncology: focus on mechanisms of induction. Oncologist. 2006 Jul-Aug;11(7):742-52.","parent_key":"BE0004866"} {"ref-id":"A37453","pubmed-id":29750016,"citation":"Jenks JD, Salzer HJ, Prattes J, Krause R, Buchheidt D, Hoenigl M: Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: design, development, and place in therapy. Drug Des Devel Ther. 2018 Apr 30;12:1033-1044. doi: 10.2147/DDDT.S145545. eCollection 2018.","parent_key":"BE0002638"} {"ref-id":"A39367","pubmed-id":27278712,"citation":"Desai A, Yamazaki T, Dietz AJ, Kowalski D, Lademacher C, Pearlman H, Akhtar S, Townsend R: Pharmacokinetic and Pharmacodynamic Evaluation of the Drug-Drug Interaction Between Isavuconazole and Warfarin in Healthy Subjects. Clin Pharmacol Drug Dev. 2017 Jan;6(1):86-92. doi: 10.1002/cpdd.283. Epub 2016 Aug 4.","parent_key":"BE0002793"} {"ref-id":"A38834","pubmed-id":27536124,"citation":"Wilson DT, Dimondi VP, Johnson SW, Jones TM, Drew RH: Role of isavuconazole in the treatment of invasive fungal infections. Ther Clin Risk Manag. 2016 Aug 3;12:1197-206. doi: 10.2147/TCRM.S90335. eCollection 2016.","parent_key":"BE0003536"} {"ref-id":"A6914","pubmed-id":26179012,"citation":"Miceli MH, Kauffman CA: Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin Infect Dis. 2015 Nov 15;61(10):1558-65. doi: 10.1093/cid/civ571. Epub 2015 Jul 15.","parent_key":"BE0003536"} {"ref-id":"A38837","pubmed-id":24403304,"citation":"Peixoto D, Gagne LS, Hammond SP, Gilmore ET, Joyce AC, Soiffer RJ, Marty FM: Isavuconazole treatment of a patient with disseminated mucormycosis. J Clin Microbiol. 2014 Mar;52(3):1016-9. doi: 10.1128/JCM.03176-13. Epub 2014 Jan 8.","parent_key":"BE0003536"} {"ref-id":"A31614","pubmed-id":24400699,"citation":"Ericsson T, Sundell J, Torkelsson A, Hoffmann KJ, Ashton M: Effects of artemisinin antimalarials on Cytochrome P450 enzymes in vitro using recombinant enzymes and human liver microsomes: potential implications for combination therapies. Xenobiotica. 2014 Jul;44(7):615-26. doi: 10.3109/00498254.2013.878815. Epub 2014 Jan 8.","parent_key":"BE0003536"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0002793"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0002638"} {"ref-id":"A193410","pubmed-id":28283692,"citation":"Dymond AW, Elks C, Martin P, Carlile DJ, Mariani G, Lovick S, Huang Y, Lorch U, Brown H, So K: Pharmacokinetics and pharmacogenetics of the MEK1/2 inhibitor, selumetinib, in Asian and Western healthy subjects: a pooled analysis. Eur J Clin Pharmacol. 2017 Jun;73(6):717-726. doi: 10.1007/s00228-017-2217-3. Epub 2017 Mar 10.","parent_key":"BE0003536"} {"ref-id":"A193422","pubmed-id":27751676,"citation":"Dymond AW, Howes C, Pattison C, So K, Mariani G, Savage M, Mair S, Ford G, Martin P: Metabolism, Excretion, and Pharmacokinetics of Selumetinib, an MEK1/2 inhibitor, in Healthy Adult Male Subjects. Clin Ther. 2016 Nov;38(11):2447-2458. doi: 10.1016/j.clinthera.2016.09.002. Epub 2016 Oct 15.","parent_key":"BE0002638"} {"ref-id":"A193422","pubmed-id":27751676,"citation":"Dymond AW, Howes C, Pattison C, So K, Mariani G, Savage M, Mair S, Ford G, Martin P: Metabolism, Excretion, and Pharmacokinetics of Selumetinib, an MEK1/2 inhibitor, in Healthy Adult Male Subjects. Clin Ther. 2016 Nov;38(11):2447-2458. doi: 10.1016/j.clinthera.2016.09.002. Epub 2016 Oct 15.","parent_key":"BE0002793"} {"ref-id":"A193422","pubmed-id":27751676,"citation":"Dymond AW, Howes C, Pattison C, So K, Mariani G, Savage M, Mair S, Ford G, Martin P: Metabolism, Excretion, and Pharmacokinetics of Selumetinib, an MEK1/2 inhibitor, in Healthy Adult Male Subjects. Clin Ther. 2016 Nov;38(11):2447-2458. doi: 10.1016/j.clinthera.2016.09.002. Epub 2016 Oct 15.","parent_key":"BE0002433"} {"ref-id":"A193422","pubmed-id":27751676,"citation":"Dymond AW, Howes C, Pattison C, So K, Mariani G, Savage M, Mair S, Ford G, Martin P: Metabolism, Excretion, and Pharmacokinetics of Selumetinib, an MEK1/2 inhibitor, in Healthy Adult Male Subjects. Clin Ther. 2016 Nov;38(11):2447-2458. doi: 10.1016/j.clinthera.2016.09.002. Epub 2016 Oct 15.","parent_key":"BE0002887"} {"ref-id":"A193422","pubmed-id":27751676,"citation":"Dymond AW, Howes C, Pattison C, So K, Mariani G, Savage M, Mair S, Ford G, Martin P: Metabolism, Excretion, and Pharmacokinetics of Selumetinib, an MEK1/2 inhibitor, in Healthy Adult Male Subjects. Clin Ther. 2016 Nov;38(11):2447-2458. doi: 10.1016/j.clinthera.2016.09.002. Epub 2016 Oct 15.","parent_key":"BE0003677"} {"ref-id":"A179665","pubmed-id":30694595,"citation":"Garg V, Shen J, Li C, Agarwal S, Gebre A, Robertson S, Huang J, Han L, Jiang L, Stephan K, Wang LT, Lekstrom-Himes J: Pharmacokinetic and Drug-Drug Interaction Profiles of the Combination of Tezacaftor/Ivacaftor. Clin Transl Sci. 2019 May;12(3):267-275. doi: 10.1111/cts.12610. Epub 2019 Jan 29.","parent_key":"BE0002638"} {"ref-id":"A179665","pubmed-id":30694595,"citation":"Garg V, Shen J, Li C, Agarwal S, Gebre A, Robertson S, Huang J, Han L, Jiang L, Stephan K, Wang LT, Lekstrom-Himes J: Pharmacokinetic and Drug-Drug Interaction Profiles of the Combination of Tezacaftor/Ivacaftor. Clin Transl Sci. 2019 May;12(3):267-275. doi: 10.1111/cts.12610. Epub 2019 Jan 29.","parent_key":"BE0002362"} {"ref-id":"A38372","pubmed-id":29673999,"citation":"Sorf A, Hofman J, Kucera R, Staud F, Ceckova M: Ribociclib shows potential for pharmacokinetic drug-drug interactions being a substrate of ABCB1 and potent inhibitor of ABCB1, ABCG2 and CYP450 isoforms in vitro. Biochem Pharmacol. 2018 Aug;154:10-17. doi: 10.1016/j.bcp.2018.04.013. Epub 2018 Apr 16.","parent_key":"BE0002638"} {"ref-id":"A36688","pubmed-id":29247736,"citation":"Zhang T, Zhang K, Ma L, Li Z, Wang J, Zhang Y, Lu C, Zhu M, Zhuang X: Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction. J Pharm Sci. 2018 Apr;107(4):979-983. doi: 10.1016/j.xphs.2017.12.007. Epub 2017 Dec 14.","parent_key":"BE0002638"} {"ref-id":"A36688","pubmed-id":29247736,"citation":"Zhang T, Zhang K, Ma L, Li Z, Wang J, Zhang Y, Lu C, Zhu M, Zhuang X: Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction. J Pharm Sci. 2018 Apr;107(4):979-983. doi: 10.1016/j.xphs.2017.12.007. Epub 2017 Dec 14.","parent_key":"BE0002433"} {"ref-id":"A36687","pubmed-id":27666601,"citation":"Zhuang X, Zhang T, Yue S, Wang J, Luo H, Zhang Y, Li Z, Che J, Yang H, Li H, Zhu M, Lu C: Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib - Enhancement by ketoconazole. Biochem Pharmacol. 2016 Dec 1;121:67-77. doi: 10.1016/j.bcp.2016.09.012. Epub 2016 Sep 22.","parent_key":"BE0002362"} {"ref-id":"A36688","pubmed-id":29247736,"citation":"Zhang T, Zhang K, Ma L, Li Z, Wang J, Zhang Y, Lu C, Zhu M, Zhuang X: Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction. J Pharm Sci. 2018 Apr;107(4):979-983. doi: 10.1016/j.xphs.2017.12.007. Epub 2017 Dec 14.","parent_key":"BE0002362"} {"ref-id":"A38578","pubmed-id":11735605,"citation":"Pea F, Furlanut M: Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet. 2001;40(11):833-68. doi: 10.2165/00003088-200140110-00004.","parent_key":"BE0003536"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0003543"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0002638"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0002362"} {"ref-id":"A184067","pubmed-id":23700273,"citation":"Dungo R, Deeks ED: Istradefylline: first global approval. Drugs. 2013 Jun;73(8):875-82. doi: 10.1007/s40265-013-0066-7.","parent_key":"BE0004866"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0002433"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0003549"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0002887"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0002793"} {"ref-id":"A184064","pubmed-id":28881378,"citation":"Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M: Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol. 2018 Feb;58(2):193-201. doi: 10.1002/jcph.1003. Epub 2017 Sep 7.","parent_key":"BE0002363"} {"ref-id":"A39480","pubmed-id":12065445,"citation":"Hijazi Y, Boulieu R: Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002 Jul;30(7):853-8.","parent_key":"BE0002638"} {"ref-id":"A31585","pubmed-id":28703316,"citation":"Sahasrabudhe V, Terra SG, Hickman A, Saur D, Shi H, O'Gorman M, Zhou Z, Cutler DL: The Effect of Renal Impairment on the Pharmacokinetics and Pharmacodynamics of Ertugliflozin in Subjects With Type 2 Diabetes Mellitus. J Clin Pharmacol. 2017 Nov;57(11):1432-1443. doi: 10.1002/jcph.955. Epub 2017 Jul 13.","parent_key":"BE0003538"} {"ref-id":"A31585","pubmed-id":28703316,"citation":"Sahasrabudhe V, Terra SG, Hickman A, Saur D, Shi H, O'Gorman M, Zhou Z, Cutler DL: The Effect of Renal Impairment on the Pharmacokinetics and Pharmacodynamics of Ertugliflozin in Subjects With Type 2 Diabetes Mellitus. J Clin Pharmacol. 2017 Nov;57(11):1432-1443. doi: 10.1002/jcph.955. Epub 2017 Jul 13.","parent_key":"BE0003679"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0002638"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0002363"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0002362"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0002433"} {"ref-id":"A191850","pubmed-id":32141023,"citation":"Duggan S: Osilodrostat: First Approval. Drugs. 2020 Mar 5. pii: 10.1007/s40265-020-01277-0. doi: 10.1007/s40265-020-01277-0.","parent_key":"BE0003536"} {"ref-id":"A40025","pubmed-id":29096627,"citation":"Pudi KK, Barnes CN, Moran EJ, Haumann B, Kerwin E: A 28-day, randomized, double-blind, placebo-controlled, parallel group study of nebulized revefenacin in patients with chronic obstructive pulmonary disease. Respir Res. 2017 Nov 2;18(1):182. doi: 10.1186/s12931-017-0647-1.","parent_key":"BE0002363"} {"ref-id":"A33188","pubmed-id":29626324,"citation":"Al-Salama ZT: Apalutamide: First Global Approval. Drugs. 2018 Apr;78(6):699-705. doi: 10.1007/s40265-018-0900-z.","parent_key":"BE0002638"} {"ref-id":"A33188","pubmed-id":29626324,"citation":"Al-Salama ZT: Apalutamide: First Global Approval. Drugs. 2018 Apr;78(6):699-705. doi: 10.1007/s40265-018-0900-z.","parent_key":"BE0002887"} {"ref-id":"A36835","pubmed-id":7503788,"citation":"Roy SK, Korzekwa KR, Gonzalez FJ, Moschel RC, Dolan ME: Human liver oxidative metabolism of O6-benzylguanine. Biochem Pharmacol. 1995 Oct 26;50(9):1385-9.","parent_key":"BE0002638"} {"ref-id":"A179470","pubmed-id":30442649,"citation":"Yu J, Petrie ID, Levy RH, Ragueneau-Majlessi I: Mechanisms and Clinical Significance of Pharmacokinetic-Based Drug-Drug Interactions with Drugs Approved by the U.S. Food and Drug Administration in 2017. Drug Metab Dispos. 2019 Feb;47(2):135-144. doi: 10.1124/dmd.118.084905. Epub 2018 Nov 15.","parent_key":"BE0002638"} {"ref-id":"A40013","pubmed-id":22147075,"citation":"Bello CL, LaBadie RR, Ni G, Boutros T, McCormick C, Ndongo MN: The effect of dacomitinib (PF-00299804) on CYP2D6 activity in healthy volunteers who are extensive or intermediate metabolizers. Cancer Chemother Pharmacol. 2012 Apr;69(4):991-7. doi: 10.1007/s00280-011-1793-7. Epub 2011 Dec 7.","parent_key":"BE0002363"} {"ref-id":"A40019","pubmed-id":28648122,"citation":"Chen X, Jiang J, Giri N, Hu P: Phase 1 study to investigate the pharmacokinetic properties of dacomitinib in healthy adult Chinese subjects genotyped for CYP2D6. Xenobiotica. 2018 May;48(5):459-466. doi: 10.1080/00498254.2017.1342881. Epub 2017 Aug 18.","parent_key":"BE0002363"} {"ref-id":"A40019","pubmed-id":28648122,"citation":"Chen X, Jiang J, Giri N, Hu P: Phase 1 study to investigate the pharmacokinetic properties of dacomitinib in healthy adult Chinese subjects genotyped for CYP2D6. Xenobiotica. 2018 May;48(5):459-466. doi: 10.1080/00498254.2017.1342881. Epub 2017 Aug 18.","parent_key":"BE0002638"} {"ref-id":"A40019","pubmed-id":28648122,"citation":"Chen X, Jiang J, Giri N, Hu P: Phase 1 study to investigate the pharmacokinetic properties of dacomitinib in healthy adult Chinese subjects genotyped for CYP2D6. Xenobiotica. 2018 May;48(5):459-466. doi: 10.1080/00498254.2017.1342881. Epub 2017 Aug 18.","parent_key":"BE0002793"} {"ref-id":"A173872","pubmed-id":27866461,"citation":"Lam JL, Vaz A, Hee B, Liang Y, Yang X, Shaik MN: Metabolism, excretion and pharmacokinetics of [(14)C]glasdegib (PF-04449913) in healthy volunteers following oral administration. Xenobiotica. 2017 Dec;47(12):1064-1076. doi: 10.1080/00498254.2016.1261307. Epub 2017 Jan 3.","parent_key":"BE0002887"} {"ref-id":"A173872","pubmed-id":27866461,"citation":"Lam JL, Vaz A, Hee B, Liang Y, Yang X, Shaik MN: Metabolism, excretion and pharmacokinetics of [(14)C]glasdegib (PF-04449913) in healthy volunteers following oral administration. Xenobiotica. 2017 Dec;47(12):1064-1076. doi: 10.1080/00498254.2016.1261307. Epub 2017 Jan 3.","parent_key":"BE0003538"} {"ref-id":"A183065","pubmed-id":31372957,"citation":"Al-Salama ZT, Keam SJ: Entrectinib: First Global Approval. Drugs. 2019 Aug 1. pii: 10.1007/s40265-019-01177-y. doi: 10.1007/s40265-019-01177-y.","parent_key":"BE0002638"} {"ref-id":"A183068","pubmed-id":30050303,"citation":"Liu D, Offin M, Harnicar S, Li BT, Drilon A: Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther Clin Risk Manag. 2018 Jul 20;14:1247-1252. doi: 10.2147/TCRM.S147381. eCollection 2018.","parent_key":"BE0002638"} {"ref-id":"A39333","pubmed-id":29905956,"citation":"Nomoto M, Ferry J, Hussein Z: Population Pharmacokinetic/Pharmacodynamic Analyses of Avatrombopag in Patients With Chronic Liver Disease and Optimal Dose Adjustment Guide With Concomitantly Administered CYP3A and CYP2C9 Inhibitors. J Clin Pharmacol. 2018 Jun 15. doi: 10.1002/jcph.1267.","parent_key":"BE0002793"} {"ref-id":"A179257","pubmed-id":28566285,"citation":"James AD, Marvalin C, Luneau A, Meissner A, Camenisch G: Comparison of (19)F NMR and (14)C Measurements for the Assessment of ADME of BYL719 (Alpelisib) in Humans. Drug Metab Dispos. 2017 Aug;45(8):900-907. doi: 10.1124/dmd.117.075424. Epub 2017 May 31.","parent_key":"BE0002638"} {"ref-id":"A179254","pubmed-id":26254025,"citation":"James A, Blumenstein L, Glaenzel U, Jin Y, Demailly A, Jakab A, Hansen R, Hazell K, Mehta A, Trandafir L, Swart P: Absorption, distribution, metabolism, and excretion of [(14)C]BYL719 (alpelisib) in healthy male volunteers. Cancer Chemother Pharmacol. 2015 Oct;76(4):751-60. doi: 10.1007/s00280-015-2842-4. Epub 2015 Aug 8.","parent_key":"BE0002638"} {"ref-id":"A179263","pubmed-id":28537878,"citation":"Rewcastle GW, Kolekar S, Buchanan CM, Gamage SA, Giddens AC, Tsang KY, Kendall JD, Singh R, Lee WJ, Smith GC, Han W, Matthews DJ, Denny WA, Shepherd PR, Jamieson SMF: Biological characterization of SN32976, a selective inhibitor of PI3K and mTOR with preferential activity to PI3Kalpha, in comparison to established pan PI3K inhibitors. Oncotarget. 2017 Jul 18;8(29):47725-47740. doi: 10.18632/oncotarget.17730.","parent_key":"BE0002793"} {"ref-id":"A39366","pubmed-id":29578577,"citation":"Marshall WL, McCrea JB, Macha S, Menzel K, Liu F, van Schanke A, de Haes JIU, Hussaini A, Jordan HR, Drexel M, Kantesaria BS, Tsai C, Cho CR, Hulskotte EGJ, Butterton JR, Iwamoto M: Pharmacokinetics and Tolerability of Letermovir Coadministered With Azole Antifungals (Posaconazole or Voriconazole) in Healthy Subjects. J Clin Pharmacol. 2018 Jul;58(7):897-904. doi: 10.1002/jcph.1094. Epub 2018 Mar 26.","parent_key":"BE0002793"} {"ref-id":"A174973","pubmed-id":30117405,"citation":"Giri P, Gupta L, Naidu S, Joshi V, Patel N, Giri S, Srinivas NR: In Vitro Drug-Drug Interaction Potential of Sulfoxide and/or Sulfone Metabolites of Albendazole, Triclabendazole , Aldicarb, Methiocarb, Montelukast and Ziprasidone. Drug Metab Lett. 2018;12(2):101-116. doi: 10.2174/1872312812666180816164626.","parent_key":"BE0002433"} {"ref-id":"A174973","pubmed-id":30117405,"citation":"Giri P, Gupta L, Naidu S, Joshi V, Patel N, Giri S, Srinivas NR: In Vitro Drug-Drug Interaction Potential of Sulfoxide and/or Sulfone Metabolites of Albendazole, Triclabendazole , Aldicarb, Methiocarb, Montelukast and Ziprasidone. Drug Metab Lett. 2018;12(2):101-116. doi: 10.2174/1872312812666180816164626.","parent_key":"BE0002793"} {"ref-id":"A174973","pubmed-id":30117405,"citation":"Giri P, Gupta L, Naidu S, Joshi V, Patel N, Giri S, Srinivas NR: In Vitro Drug-Drug Interaction Potential of Sulfoxide and/or Sulfone Metabolites of Albendazole, Triclabendazole , Aldicarb, Methiocarb, Montelukast and Ziprasidone. Drug Metab Lett. 2018;12(2):101-116. doi: 10.2174/1872312812666180816164626.","parent_key":"BE0002638"} {"ref-id":"A174973","pubmed-id":30117405,"citation":"Giri P, Gupta L, Naidu S, Joshi V, Patel N, Giri S, Srinivas NR: In Vitro Drug-Drug Interaction Potential of Sulfoxide and/or Sulfone Metabolites of Albendazole, Triclabendazole , Aldicarb, Methiocarb, Montelukast and Ziprasidone. Drug Metab Lett. 2018;12(2):101-116. doi: 10.2174/1872312812666180816164626.","parent_key":"BE0003536"} {"ref-id":"A174973","pubmed-id":30117405,"citation":"Giri P, Gupta L, Naidu S, Joshi V, Patel N, Giri S, Srinivas NR: In Vitro Drug-Drug Interaction Potential of Sulfoxide and/or Sulfone Metabolites of Albendazole, Triclabendazole , Aldicarb, Methiocarb, Montelukast and Ziprasidone. Drug Metab Lett. 2018;12(2):101-116. doi: 10.2174/1872312812666180816164626.","parent_key":"BE0002887"} {"ref-id":"A31320","pubmed-id":28597393,"citation":"Markham A: Brigatinib: First Global Approval. Drugs. 2017 Jul;77(10):1131-1135. doi: 10.1007/s40265-017-0776-3.","parent_key":"BE0002887"} {"ref-id":"A31320","pubmed-id":28597393,"citation":"Markham A: Brigatinib: First Global Approval. Drugs. 2017 Jul;77(10):1131-1135. doi: 10.1007/s40265-017-0776-3.","parent_key":"BE0002638"} {"ref-id":"A38823","pubmed-id":29557716,"citation":"Sanchez RI, Fillgrove KL, Yee KL, Liang Y, Lu B, Tatavarti A, Liu R, Anderson MS, Behm MO, Fan L, Li Y, Butterton JR, Iwamoto M, Khalilieh SG: Characterisation of the absorption, distribution, metabolism, excretion and mass balance of doravirine, a non-nucleoside reverse transcriptase inhibitor in humans. Xenobiotica. 2018 Mar 28:1-11. doi: 10.1080/00498254.2018.1451667.","parent_key":"BE0002638"} {"ref-id":"A185404","pubmed-id":27872069,"citation":"Yee KL, Sanchez RI, Auger P, Liu R, Fan L, Triantafyllou I, Lai MT, Di Spirito M, Iwamoto M, Khalilieh SG: Evaluation of Doravirine Pharmacokinetics When Switching from Efavirenz to Doravirine in Healthy Subjects. Antimicrob Agents Chemother. 2017 Jan 24;61(2). pii: AAC.01757-16. doi: 10.1128/AAC.01757-16. Print 2017 Feb.","parent_key":"BE0002638"} {"ref-id":"A38823","pubmed-id":29557716,"citation":"Sanchez RI, Fillgrove KL, Yee KL, Liang Y, Lu B, Tatavarti A, Liu R, Anderson MS, Behm MO, Fan L, Li Y, Butterton JR, Iwamoto M, Khalilieh SG: Characterisation of the absorption, distribution, metabolism, excretion and mass balance of doravirine, a non-nucleoside reverse transcriptase inhibitor in humans. Xenobiotica. 2018 Mar 28:1-11. doi: 10.1080/00498254.2018.1451667.","parent_key":"BE0002362"} {"ref-id":"A36681","pubmed-id":25998042,"citation":"Singh RP, Patel B, Kallender H, Ottesen LH, Adams LM, Cox DS: Population pharmacokinetics modeling and analysis of foretinib in adult patients with advanced solid tumors. J Clin Pharmacol. 2015 Oct;55(10):1184-92. doi: 10.1002/jcph.546. Epub 2015 Jul 7.","parent_key":"BE0004866"} {"ref-id":"A19930","pubmed-id":15615526,"citation":"Locuson CW 2nd, Suzuki H, Rettie AE, Jones JP: Charge and substituent effects on affinity and metabolism of benzbromarone-based CYP2C19 inhibitors. J Med Chem. 2004 Dec 30;47(27):6768-76.","parent_key":"BE0003536"} {"ref-id":"A38789","pubmed-id":23118231,"citation":"Reynald RL, Sansen S, Stout CD, Johnson EF: Structural characterization of human cytochrome P450 2C19: active site differences between P450s 2C8, 2C9, and 2C19. J Biol Chem. 2012 Dec 28;287(53):44581-91. doi: 10.1074/jbc.M112.424895. Epub 2012 Nov 1.","parent_key":"BE0003536"} {"ref-id":"A31354","pubmed-id":28790837,"citation":"Dockery LE, Gunderson CC, Moore KN: Rucaparib: the past, present, and future of a newly approved PARP inhibitor for ovarian cancer. Onco Targets Ther. 2017 Jun 19;10:3029-3037. doi: 10.2147/OTT.S114714. eCollection 2017.","parent_key":"BE0002433"} {"ref-id":"A176528","pubmed-id":29735753,"citation":"Glaenzel U, Jin Y, Nufer R, Li W, Schroer K, Adam-Stitah S, Peter van Marle S, Legangneux E, Borell H, James AD, Meissner A, Camenisch G, Gardin A: Metabolism and Disposition of Siponimod, a Novel Selective S1P1/S1P5 Agonist, in Healthy Volunteers and In Vitro Identification of Human Cytochrome P450 Enzymes Involved in Its Oxidative Metabolism. Drug Metab Dispos. 2018 Jul;46(7):1001-1013. doi: 10.1124/dmd.117.079574. Epub 2018 May 7.","parent_key":"BE0002638"} {"ref-id":"A176528","pubmed-id":29735753,"citation":"Glaenzel U, Jin Y, Nufer R, Li W, Schroer K, Adam-Stitah S, Peter van Marle S, Legangneux E, Borell H, James AD, Meissner A, Camenisch G, Gardin A: Metabolism and Disposition of Siponimod, a Novel Selective S1P1/S1P5 Agonist, in Healthy Volunteers and In Vitro Identification of Human Cytochrome P450 Enzymes Involved in Its Oxidative Metabolism. Drug Metab Dispos. 2018 Jul;46(7):1001-1013. doi: 10.1124/dmd.117.079574. Epub 2018 May 7.","parent_key":"BE0002793"} {"ref-id":"A39065","pubmed-id":25663650,"citation":"Wyska E, Swierczek A, Pociecha K, Przejczowska-Pomierny K: Physiologically based modeling of lisofylline pharmacokinetics following intravenous administration in mice. Eur J Drug Metab Pharmacokinet. 2016 Aug;41(4):403-12. doi: 10.1007/s13318-015-0260-y. Epub 2015 Feb 8.","parent_key":"BE0002433"} {"ref-id":"A191721","pubmed-id":30724789,"citation":"Hayden FG, Shindo N: Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis. 2019 Apr;32(2):176-186. doi: 10.1097/QCO.0000000000000532.","parent_key":"BE0003539"} {"ref-id":"A191721","pubmed-id":30724789,"citation":"Hayden FG, Shindo N: Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis. 2019 Apr;32(2):176-186. doi: 10.1097/QCO.0000000000000532.","parent_key":"BE0002204"} {"ref-id":"A191721","pubmed-id":30724789,"citation":"Hayden FG, Shindo N: Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis. 2019 Apr;32(2):176-186. doi: 10.1097/QCO.0000000000000532.","parent_key":"BE0002887"} {"ref-id":"A35871","pubmed-id":18356043,"citation":"Korhonen T, Turpeinen M, Tolonen A, Laine K, Pelkonen O: Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. J Steroid Biochem Mol Biol. 2008 May;110(1-2):56-66. doi: 10.1016/j.jsbmb.2007.09.025. Epub 2008 Feb 15.","parent_key":"BE0002793"} {"ref-id":"A35871","pubmed-id":18356043,"citation":"Korhonen T, Turpeinen M, Tolonen A, Laine K, Pelkonen O: Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. J Steroid Biochem Mol Biol. 2008 May;110(1-2):56-66. doi: 10.1016/j.jsbmb.2007.09.025. Epub 2008 Feb 15.","parent_key":"BE0003536"} {"ref-id":"A39930","pubmed-id":24889073,"citation":"Maier-Salamon A, Thalhammer T, Reznicek G, Bohmdorfer M, Zupko I, Hartl A, Jaeger W: Cytochrome P450 3A-mediated metabolism of the topoisomerase I inhibitor 9-aminocamptothecin: impact on cancer therapy. Int J Oncol. 2014 Aug;45(2):877-86. doi: 10.3892/ijo.2014.2473. Epub 2014 May 29.","parent_key":"BE0002638"} {"ref-id":"A14855","pubmed-id":10597902,"citation":"Nicolas JM, Whomsley R, Collart P, Roba J: In vitro inhibition of human liver drug metabolizing enzymes by second generation antihistamines. Chem Biol Interact. 1999 Nov 15;123(1):63-79.","parent_key":"BE0002363"} {"ref-id":"A173623","pubmed-id":12130727,"citation":"Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF: Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002 Aug;302(2):645-50. doi: 10.1124/jpet.102.034728.","parent_key":"BE0002638"} {"ref-id":"A35722","pubmed-id":25266247,"citation":"Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS, Sawka AM: Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid. 2014 Dec;24(12):1670-751. doi: 10.1089/thy.2014.0028.","parent_key":"BE0002638"} {"ref-id":"A203228","pubmed-id":18178555,"citation":"Lyons PJ, Callaway MB, Fricker LD: Characterization of carboxypeptidase A6, an extracellular matrix peptidase. J Biol Chem. 2008 Mar 14;283(11):7054-63. doi: 10.1074/jbc.M707680200. Epub 2008 Jan 4.","parent_key":"BE0009992"} {"ref-id":"A37704","pubmed-id":8477556,"citation":"Otton SV, Wu D, Joffe RT, Cheung SW, Sellers EM: Inhibition by fluoxetine of cytochrome P450 2D6 activity. Clin Pharmacol Ther. 1993 Apr;53(4):401-9.","parent_key":"BE0002363"} {"ref-id":"A183167","pubmed-id":30019769,"citation":"Veve MP, Wagner JL: Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic. Pharmacotherapy. 2018 Sep;38(9):935-946. doi: 10.1002/phar.2166. Epub 2018 Aug 20.","parent_key":"BE0002638"} {"ref-id":"A190360","pubmed-id":29650362,"citation":"Italiano A, Soria JC, Toulmonde M, Michot JM, Lucchesi C, Varga A, Coindre JM, Blakemore SJ, Clawson A, Suttle B, McDonald AA, Woodruff M, Ribich S, Hedrick E, Keilhack H, Thomson B, Owa T, Copeland RA, Ho PTC, Ribrag V: Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018 May;19(5):649-659. doi: 10.1016/S1470-2045(18)30145-1. Epub 2018 Apr 9.","parent_key":"BE0002638"} {"ref-id":"A37896","pubmed-id":10534309,"citation":"Suzuki A, Iida I, Tanaka F, Akimoto M, Fukushima K, Tani M, Ishizaki T, Chiba K: Identification of human cytochrome P-450 isoforms involved in metabolism of R(+)- and S(-)-gallopamil: utility of in vitro disappearance rate. Drug Metab Dispos. 1999 Nov;27(11):1254-9.","parent_key":"BE0002638"} {"ref-id":"A189144","pubmed-id":31571146,"citation":"Zurth C, Koskinen M, Fricke R, Prien O, Korjamo T, Graudenz K, Denner K, Bairlein M, von Buhler CJ, Wilkinson G, Gieschen H: Drug-Drug Interaction Potential of Darolutamide: In Vitro and Clinical Studies. Eur J Drug Metab Pharmacokinet. 2019 Dec;44(6):747-759. doi: 10.1007/s13318-019-00577-5.","parent_key":"BE0002638"} {"ref-id":"A39051","pubmed-id":9531521,"citation":"Masubuchi Y, Horie T: Dihydralazine-induced inactivation of cytochrome P450 enzymes in rat liver microsomes. Drug Metab Dispos. 1998 Apr;26(4):338-42.","parent_key":"BE0002433"} {"ref-id":"A39052","pubmed-id":10525281,"citation":"Masubuchi Y, Horie T: Mechanism-based inactivation of cytochrome P450s 1A2 and 3A4 by dihydralazine in human liver microsomes. Chem Res Toxicol. 1999 Oct;12(10):1028-32.","parent_key":"BE0002433"} {"ref-id":"A39053","pubmed-id":9241657,"citation":"Belloc C, Gauffre A, Andre C, Beaune PH: Epitope mapping of human CYP1A2 in dihydralazine-induced autoimmune hepatitis. Pharmacogenetics. 1997 Jun;7(3):181-6.","parent_key":"BE0002433"} {"ref-id":"A39953","pubmed-id":12622282,"citation":"Aria N, Kauffman CL: Important drug interactions and reactions in dermatology. Dermatol Clin. 2003 Jan;21(1):207-15, ix.","parent_key":"BE0002638"} {"ref-id":"A181328","pubmed-id":22679214,"citation":"Xing J, Kirby BJ, Whittington D, Wan Y, Goodlett DR: Evaluation of P450 inhibition and induction by artemisinin antimalarials in human liver microsomes and primary human hepatocytes. Drug Metab Dispos. 2012 Sep;40(9):1757-64. doi: 10.1124/dmd.112.045765. Epub 2012 Jun 7.","parent_key":"BE0003549"} {"ref-id":"A34240","pubmed-id":22149257,"citation":"Verstuyft C, Delavenne X, Rousseau A, Robert A, Tod M, Diquet B, Lebot M, Jaillon P, Becquemont L: A pharmacokinetic-pharmacodynamic model for predicting the impact of CYP2C9 and VKORC1 polymorphisms on fluindione and acenocoumarol during induction therapy. Clin Pharmacokinet. 2012 Jan 1;51(1):41-53. doi: 10.2165/11595560-000000000-00000.","parent_key":"BE0002793"} {"ref-id":"A34240","pubmed-id":22149257,"citation":"Verstuyft C, Delavenne X, Rousseau A, Robert A, Tod M, Diquet B, Lebot M, Jaillon P, Becquemont L: A pharmacokinetic-pharmacodynamic model for predicting the impact of CYP2C9 and VKORC1 polymorphisms on fluindione and acenocoumarol during induction therapy. Clin Pharmacokinet. 2012 Jan 1;51(1):41-53. doi: 10.2165/11595560-000000000-00000.","parent_key":"BE0002638"} {"ref-id":"A19255","pubmed-id":18814214,"citation":"Tang JC, Yang H, Song XY, Song XH, Yan SL, Shao JQ, Zhang TL, Zhang JN: Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes. Phytother Res. 2009 Feb;23(2):159-64. doi: 10.1002/ptr.2572.","parent_key":"BE0002433"} {"ref-id":"A19255","pubmed-id":18814214,"citation":"Tang JC, Yang H, Song XY, Song XH, Yan SL, Shao JQ, Zhang TL, Zhang JN: Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes. Phytother Res. 2009 Feb;23(2):159-64. doi: 10.1002/ptr.2572.","parent_key":"BE0004866"} {"ref-id":"A19255","pubmed-id":18814214,"citation":"Tang JC, Yang H, Song XY, Song XH, Yan SL, Shao JQ, Zhang TL, Zhang JN: Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes. Phytother Res. 2009 Feb;23(2):159-64. doi: 10.1002/ptr.2572.","parent_key":"BE0003533"} {"ref-id":"A19255","pubmed-id":18814214,"citation":"Tang JC, Yang H, Song XY, Song XH, Yan SL, Shao JQ, Zhang TL, Zhang JN: Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes. Phytother Res. 2009 Feb;23(2):159-64. doi: 10.1002/ptr.2572.","parent_key":"BE0002793"} {"ref-id":"A39376","pubmed-id":29488228,"citation":"Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Yiap BC, Ong CE: Cytochrome P450 2C9-natural antiarthritic interactions: Evaluation of inhibition magnitude and prediction from in vitro data. Biopharm Drug Dispos. 2018 Apr;39(4):205-217. doi: 10.1002/bdd.2127. Epub 2018 Mar 23.","parent_key":"BE0002793"} {"ref-id":"A19255","pubmed-id":18814214,"citation":"Tang JC, Yang H, Song XY, Song XH, Yan SL, Shao JQ, Zhang TL, Zhang JN: Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes. Phytother Res. 2009 Feb;23(2):159-64. doi: 10.1002/ptr.2572.","parent_key":"BE0002363"} {"ref-id":"A15780","pubmed-id":11095572,"citation":"Ledirac N, de Sousa G, Fontaine F, Agouridas C, Gugenheim J, Lorenzon G, Rahmani R: Effects of macrolide antibiotics on CYP3A expression in human and rat hepatocytes: interspecies differences in response to troleandomycin. Drug Metab Dispos. 2000 Dec;28(12):1391-3.","parent_key":"BE0003550"} {"ref-id":"A36257","pubmed-id":21383203,"citation":"Zimmerlin A, Trunzer M, Faller B: CYP3A time-dependent inhibition risk assessment validated with 400 reference drugs. Drug Metab Dispos. 2011 Jun;39(6):1039-46. doi: 10.1124/dmd.110.037911. Epub 2011 Mar 7.","parent_key":"BE0002638"} {"ref-id":"A38940","pubmed-id":11411558,"citation":"Asano T, Kushida H, Sadakane C, Ishihara K, Wakui Y, Yanagisawa T, Kimura M, Kamei H, Yoshida T: Metabolism of ipecac alkaloids cephaeline and emetine by human hepatic microsomal cytochrome P450s, and their inhibitory effects on P450 enzyme activities. Biol Pharm Bull. 2001 Jun;24(6):678-82.","parent_key":"BE0002638"} {"ref-id":"A33820","pubmed-id":12169204,"citation":"Zuber R, Anzenbacherova E, Anzenbacher P: Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med. 2002 Apr-Jun;6(2):189-98.","parent_key":"BE0002638"} {"ref-id":"A33821","pubmed-id":8666035,"citation":"Rauschenbach R, Gieschen H, Husemann M, Salomon B, Hildebrand M: Stable expression of human cytochrome P450 3A4 in V79 cells and its application for metabolic profiling of ergot derivatives. Eur J Pharmacol. 1995 Oct 6;293(3):183-90.","parent_key":"BE0002638"} {"ref-id":"A33822","pubmed-id":10331074,"citation":"Guengerich FP: Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol. 1999;39:1-17. doi: 10.1146/annurev.pharmtox.39.1.1.","parent_key":"BE0002638"} {"ref-id":"A31333","pubmed-id":7576262,"citation":"von Rosensteil NA, Adam D: Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf. 1995 Aug;13(2):105-22.","parent_key":"BE0002638"} {"ref-id":"A36252","pubmed-id":29130574,"citation":"Simmons KB, Haddad LB, Nanda K, Curtis KM: Drug interactions between rifamycin antibiotics and hormonal contraception: a systematic review. BJOG. 2018 Jun;125(7):804-811. doi: 10.1111/1471-0528.15027. Epub 2017 Dec 15.","parent_key":"BE0002638"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0002638"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0003606"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0003609"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0003533"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0002433"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0002363"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0002793"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0002362"} {"ref-id":"A191424","pubmed-id":24400440,"citation":"Liu X, Huang T, Chen JX, Zeng J, Fan XR, Xu-Zhu, Yu ZW, Sun XY, Hong M, Sun HZ: Arbidol exhibits strong inhibition towards UDP-glucuronosyltransferase (UGT) 1A9 and 2B7. Pharmazie. 2013 Dec;68(12):945-50.","parent_key":"BE0003538"} {"ref-id":"A191454","pubmed-id":23488780,"citation":"Song JH, Fang ZZ, Zhu LL, Cao YF, Hu CM, Ge GB, Zhao DW: Glucuronidation of the broad-spectrum antiviral drug arbidol by UGT isoforms. J Pharm Pharmacol. 2013 Apr;65(4):521-7. doi: 10.1111/jphp.12014. Epub 2012 Dec 24.","parent_key":"BE0003538"} {"ref-id":"A191499","pubmed-id":23357765,"citation":"Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X: Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013 Apr;57(4):1743-55. doi: 10.1128/AAC.02282-12. Epub 2013 Jan 28.","parent_key":"BE0003538"} {"ref-id":"A191424","pubmed-id":24400440,"citation":"Liu X, Huang T, Chen JX, Zeng J, Fan XR, Xu-Zhu, Yu ZW, Sun XY, Hong M, Sun HZ: Arbidol exhibits strong inhibition towards UDP-glucuronosyltransferase (UGT) 1A9 and 2B7. Pharmazie. 2013 Dec;68(12):945-50.","parent_key":"BE0003679"} {"ref-id":"A32818","pubmed-id":18948380,"citation":"Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF: In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos. 2009 Jan;37(1):221-8. doi: 10.1124/dmd.108.022343. Epub 2008 Oct 23.","parent_key":"BE0002887"} {"ref-id":"A32818","pubmed-id":18948380,"citation":"Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF: In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos. 2009 Jan;37(1):221-8. doi: 10.1124/dmd.108.022343. Epub 2008 Oct 23.","parent_key":"BE0002793"} {"ref-id":"A32818","pubmed-id":18948380,"citation":"Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF: In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos. 2009 Jan;37(1):221-8. doi: 10.1124/dmd.108.022343. Epub 2008 Oct 23.","parent_key":"BE0003536"} {"ref-id":"A32818","pubmed-id":18948380,"citation":"Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF: In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos. 2009 Jan;37(1):221-8. doi: 10.1124/dmd.108.022343. Epub 2008 Oct 23.","parent_key":"BE0002638"} {"ref-id":"A38627","pubmed-id":23378847,"citation":"Lee SJ: Clinical Application of CYP2C19 Pharmacogenetics Toward More Personalized Medicine. Front Genet. 2013 Feb 1;3:318. doi: 10.3389/fgene.2012.00318. eCollection 2012.","parent_key":"BE0003536"} {"ref-id":"A39086","pubmed-id":15199661,"citation":"Brosen K: Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie. 2004 Jan-Feb;59(1):5-12.","parent_key":"BE0002433"} {"ref-id":"A39087","pubmed-id":11990081,"citation":"Danie WA, Syrek M, Rylko Z, Wojcikowski J: Effects of antidepressant drugs on the activity of cytochrome P-450 measured by caffeine oxidation in rat liver microsomes. Pol J Pharmacol. 2001 Jul-Aug;53(4):351-7.","parent_key":"BE0002433"} {"ref-id":"A38790","pubmed-id":29770715,"citation":"Dugan J, Pollyea D: Enasidenib for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol. 2018 Aug;11(8):755-760. doi: 10.1080/17512433.2018.1477585. Epub 2018 Jul 24.","parent_key":"BE0003536"} {"ref-id":"A15336","pubmed-id":9829158,"citation":"McClellan KJ, Goa KL: Candesartan cilexetil. A review of its use in essential hypertension. Drugs. 1998 Nov;56(5):847-69.","parent_key":"BE0002793"} {"ref-id":"A38745","pubmed-id":10877007,"citation":"Taavitsainen P, Kiukaanniemi K, Pelkonen O: In vitro inhibition screening of human hepatic P450 enzymes by five angiotensin-II receptor antagonists. Eur J Clin Pharmacol. 2000 May;56(2):135-40.","parent_key":"BE0002793"} {"ref-id":"A38791","pubmed-id":25267661,"citation":"Hanboonkunupakarn B, Ashley EA, Jittamala P, Tarning J, Pukrittayakamee S, Hanpithakpong W, Chotsiri P, Wattanakul T, Panapipat S, Lee SJ, Day NP, White NJ: Open-label crossover study of primaquine and dihydroartemisinin-piperaquine pharmacokinetics in healthy adult thai subjects. Antimicrob Agents Chemother. 2014 Dec;58(12):7340-6. doi: 10.1128/AAC.03704-14. Epub 2014 Sep 29.","parent_key":"BE0003536"} {"ref-id":"A38755","pubmed-id":10022752,"citation":"Maenpaa J, Hall SD, Ring BJ, Strom SC, Wrighton SA: Human cytochrome P450 3A (CYP3A) mediated midazolam metabolism: the effect of assay conditions and regioselective stimulation by alpha-naphthoflavone, terfenadine and testosterone. Pharmacogenetics. 1998 Apr;8(2):137-55.","parent_key":"BE0002638"} {"ref-id":"A39365","pubmed-id":15133536,"citation":"He N, Edeki T: The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am J Ther. 2004 May-Jun;11(3):206-12.","parent_key":"BE0002793"} {"ref-id":"A121618","pubmed-id":11160876,"citation":"Domanski TL, Finta C, Halpert JR, Zaphiropoulos PG: cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol. 2001 Feb;59(2):386-92.","parent_key":"BE0003550"} {"ref-id":"A39036","pubmed-id":11741520,"citation":"Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH: Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol Sin. 2001 Feb;22(2):148-54.","parent_key":"BE0002433"} {"ref-id":"A39358","pubmed-id":14703066,"citation":"Modugno F, Knoll C, Kanbour-Shakir A, Romkes M: A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat. 2003 Dec;82(3):191-7. doi: 10.1023/B:BREA.0000004376.21491.44.","parent_key":"BE0002638"} {"ref-id":"A182630","pubmed-id":17570247,"citation":"Zhang Y, Gaikwad NW, Olson K, Zahid M, Cavalieri EL, Rogan EG: Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism. 2007 Jul;56(7):887-94. doi: 10.1016/j.metabol.2007.03.001.","parent_key":"BE0003543"} {"ref-id":"A182633","pubmed-id":16207128,"citation":"Paracchini V, Pedotti P, Raimondi S, Garte S, Bradlow HL, Sepkovic DW, Taioli E: A common CYP1B1 polymorphism is associated with 2-OHE1/16-OHE1 urinary estrone ratio. Clin Chem Lab Med. 2005;43(7):702-6. doi: 10.1515/CCLM.2005.119.","parent_key":"BE0003543"} {"ref-id":"A182630","pubmed-id":17570247,"citation":"Zhang Y, Gaikwad NW, Olson K, Zahid M, Cavalieri EL, Rogan EG: Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism. 2007 Jul;56(7):887-94. doi: 10.1016/j.metabol.2007.03.001.","parent_key":"BE0001111"} {"ref-id":"A182636","pubmed-id":11264459,"citation":"Murray GI, Melvin WT, Greenlee WF, Burke MD: Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu Rev Pharmacol Toxicol. 2001;41:297-316. doi: 10.1146/annurev.pharmtox.41.1.297.","parent_key":"BE0001111"} {"ref-id":"A4466","pubmed-id":11159893,"citation":"Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33.","parent_key":"BE0002887"} {"ref-id":"A14754","pubmed-id":12865317,"citation":"Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT: Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.","parent_key":"BE0003543"} {"ref-id":"A184865","pubmed-id":15126349,"citation":"Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T: Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res. 2004 May 1;64(9):3119-25.","parent_key":"BE0001111"} {"ref-id":"A14754","pubmed-id":12865317,"citation":"Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT: Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.","parent_key":"BE0002793"} {"ref-id":"A181289","pubmed-id":7747284,"citation":"Bogaards JJ, van Ommen B, Wolf CR, van Bladeren PJ: Human cytochrome P450 enzyme selectivities in the oxidation of chlorinated benzenes. Toxicol Appl Pharmacol. 1995 May;132(1):44-52.","parent_key":"BE0003533"} {"ref-id":"A181292","pubmed-id":9817075,"citation":"Nedelcheva V, Gut I, Soucek P, Frantik E: Cytochrome P450 catalyzed oxidation of monochlorobenzene, 1,2- and 1,4-dichlorobenzene in rat, mouse, and human liver microsomes. Chem Biol Interact. 1998 Aug 14;115(1):53-70.","parent_key":"BE0003533"} {"ref-id":"A32562","pubmed-id":23470874,"citation":"Yokotani K, Chiba T, Sato Y, Nakanishi T, Murata M, Umegaki K: [Effect of three herbal extracts on cytochrome P450 and possibility of interaction with drugs]. Shokuhin Eiseigaku Zasshi. 2013;54(1):56-64.","parent_key":"BE0002433"} {"ref-id":"A39115","pubmed-id":15900287,"citation":"Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Khan IA, Shah A: In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes. Clin Pharmacol Ther. 2005 May;77(5):415-26. doi: 10.1016/j.clpt.2005.01.009.","parent_key":"BE0002433"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0002363"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0002362"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0003612"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0002433"} {"ref-id":"A31555","pubmed-id":26264914,"citation":"Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3.","parent_key":"BE0001111"} {"ref-id":"A32558","pubmed-id":20942780,"citation":"Shen HW, Jiang XL, Winter JC, Yu AM: Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab. 2010 Oct;11(8):659-66.","parent_key":"BE0002363"} {"ref-id":"A185354","pubmed-id":24160757,"citation":"Stout SM, Cimino NM: Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014 Feb;46(1):86-95. doi: 10.3109/03602532.2013.849268. Epub 2013 Oct 25.","parent_key":"BE0002793"} {"ref-id":"A185354","pubmed-id":24160757,"citation":"Stout SM, Cimino NM: Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014 Feb;46(1):86-95. doi: 10.3109/03602532.2013.849268. Epub 2013 Oct 25.","parent_key":"BE0003536"} {"ref-id":"A185354","pubmed-id":24160757,"citation":"Stout SM, Cimino NM: Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014 Feb;46(1):86-95. doi: 10.3109/03602532.2013.849268. Epub 2013 Oct 25.","parent_key":"BE0002638"} {"ref-id":"A32872","pubmed-id":25552904,"citation":"Navari RM: Profile of netupitant/palonosetron (NEPA) fixed dose combination and its potential in the treatment of chemotherapy-induced nausea and vomiting (CINV). Drug Des Devel Ther. 2014 Dec 17;9:155-61. doi: 10.2147/DDDT.S76158. eCollection 2015.","parent_key":"BE0002638"} {"ref-id":"A39069","pubmed-id":11502527,"citation":"Randinitis EJ, Alvey CW, Koup JR, Rausch G, Abel R, Bron NJ, Hounslow NJ, Vassos AB, Sedman AJ: Drug interactions with clinafloxacin. Antimicrob Agents Chemother. 2001 Sep;45(9):2543-52.","parent_key":"BE0003536"} {"ref-id":"A39069","pubmed-id":11502527,"citation":"Randinitis EJ, Alvey CW, Koup JR, Rausch G, Abel R, Bron NJ, Hounslow NJ, Vassos AB, Sedman AJ: Drug interactions with clinafloxacin. Antimicrob Agents Chemother. 2001 Sep;45(9):2543-52.","parent_key":"BE0002363"} {"ref-id":"A39069","pubmed-id":11502527,"citation":"Randinitis EJ, Alvey CW, Koup JR, Rausch G, Abel R, Bron NJ, Hounslow NJ, Vassos AB, Sedman AJ: Drug interactions with clinafloxacin. Antimicrob Agents Chemother. 2001 Sep;45(9):2543-52.","parent_key":"BE0002793"} {"ref-id":"A36864","pubmed-id":9585555,"citation":"Racha JK, Rettie AE, Kunze KL: Mechanism-based inactivation of human cytochrome P450 1A2 by furafylline: detection of a 1:1 adduct to protein and evidence for the formation of a novel imidazomethide intermediate. Biochemistry. 1998 May 19;37(20):7407-19. doi: 10.1021/bi973011m.","parent_key":"BE0002433"} {"ref-id":"A39057","pubmed-id":17823234,"citation":"Fairman DA, Collins C, Chapple S: Progress curve analysis of CYP1A2 inhibition: a more informative approach to the assessment of mechanism-based inactivation? Drug Metab Dispos. 2007 Dec;35(12):2159-65. doi: 10.1124/dmd.107.017236. Epub 2007 Sep 6.","parent_key":"BE0002433"} {"ref-id":"A39058","pubmed-id":8292742,"citation":"Kunze KL, Trager WF: Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem Res Toxicol. 1993 Sep-Oct;6(5):649-56.","parent_key":"BE0002433"} {"ref-id":"A36254","pubmed-id":20615193,"citation":"Jones DR, Kim SY, Boysen G, Yun CH, Miller GP: Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin. Drug Metab Lett. 2010 Dec;4(4):213-9.","parent_key":"BE0002638"} {"ref-id":"A11184","pubmed-id":15257633,"citation":"Swainston Harrison T, Perry CM: Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs. 2004;64(15):1715-36.","parent_key":"BE0002638"} {"ref-id":"A187622","pubmed-id":25377539,"citation":"Awortwe C, Manda VK, Avonto C, Khan SI, Khan IA, Walker LA, Bouic PJ, Rosenkranz B: Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway. Xenobiotica. 2015 Mar;45(3):218-29. doi: 10.3109/00498254.2014.973930. Epub 2014 Nov 7.","parent_key":"BE0002638"} {"ref-id":"A187625","pubmed-id":14749695,"citation":"Gorski JC, Huang SM, Pinto A, Hamman MA, Hilligoss JK, Zaheer NA, Desai M, Miller M, Hall SD: The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo. Clin Pharmacol Ther. 2004 Jan;75(1):89-100. doi: 10.1016/j.clpt.2003.09.013.","parent_key":"BE0002638"} {"ref-id":"A184871","pubmed-id":15817670,"citation":"Yu AM, Fukamachi K, Krausz KW, Cheung C, Gonzalez FJ: Potential role for human cytochrome P450 3A4 in estradiol homeostasis. Endocrinology. 2005 Jul;146(7):2911-9. doi: 10.1210/en.2004-1248. Epub 2005 Apr 7.","parent_key":"BE0002638"} {"ref-id":"A183197","pubmed-id":1302569,"citation":"Joellenbeck L, Qian Z, Zarba A, Groopman JD: Urinary 6 beta-hydroxycortisol/cortisol ratios measured by high-performance liquid chromatography for use as a biomarker for the human cytochrome P-450 3A4. Cancer Epidemiol Biomarkers Prev. 1992 Nov-Dec;1(7):567-72.","parent_key":"BE0002638"} {"ref-id":"A35859","pubmed-id":28522317,"citation":"Bustos ML, Caritis SN, Jablonski KA, Reddy UM, Sorokin Y, Manuck T, Varner MW, Wapner RJ, Iams JD, Carpenter MW, Peaceman AM, Mercer BM, Sciscione A, Rouse DJ, Ramin SM: The association among cytochrome P450 3A, progesterone receptor polymorphisms, plasma 17-alpha hydroxyprogesterone caproate concentrations, and spontaneous preterm birth. Am J Obstet Gynecol. 2017 Sep;217(3):369.e1-369.e9. doi: 10.1016/j.ajog.2017.05.019. Epub 2017 May 15.","parent_key":"BE0002638"} {"ref-id":"A17603","pubmed-id":10585740,"citation":"Bournique B, Petry M, Gousset G: Usefulness of statistic experimental designs in enzymology: example with recombinant hCYP3A4 and 1A2. Anal Biochem. 1999 Dec 1;276(1):18-26.","parent_key":"BE0002638"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0003536"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0003549"} {"ref-id":"A185789","pubmed-id":17433521,"citation":"Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP: Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products. Toxicology. 2007 Jun 3;235(1-2):83-91. doi: 10.1016/j.tox.2007.03.007. Epub 2007 Mar 15.","parent_key":"BE0003549"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0009758"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0002362"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0002363"} {"ref-id":"A185795","pubmed-id":24510399,"citation":"Al-Jenoobi FI, Al-Thukair AA, Alam MA, Abbas FA, Al-Mohizea AM, Alkharfy KM, Al-Suwayeh SA: Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects. Eur J Drug Metab Pharmacokinet. 2015 Mar;40(1):61-6. doi: 10.1007/s13318-014-0180-2. Epub 2014 Feb 9.","parent_key":"BE0002363"} {"ref-id":"A33227","pubmed-id":18480186,"citation":"Volak LP, Ghirmai S, Cashman JR, Court MH: Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos. 2008 Aug;36(8):1594-605. doi: 10.1124/dmd.108.020552. Epub 2008 May 14.","parent_key":"BE0002433"} {"ref-id":"A185786","pubmed-id":20484172,"citation":"Chen Y, Liu WH, Chen BL, Fan L, Han Y, Wang G, Hu DL, Tan ZR, Zhou G, Cao S, Zhou HH: Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers. Ann Pharmacother. 2010 Jun;44(6):1038-45. doi: 10.1345/aph.1M533. Epub 2010 May 18.","parent_key":"BE0002433"} {"ref-id":"A185789","pubmed-id":17433521,"citation":"Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP: Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products. Toxicology. 2007 Jun 3;235(1-2):83-91. doi: 10.1016/j.tox.2007.03.007. Epub 2007 Mar 15.","parent_key":"BE0002433"} {"ref-id":"A188988","pubmed-id":31563805,"citation":"Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, Chen L, Zhu Y, Guo C, Shi J, Yu D: Novel HER2-Targeting Antibody-Drug Conjugates of Trastuzumab Beyond T-DM1 in Breast Cancer: Trastuzumab Deruxtecan(DS-8201a) and (Vic-)Trastuzumab Duocarmazine (SYD985). Eur J Med Chem. 2019 Dec 1;183:111682. doi: 10.1016/j.ejmech.2019.111682. Epub 2019 Sep 6.","parent_key":"BE0002638"} {"ref-id":"A191853","pubmed-id":22363283,"citation":"Christensen H, Hermann M: Immunological response as a source to variability in drug metabolism and transport. Front Pharmacol. 2012 Feb 10;3:8. doi: 10.3389/fphar.2012.00008. eCollection 2012.","parent_key":"BE0002433"} {"ref-id":"A184043","pubmed-id":30945116,"citation":"Klunder B, Mittapalli RK, Mohamed MF, Friedel A, Noertersheuser P, Othman AA: Population Pharmacokinetics of Upadacitinib Using the Immediate-Release and Extended-Release Formulations in Healthy Subjects and Subjects with Rheumatoid Arthritis: Analyses of Phase I-III Clinical Trials. Clin Pharmacokinet. 2019 Aug;58(8):1045-1058. doi: 10.1007/s40262-019-00739-3.","parent_key":"BE0002638"} {"ref-id":"A189162","pubmed-id":29688617,"citation":"Mohamed MF, Zeng J, Marroum PJ, Song IH, Othman AA: Pharmacokinetics of Upadacitinib With the Clinical Regimens of the Extended-Release Formulation Utilized in Rheumatoid Arthritis Phase 3 Trials. Clin Pharmacol Drug Dev. 2019 Feb;8(2):208-216. doi: 10.1002/cpdd.462. Epub 2018 Apr 24.","parent_key":"BE0002638"} {"ref-id":"A184043","pubmed-id":30945116,"citation":"Klunder B, Mittapalli RK, Mohamed MF, Friedel A, Noertersheuser P, Othman AA: Population Pharmacokinetics of Upadacitinib Using the Immediate-Release and Extended-Release Formulations in Healthy Subjects and Subjects with Rheumatoid Arthritis: Analyses of Phase I-III Clinical Trials. Clin Pharmacokinet. 2019 Aug;58(8):1045-1058. doi: 10.1007/s40262-019-00739-3.","parent_key":"BE0002363"} {"ref-id":"A189162","pubmed-id":29688617,"citation":"Mohamed MF, Zeng J, Marroum PJ, Song IH, Othman AA: Pharmacokinetics of Upadacitinib With the Clinical Regimens of the Extended-Release Formulation Utilized in Rheumatoid Arthritis Phase 3 Trials. Clin Pharmacol Drug Dev. 2019 Feb;8(2):208-216. doi: 10.1002/cpdd.462. Epub 2018 Apr 24.","parent_key":"BE0002363"} {"ref-id":"A184913","pubmed-id":11181496,"citation":"Ishigami M, Honda T, Takasaki W, Ikeda T, Komai T, Ito K, Sugiyama Y: A comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro. Drug Metab Dispos. 2001 Mar;29(3):282-8.","parent_key":"BE0002638"}